E. Lattice Semiconductor Corporation - LFE3-150EA-6LFN672I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	18625
Number of Logic Elements/Cells	149000
Total RAM Bits	7014400
Number of I/O	380
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-150ea-6lfn672i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The LatticeECP3[™] (EConomy Plus Third generation) family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES and high speed source synchronous interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 65 nm technology making the devices suitable for high-volume, high-speed, low-cost applications.

The LatticeECP3 device family expands look-up-table (LUT) capacity to 149K logic elements and supports up to 586 user I/Os. The LatticeECP3 device family also offers up to 320 18 x 18 multipliers and a wide range of parallel I/O standards.

The LatticeECP3 FPGA fabric is optimized with high performance and low cost in mind. The LatticeECP3 devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the LatticeECP3 device family supports a broad range of interface standards, including DDR3, XGMII and 7:1 LVDS.

The LatticeECP3 device family also features high speed SERDES with dedicated PCS functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit Pre-emphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The LatticeECP3 devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

The Lattice Diamond[™] and ispLEVER[®] design software allows large complex designs to be efficiently implemented using the LatticeECP3 FPGA family. Synthesis library support for LatticeECP3 is available for popular logic synthesis tools. Diamond and ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeECP3 device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the LatticeECP3 family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Secondary Clock/Control Sources

LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and SC4-SC7 are for the clock.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7.

Note: Clock inputs can be configured in differential or single-ended mode.

Secondary Clock/Control Routing

Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control signals.

ALU Flags

The sysDSP slice provides a number of flags from the ALU including:

- Equal to zero (EQZ)
- Equal to zero with mask (EQZM)
- Equal to one with mask (EQOM)
- Equal to pattern with mask (EQPAT)
- Equal to bit inverted pattern with mask (EQPATB)
- Accumulator Overflow (OVER)
- Accumulator Underflow (UNDER)
- Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and output register.

Resources Available in the LatticeECP3 Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Slices	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
ECP3-17	12	48	24	6
ECP3-35	32	128	64	16
ECP3-70	64	256	128	32
ECP3-95	64	256	128	32
ECP3-150	160	640	320	80

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
ECP3-17	38	700
ECP3-35	72	1327
ECP3-70	240	4420
ECP3-95	240	4420
ECP3-150	372	6850

Input signals are fed from the sysl/O buffer to the input register block (as signal DI). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system clock by one of the registers in the single data rate sync register block.

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox function takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system clock before entering the core. Figure 2-30 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchronization registers to the clock transfer and gearbox registers.

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See Figure 2-37 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges

The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory interfaces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-35 shows the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS control logic block.

Bottom Edge

PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces.

Top Edge

PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR memories that support 10 bits of data.

	PIO A	↓	PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	L+	PADB "C"
_ DQS	PIO A	SysIO Buffer Delay ◀	PADA "T" LVDS Pair
	PIO B		PADB "C"
	PIO A		PADA "T" LVDS Pair
	→ PIO A → PIO B		PADA "T" LVDS Pair PADB "C"
	→ PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-35. DQS Grouping on the Left, Right and Top Edges

Figure 2-37. DQS Local Bus

Polarity Control Logic

In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the preamble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support

LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input register block.

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

SCI (SERDES Client Interface) Bus

The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by registers rather than the configuration memory cells. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each quad in a design.

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the core.

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary and secondary protocol combinations.

Flexible Quad SERDES Architecture

The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and standards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one standard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol	Secondary Protocol
PCI Express 1.1	SGMII
PCI Express 1.1	Gigabit Ethernet
PCI Express 1.1	Serial RapidIO Type I
PCI Express 1.1	Serial RapidIO Type II
Serial RapidIO Type I	SGMII
Serial RapidIO Type I	Gigabit Ethernet
Serial RapidIO Type II	SGMII
Serial RapidIO Type II	Gigabit Ethernet
Serial RapidIO Type II	Serial RapidIO Type I
CPRI-3	CPRI-2 and CPRI-1
3G-SDI	HD-SDI and SD-SDI

LatticeECP3 Supply Current (Standby)^{1, 2, 3, 4, 5, 6}

			Тур	ical	
Symbol	Parameter	Device	-6L, -7L, -8L	-6, -7, -8	Units
		ECP-17EA	29.8	49.4	mA
I _{CC} Core Powe		ECP3-35EA	53.7	89.4	mA
	Core Power Supply Current	ECP3-70EA	137.3	230.7	mA
		ECP3-95EA	137.3	230.7	mA
		ECP3-150EA	219.5	370.9	mA
		ECP-17EA	18.3	19.4	mA
		ECP3-35EA	19.6	23.1	mA
I _{CCAUX}	Auxiliary Power Supply Current	ECP3-70EA	26.5	32.4	mA
		ECP3-95EA	26.5	32.4	mA
		ECP3-150EA	37.0	45.7	mA
	PLL Power Supply Current (Per PLL)	ECP-17EA	0.0	0.0	mA
		ECP3-35EA	0.1	0.1	mA
I _{CCPLL}		ECP3-70EA	0.1	0.1	mA
		ECP3-95EA	0.1	0.1	mA
		ECP3-150EA	0.1	0.1	mA
		ECP-17EA	1.3	1.4	mA
		ECP3-35EA	1.3	1.4	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	ECP3-70EA	1.4	1.5	mA
		ECP3-95EA	1.4	1.5	mA
		ECP3-150EA	1.4	1.5	mA
I _{CCJ}	JTAG Power Supply Current	All Devices	2.5	2.5	mA
		ECP-17EA	6.1	6.1	mA
		ECP3-35EA	6.1	6.1	mA
I _{CCA}	Iransmit, Receive, PLL and Reference Clock Buffer Power Supply	ECP3-70EA	18.3	18.3	mA
		ECP3-95EA	18.3	18.3	mA
		ECP3-150EA	24.4	24.4	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see the list of technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

5. $T_J = 85$ °C, power supplies at nominal voltage.

6. To determine the LatticeECP3 peak start-up current data, use the Power Calculator tool.

LatticeECP3 External Switching Characteristics ^{1, 2, 3, 13}

	-8		-8	-7		-6			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks				1			1		1
Primary Clock ⁶									
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-150EA	—	500	—	420	—	375	MHz
t _{w_PRI}	Clock Pulse Width for Primary Clock	ECP3-150EA	0.8	—	0.9		1.0		ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-150EA	_	300	_	330	—	360	ps
tskew_prib	Primary Clock Skew Within a Bank	ECP3-150EA	—	250	_	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-70EA/95EA	0.8	—	0.9		1.0		ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-70EA/95EA	—	360	_	370	—	380	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-70EA/95EA	—	310		320	—	330	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-35EA	—	500	_	420	—	375	MHz
tw_pri	Pulse Width for Primary Clock	ECP3-35EA	0.8	_	0.9		1.0	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-35EA	_	300	_	330	—	360	ps
tskew_prib	Primary Clock Skew Within a Bank	ECP3-35EA	—	250	_	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-17EA	—	500	_	420		375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-17EA	0.8	—	0.9	_	1.0		ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-17EA	_	310		340	_	370	ps
tskew_prib	Primary Clock Skew Within a Bank	ECP3-17EA	—	220	_	230	—	240	ps
Edge Clock ⁶									
fMAX_EDGE	Frequency for Edge Clock	ECP3-150EA	—	500	—	420	_	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-150EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-150EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-70EA/95EA	0.9	—	1.0	_	1.2	-	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-70EA/95EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-35EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-35EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-35EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-17EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-17EA	0.9	—	1.0	_	1.2	_	ns
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-17EA	—	200	_	210	—	220	ps
Generic SDR									
General I/O Pin Par	ameters Using Dedicated Clock In	put Primary Clock W	Vithout Pl	LL ²					
t _{co}	Clock to Output - PIO Output Register	ECP3-150EA	_	3.9	_	4.3	—	4.7	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.0	_	0.0		0.0		ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-150EA	1.5	—	1.7	_	2.0	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.3	—	1.5	_	1.7	_	ns

Over Recommended Commercial Operating Conditions

SERDES/PCS Block Latency

Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

ltem	Description	Min.	Avg.	Max.	Fixed	Bypass	Units
Transmi	t Data Latency ¹				•	•	
	FPGA Bridge - Gearing disabled with different clocks		3	5	—	1	word clk
T1	FPGA Bridge - Gearing disabled with same clocks	—	—	—	3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk
T2	8b10b Encoder	—	_	_	2	1	word clk
Т3	SERDES Bridge transmit	—		_	2	1	word clk
тл	Serializer: 8-bit mode		_		15 + Δ1	—	UI + ps
14	Serializer: 10-bit mode	—	_		18 + Δ1	—	UI + ps
TE	Pre-emphasis ON		_		1 + ∆2	—	UI + ps
Pre-emphasis OFF		—	—	—	0 + ∆3	—	UI + ps
Receive	Data Latency ²				•		
D1	Equalization ON			_	Δ1	_	UI + ps
	Equalization OFF		_		Δ2	—	UI + ps
D 2	Deserializer: 8-bit mode	—	_	_	10 + ∆3	—	UI + ps
Π <u>Ζ</u>	Deserializer: 10-bit mode	—	—	_	12 + ∆3	—	UI + ps
R3	SERDES Bridge receive	—	—	_	2	—	word clk
R4	Word alignment	3.1	—	4	—	—	word clk
R5	8b10b decoder	—	—	_	1	—	word clk
R6	Clock Tolerance Compensation	7	15	23	1	1	word clk
	FPGA Bridge - Gearing disabled with different clocks		3	5	—	1	word clk
R7	FPGA Bridge - Gearing disabled with same clocks	—	—	—	3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118$ ps, $\Delta 2 = +132$ ps, $\Delta 3 = +700$ ps.

Figure 3-21. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3-22. sysCONFIG Master Serial Port Timing

Point-to-Point LVDS (PPLVDS)

Over Recommended Operating Conditions

Description	Min.	Тур.	Max.	Units
Output driver supply $(1/-5\%)$	3.14	3.3	3.47	V
	2.25	2.5	2.75	V
Input differential voltage	100	—	400	mV
Input common mode voltage	0.2	—	2.3	V
Output differential voltage	130	—	400	mV
Output common mode voltage	0.5	0.8	1.4	V

RSDS

Over Recommended Operating Conditions

Parameter Symbol	Description	Min.	Тур.	Max.	Units
V _{OD}	Output voltage, differential, R _T = 100 Ohms	100	200	600	mV
V _{OS}	Output voltage, common mode	0.5	1.2	1.5	V
I _{RSDS}	Differential driver output current	1	2	6	mA
V _{THD}	Input voltage differential		—	-	mV
V _{CM}	M Input common mode voltage		—	1.5	V
R, T _F Output rise and fall times, 20% to 80%		—	500		ps
T _{ODUTY}	Output clock duty cycle	35	50	65	%

Note: Data is for 2 mA drive. Other differential driver current options are available.

Signal Descriptions (Cont.)

Signal Name	I/O	Description
D7/SPID0	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.
DI/CSSPI0N/CEN	I/O	Serial data input for slave serial mode. SPI/SPIm mode chip select.
Dedicated SERDES Signals ³		
PCS[Index]_HDINNm	I	High-speed input, negative channel m
PCS[Index]_HDOUTNm	0	High-speed output, negative channel m
PCS[Index]_REFCLKN	I	Negative Reference Clock Input
PCS[Index]_HDINPm	I	High-speed input, positive channel m
PCS[Index]_HDOUTPm	0	High-speed output, positive channel m
PCS[Index]_REFCLKP	I	Positive Reference Clock Input
PCS[Index]_VCCOBm		Output buffer power supply, channel m (1.2V/1.5)
PCS[Index]_VCCIBm		Input buffer power supply, channel m (1.2V/1.5V)

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, care must be given.

2. These pins are dedicated inputs or can be used as general purpose I/O.

3. m defines the associated channel in the quad.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins					
For Left and Right Edges of the Device							
D[Edgo] [n 2]	А	DQ					
	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
D[Edgo] [n 1]	А	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
	В	DQ					
P[Edge] [n 1]	А	DQ					
	В	DQ					
D[Edgo] [n 2]	А	DQ					
r[Euge][II+2]	В	DQ					
For Top Edge of the Devi	ce						
P[Edge] [n-3]	А	DQ					
	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
P[Edge] [n-1]	А	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
i [⊏uge] [ii]	В	DQ					
P[Edge] [n+1]	А	DQ					
i [Euge] [iit i]	В	DQ					
P[Edge] [n 2]	А	DQ					
י נבטשכן נוידבן	В	DQ					

Note: "n" is a row PIC number.

Pin Information Summary

Pin Information Summary		ECP3-17EA			ECP3-35EA			ECP3-70EA		
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	26	20	36	26	42	48	42	60	86
	Bank 1	14	10	24	14	36	36	36	48	78
	Bank 2	6	7	12	6	24	24	24	34	36
General Purpose	Bank 3	18	12	44	16	54	59	54	59	86
	Bank 6	20	11	44	18	63	61	63	67	86
	Bank 7	19	26	32	19	36	42	36	48	54
	Bank 8	24	24	24	24	24	24	24	24	24
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	2	2	2	2	4	4	4	8	8
General Purpose Inputs	Bank 3	0	0	0	2	4	4	4	12	12
per bank	Bank 6	0	0	0	2	4	4	4	12	12
	Bank 7	4	4	4	4	4	4	4	8	8
	Bank 8	0	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0	0
General Purpose Out-	Bank 3	0	0	0	0	0	0	0	0	0
	Bank 6	0	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0	0
Total Single-Ended User I/O		133	116	222	133	295	310	295	380	490
VCC		6	16	16	6	16	32	16	32	32
VCCAUX		4	5	8	4	8	12	8	12	16
VTT		4	7	4	4	4	4	4	4	8
VCCA		4	6	4	4	4	8	4	8	16
VCCPLL		2	2	4	2	4	4	4	4	4
	Bank 0	2	3	2	2	2	4	2	4	4
	Bank 1	2	3	2	2	2	4	2	4	4
	Bank 2	2	2	2	2	2	4	2	4	4
VCCIO	Bank 3	2	3	2	2	2	4	2	4	4
	Bank 6	2	3	2	2	2	4	2	4	4
	Bank 7	2	3	2	2	2	4	2	4	4
	Bank 8	1	2	2	1	2	2	2	2	2
VCCJ		1	1	1	1	1	1	1	1	1
ТАР		4	4	4	4	4	4	4	4	4
GND, GNDIO		51	126	98	51	98	139	98	139	233
NC		0	0	73	0	0	96	0	0	238
Reserved ¹		0	0	2	0	2	2	2	2	2
SERDES		26	18	26	26	26	26	26	52	78
Miscellaneous Pins		8	8	8	8	8	8	8	8	8
Total Bonded Pins		256	328	484	256	484	672	484	672	1156

Pin Information Summary (Cont.)

Pin Information Sun		ECP3-17EA		ECP3-35EA			
Pin Type	256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	
	Bank 0	13	10	18	13	21	24
	Bank 1	7	5	12	7	18	18
	Bank 2	2	2	4	1	8	8
Emulated Differential I/O per	Bank 3	4	2	13	5	20	19
Dank	Bank 6	5	1	13	6	22	20
	Bank 7	6	9	10	6	11	13
	Bank 8	12	12	12	12	12	12
	Bank 0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0
	Bank 2	2	2	3	3	6	6
Highspeed Differential I/O per	Bank 3	5	4	9	4	9	12
Dank	Bank 6	5	4	9	4	11	12
	Bank 7	5	6	8	5	9	10
	Bank 8	0	0	0	0	0	0
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14
Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12
	Bank 0	2	1	3	2	3	4
DDR Groups Bonded per Bank ²	Bank 1	1	0	2	1	3	3
	Bank 2	0	0	1	0	2	2
	Bank 3	1	0	3	1	3	4
	Bank 6	1	0	3	1	4	4
	Bank 7	1	2	2	1	3	3
	Configuration Bank 8	0	0	0	0	0	0
SERDES Quads	1	1	1	1	1	1	

These pins must remain floating on the board.
 Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Pin Information Summary (Cont.)

Pin Information Summary Pin Type			ECP3-95EA	ECP3-150EA		
		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
Emulated Differential I/O per Bank	Bank 0	21	30	43	30	47
	Bank 1	18	24	39	24	43
	Bank 2	8	12	13	12	18
	Bank 3	20	23	33	23	37
	Bank 6	22	25	33	25	37
	Bank 7	11	16	18	16	24
	Bank 8	12	12	12	12	12
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
Highspeed Differential I/O per Bank	Bank 2	6	9	9	9	15
	Bank 3	9	12	16	12	21
	Bank 6	11	14	16	14	21
	Bank 7	9	12	13	12	18
	Bank 8	0	0	0	0	0
	Bank 0	42/21	60/30	86/43	60/30	94/47
	Bank 1	36/18	48/24	78/39	48/24	86/43
Total Single Ended/	Bank 2	28/14	42/21	44/22	42/21	66/33
Total Differential I/O per Bank	Bank 3	58/29	71/35	98/49	71/35	116/58
	Bank 6	67/33	78/39	98/49	78/39	116/58
	Bank 7	40/20	56/28	62/31	56/28	84/42
	Bank 8	24/12	24/12	24/12	24/12	24/12
DDR Groups Bonded per Bank	Bank 0	3	5	7	5	7
	Bank 1	3	4	7	4	7
	Bank 2	2	3	3	3	4
	Bank 3	3	4	5	4	7
	Bank 6	4	4	5	4	7
	Bank 7	3	4	4	4	6
	Configuration Bank8	0	0	0	0	0
SERDES Quads		1	2	3	2	4

1. These pins must remain floating on the board.

Date	Version	Section	Change Summary
			LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.
			Updated SERDES External Reference Clock Waveforms.
			Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break- down table.
		Pinout Information	"Logic Signal Connections" section heading renamed "Package Pinout Information". Software menu selections within this section have been updated.
			Signal Descriptions table – Updated description for V _{CCA} signal.
April 2012	02.2EA	Architecture	Updated first paragraph of Output Register Block section.
			Updated the information about sysIO buffer pairs below Figure 2-38.
			Updated the information relating to migration between devices in the Density Shifting section.
		DC and Switching Characteristics	Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$
		Ordering Information	Updated topside marks with new logos in the Ordering Information sec- tion.
February 2012	02.1EA	All	Updated document with new corporate logo.
November 2011	02.0EA	Introduction	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Architecture	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		DC and Switching Characteristics	Updated LatticeECP3 Supply Current table power numbers.
			Typical Building Block Function Performance table, LatticeECP3 Exter- nal Switching Characteristics table, LatticeECP3 Internal Switching Characteristics table and LatticeECP3 Family Timing Adders: Added speed grade -9 and updated speed grade -8, -7 and -6 timing numbers.
		Pinout Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Ordering Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
			Added ordering information for low power devices and -9 speed grade devices.
July 2011	01.9EA	DC and Switching Characteristics	Removed ESD Performance table and added reference to LatticeECP3 Product Family Qualification Summary document.
			sysCLOCK PLL TIming table, added footnote 4.
			External Reference Clock Specification table – removed reference to VREF-CM-AC and removed footnote for VREF-CM-AC.
		Pinout Information	Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.
April 2011	01.8EA	Architecture	Updated Secondary Clock/Control Sources text section.
		DC and Switching Characteristics	Added data for 150 Mbps to SERDES Power Supply Requirements table.
			Updated Frequencies in Table 3-6 Serial Output Timing and Levels
			Added Data for 150 Mbps to Table 3-7 Channel Output Jitter
			Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, $t_{J T}\!.$
			Corrected Internal Switching Characteristics table, Description for EBR Timing, t _{SUWBEN EBB} and t _{HWBEN EBB} .
			Added footnote 1 to sysConfig Port Timing Specifications table.
			Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications