E. Flattice Semiconductor Corporation - LFE3-150EA-7LFN1156I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	18625
Number of Logic Elements/Cells	149000
Total RAM Bits	7014400
Number of I/O	586
Number of Gates	·
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1156-BBGA
Supplier Device Package	1156-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-150ea-7lfn1156i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-6. Secondary Clock Regions

Device	Number of Secondary Clock Regions
ECP3-17	16
ECP3-35	16
ECP3-70	20
ECP3-95	20
ECP3-150	36

Spine Repeaters

as, overflow, underflow and convergent rounding, etc.

- Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the LatticeECP2[™] sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram

MMAC DSP Element

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

Input signals are fed from the sysl/O buffer to the input register block (as signal DI). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system clock by one of the registers in the single data rate sync register block.

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox function takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system clock before entering the core. Figure 2-30 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchronization registers to the clock transfer and gearbox registers.

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See Figure 2-37 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

LatticeECP3 Family Data Sheet DC and Switching Characteristics

April 2014

Data Sheet DS1021

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V_CC
Supply Voltage V_{CCAUX} $\ldots \ldots \ldots \ldots -0.5$ V to 3.75 V
Supply Voltage V_{CCJ}
Output Supply Voltage V_{CCIO} –0.5 V to 3.75 V
Input or I/O Tristate Voltage Applied $^4.$ –0.5 V to 3.75 V
Storage Temperature (Ambient)
Junction Temperature (T_J) +125 °C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ²	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage, Terminating Resistor Switching Power Supply (SERDES)	3.135	3.465	V
V _{CCPLL}	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
V_{REF1} and V_{REF2}	Input Reference Voltage	0.5	1.7	V
V _{TT} ⁵	Termination Voltage	0.5	1.3125	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
SERDES External Pow	er Supply ⁶			
V	Input Buffer Power Supply (1.2 V)	1.14	1.26	V
V CCIB	Input Buffer Power Supply (1.5 V)	1.425	1.575	V
V	Output Buffer Power Supply (1.2 V)	1.14	1.26	V
V CCOB	Output Buffer Power Supply (1.5 V)	1.425	1.575	V
V _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	1.14	1.26	V

1. For correct operation, all supplies except V_{REF} and V_{TT} must be held in their valid operation range. This is true independent of feature usage.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC.} If V_{CCIO} or V_{CCJ} is set to 3.3 V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3.3 V.

5. If not used, V_{TT} should be left floating.

6. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for information on board considerations for SERDES power supplies.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

SERDES Power Supply Requirements^{1, 2, 3}

Symbol	Description	Тур.	Max.	Units
Standby (Power Do	own)	•		1
I _{CCA-SB}	V _{CCA} current (per channel)	3	5	mA
I _{CCIB-SB}	Input buffer current (per channel)		—	mA
I _{CCOB-SB}	Output buffer current (per channel)	—	_	mA
Operating (Data Ra	ite = 3.2 Gbps)			•
I _{CCA-OP}	V _{CCA} current (per channel)	68	77	mA
I _{CCIB-OP}	Input buffer current (per channel)	5	7	mA
I _{CCOB-OP}	Output buffer current (per channel)	19	25	mA
Operating (Data Ra	ite = 2.5 Gbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	66	76	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA
Operating (Data Ra	te = 1.25 Gbps)			·
I _{CCA-OP}	V _{CCA} current (per channel)	62	72	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA
Operating (Data Ra	ite = 250 Mbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA
Operating (Data Ra	ite = 150 Mbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA

1. Equalization enabled, pre-emphasis disabled.

2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, pre-emphasis disabled, equalization enabled).

3. Pre-emphasis adds 20 mA to ICCA-OP data.

sysl/O Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		Voi	Vou		
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} ¹ (mA)	I _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
	-03	0.35 Vacua	0.65 Vacia	36	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
	-0.5	0.00 VCCIO	0.03 VCCIO	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
	-0.3	0.35 Vaa	0.65 Vaa	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
20000012	-0.0	0.00 VCC	0.03 VCC	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
SSTL18_II	_0.3	V0 125	V + 0.125	3.6	0.28	V 0 28	8	-8
(DDR2 Memory)	-0.5	V _{REF} - 0.123	V _{REF} + 0.125	5.0	0.20	V CCIO - 0.20	11	-11
SSTI 2 1	_0.3	V0 18	V \ 0.18	3.6	0.54	V	7.6	-7.6
551L2_1	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.54	V CCIO - 0.02	12	-12
SSTL2_II	_0.3	V0.18	V \ 0.18	3.6	0.35	V	15.2	-15.2
(DDR Memory)	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.00	V CCIO - 0.43	20	-20
SSTL3_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL3_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTL15	0.2	V 01	V + 0.1	2.6	0.2	V _{CCIO} - 0.3	7.5	-7.5
(DDR3 Memory)	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.0	0.5	V _{CCIO} * 0.8	9	-9
	_0.3	V01	V 101	3.6	0.4	V 0 4	4	-4
	-0.3 V _{REF} - 0.	• REF = 0.1	3.0	0.4	V CCIO - 0.4	8	-8	
	_0.3	V01	V + 0 1		0.4	V04	8	-8
	-0.3	VREF - 0.1	VREF + 0.1	3.0	0.4	VCCIO - 0.4	12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

1. For electromigration, the average DC current drawn by I/O pads between two consecutive V_{CCIO} or GND pad connections, or between the last V_{CCIO} or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed n * 8 mA, where n is the number of I/O pads between the two consecutive bank V_{CCIO} or GND connections or between the last V_{CCIO} and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

Typical Building Block Function Performance

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)^{1, 2, 3}

Function	–8 Timing	Units
Basic Functions		
16-bit Decoder	4.7	ns
32-bit Decoder	4.7	ns
64-bit Decoder	5.7	ns
4:1 MUX	4.1	ns
8:1 MUX	4.3	ns
16:1 MUX	4.7	ns
32:1 MUX	4.8	ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
Basic Functions		
16-bit Decoder	500	MHz
32-bit Decoder	500	MHz
64-bit Decoder	500	MHz
4:1 MUX	500	MHz
8:1 MUX	500	MHz
16:1 MUX	500	MHz
32:1 MUX	445	MHz
8-bit adder	500	MHz
16-bit adder	500	MHz
64-bit adder	305	MHz
16-bit counter	500	MHz
32-bit counter	460	MHz
64-bit counter	320	MHz
64-bit accumulator	315	MHz
Embedded Memory Functions		
512x36 Single Port RAM, EBR Output Registers	340	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	340	MHz
1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers	130	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	245	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (One PFU)	500	MHz
32x4 Pseudo-Dual Port RAM	500	MHz
64x8 Pseudo-Dual Port RAM	400	MHz
DSP Function		
18x18 Multiplier (All Registers)	400	MHz
9x9 Multiplier (All Registers)	400	MHz
36x36 Multiply (All Registers)	260	MHz

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8 -7		-7	-6			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-70EA/95EA	0.7	—	0.7	_	0.8	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-70EA/95EA	1.6	—	1.8	_	2.0	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-70EA/95EA	0.0	—	0.0	—	0.0	—	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-35EA	_	3.2	—	3.4	—	3.6	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-35EA	0.6	_	0.7	—	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-35EA	0.3	—	0.3	—	0.4	-	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-35EA	1.6	_	1.7	_	1.8	_	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-35EA	0.0	_	0.0	_	0.0	_	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-17EA	_	3.0	—	3.3	—	3.5	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-17EA	0.6	_	0.7	_	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-17EA	0.3	_	0.3	_	0.4	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-17EA	1.6	—	1.7	—	1.8	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-17EA	0.0	_	0.0	_	0.0	—	ns
Generic DDR ¹²									
Generic DDRX1 In Input	puts with Clock and Data (>10 Bits	Wide) Centered at Pi	n (GDDF	RX1_RX.S	SCLK.Ce	ntered) L	Ising PC	LK Pin fo	or Clock
t _{SUGDDR}	Data Setup Before CLK	All ECP3EA Devices	480	—	480	_	480		ps
t _{HOGDDR}	Data Hold After CLK	All ECP3EA Devices	480	—	480	—	480		ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	—	250	—	250	—	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.SC	CLK.PLL	Aligned)	Using P	LLCLKIN	Pin for
Data Left, Right, a	nd Top Sides and Clock Left and F	Right Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775	_	UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.S0	CLK.Alig	ned) Usiı	ng DLL -	CLKIN P	in for
Data Left, Right ar	d Top Sides and Clock Left and R	ight Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225	—	0.225	—	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775		UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	—	250	MHz
Generic DDRX1 In Input	puts with Clock and Data (<10 Bits	Wide) Centered at Pi	n (GDDF	X1_RX.	DQS.Cen	tered) U	sing DQ	S Pin for	Clock
t _{SUGDDB}	Data Setup After CLK	All ECP3EA Devices	535	_	535		535		ps
tHOGDDR	Data Hold After CLK	All ECP3EA Devices	535	—	535		535	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In	puts with Clock and Data (<10bits	wide) Aligned at Pin (GDDRX	1_RX.DQ	S.Aligne	d) Using	DQS Pin	for Cloc	k Input
Data and Clock Le	ft and Right Sides	· - · ·			-				-
t _{DVACI KGDDB}	Data Setup Before CLK	All ECP3EA Devices	—	0.225	_	0.225		0.225	UI
STROLIGED									

Over Recommended Commercial Operating Conditions

DLL Timing

Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{CLKOP} 1	Output clock frequency, CLKOP		133	—	500	MHz
f _{CLKOS} ²	Output clock frequency, CLKOS		33.3	—	500	MHz
t _{PJIT}	Output clock period jitter (clean input)			—	200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit enabled, time reference delay mode)	Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
	Output clock duty cycle (at 50% levels, arbitrary duty cycle input clock, 50% duty cycle circuit enabled, clock injection removal mode) with DLL cascading	Primary Clock < 250 MHz	40		60	%
t _{DUTYCIR}		Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	—	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	—	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	—	_	ps
t _{INSTB}	Input clock period jitter			—	500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3	—	—	ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns

1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.

SERDES High-Speed Data Transmitter¹

Table 3-6. Serial Output Timing and Levels

Symbol	Description	Frequency	Min.	Тур.	Max.	Units
V _{TX-DIFF-P-P-1.44}	Differential swing (1.44 V setting) ^{1, 2}	0.15 to 3.125 Gbps	1150	1440	1730	mV, p-p
V _{TX-DIFF-P-P-1.35}	Differential swing (1.35 V setting) ^{1, 2}	0.15 to 3.125 Gbps	1080	1350	1620	mV, p-p
V _{TX-DIFF-P-P-1.26}	Differential swing (1.26 V setting) ^{1, 2}	0.15 to 3.125 Gbps	1000	1260	1510	mV, p-p
V _{TX-DIFF-P-P-1.13}	Differential swing (1.13 V setting) ^{1, 2}	0.15 to 3.125 Gbps	840	1130	1420	mV, p-p
V _{TX-DIFF-P-P-1.04}	Differential swing (1.04 V setting) ^{1, 2}	0.15 to 3.125 Gbps	780	1040	1300	mV, p-p
V _{TX-DIFF-P-P-0.92}	Differential swing (0.92 V setting) ^{1, 2}	0.15 to 3.125 Gbps	690	920	1150	mV, p-p
V _{TX-DIFF-P-P-0.87}	Differential swing (0.87 V setting) ^{1, 2}	0.15 to 3.125 Gbps	650	870	1090	mV, p-p
V _{TX-DIFF-P-P-0.78}	Differential swing (0.78 V setting) ^{1, 2}	0.15 to 3.125 Gbps	585	780	975	mV, p-p
V _{TX-DIFF-P-P-0.64}	Differential swing (0.64 V setting) ^{1, 2}	0.15 to 3.125 Gbps	480	640	800	mV, p-p
V _{OCM}	Output common mode voltage	_	V _{CCOB} -0.75	V _{CCOB} -0.60	V _{CCOB} -0.45	V
T _{TX-R}	Rise time (20% to 80%)	—	145	185	265	ps
T _{TX-F}	Fall time (80% to 20%)	—	145	185	265	ps
Z _{TX-OI-SE}	Output Impedance 50/75/HiZ Ohms (single ended)	_	-20%	50/75/ Hi Z	+20%	Ohms
R _{LTX-RL}	Return loss (with package)	—	10			dB
T _{TX-INTRASKEW}	Lane-to-lane TX skew within a SERDES quad block (intra-quad)	—	_	_	200	ps
T _{TX-INTERSKEW} ³	Lane-to-lane skew between SERDES quad blocks (inter-quad)	_	_	_	1UI +200	ps

1. All measurements are with 50 Ohm impedance.

2. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for actual binary settings and the min-max range.

3. Inter-quad skew is between all SERDES channels on the device and requires the use of a low skew internal reference clock.

Figure 3-16. Jitter Transfer – 1.25 Gbps

Figure 3-17. Jitter Transfer – 622 Mbps

LatticeECP3 sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Max.	Units						
POR, Configuration Initialization, and Wakeup										
	Time from the Application of V_{CC} , V_{CCAUX} or V_{CCIO8}^{*} (Whichever	Master mode		23	ms					
t _{ICFG}	is the Last to Cross the POR Trip Point) to the Rising Edge of INITN	Slave mode	—	6	ms					
t _{VMC}	Time from t _{ICFG} to the Valid Master MCLK		—	5	μs					
t _{PRGM}	PROGRAMN Low Time to Start Configuration		25	—	ns					
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection		_	10	ns					
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low		—	37	ns					
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low		_	37	ns					
t _{DINIT} 1	PROGRAMN High to INITN High Delay		—	1	ms					
t _{MWC}	Additional Wake Master Clock Signals After DONE Pin is High		100	500	cycles					
t _{CZ}	MCLK From Active To Low To High-Z	—	300	ns						
t _{IODISS}	User I/O Disable from PROGRAMN Low		100	ns						
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequer		100	ns						
All Configu	ration Modes									
t _{SUCDI}	Data Setup Time to CCLK/MCLK		5	—	ns					
t _{HCDI}	Data Hold Time to CCLK/MCLK		1	—	ns					
t _{CODO}	CCLK/MCLK to DOUT in Flowthrough Mode	-0.2	12	ns						
Slave Serial										
t _{SSCH}	CCLK Minimum High Pulse	5	—	ns						
t _{SSCL}	CCLK Minimum Low Pulse	5	_	ns						
	Without encryption		_	33	MHz					
ICCLK	CCLK Frequency	With encryption		20	MHz					
Master and Slave Parallel										
t _{SUCS}	CSN[1:0] Setup Time to CCLK/MCLK	7	—	ns						
t _{HCS}	CSN[1:0] Hold Time to CCLK/MCLK	1	—	ns						
t _{SUWD}	WRITEN Setup Time to CCLK/MCLK	7	_	ns						
t _{HWD}	WRITEN Hold Time to CCLK/MCLK	1	_	ns						
t _{DCB}	CCLK/MCLK to BUSY Delay Time	_	12	ns						
t _{CORD}	CCLK to Out for Read Data	_	12	ns						
t _{BSCH}	CCLK Minimum High Pulse	6	_	ns						
t _{BSCL}	CCLK Minimum Low Pulse	6	_	ns						
t _{BSCYC}	Byte Slave Cycle Time	30	—	ns						
		Without encryption		33	MHz					
[†] CCLK	CCLK/MCLK Frequency	With encryption		20	MHz					
Master and	Slave SPI			1	1					
t _{CFGX}	INITN High to MCLK Low		80	ns						
t _{CSSPI}	INITN High to CSSPIN Low	0.2	2	μs						
t _{SOCDO}	MCLK Low to Output Valid		15	ns						
t _{CSPID}	CSSPIN[0:1] Low to First MCLK Edge Setup Time	0.3		μs						
,		Without encryption		33	MHz					
[†] CCLK	CCLK Frequency	With encryption		20	MHz					
t _{SSCH}	CCLK Minimum High Pulse		5	_	ns					

Over Recommended Operating Conditions

Figure 3-26. Configuration from PROGRAMN Timing

1. The CFG pins are normally static (hard wired)

Figure 3-27. Wake-Up Timing

LatticeECP3 Family Data Sheet Pinout Information

March 2015

Data Sheet DS1021

Signal Descriptions

Signal Name I/O Des		Description				
General Purpose						
	I/O	[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).				
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Column Number. When Edge is L (Left) or R (Right), only need to specify Row Number.				
P[Eage] [Row/Column Number]_[A/B]		[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.				
P[Edge][Row Number]E_[A/B/C/D]	I	These general purpose signals are input-only pins and are located near the PLLs.				
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.				
NC	—	No connect.				
RESERVED	—	This pin is reserved and should not be connected to anything on the board.				
GND	—	Ground. Dedicated pins.				
V _{CC}	—	Power supply pins for core logic. Dedicated pins.				
V _{CCAUX} -		Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.				
V _{CCIOx}	—	Dedicated power supply pins for I/O bank x.				
V _{CCA}		SERDES, transmit, receive, PLL and reference clock buffer power supply. All V_{CCA} supply pins must always be powered to the recommended operating voltage range. If no SERDES channels are used, connect V_{CCA} to V_{CC} .				
V _{CCPLL_[LOC]}	—	General purpose PLL supply pins where LOC=L (left) or R (right).				
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.				
VTTx	—	Power supply for on-chip termination of I/Os.				
XRES ¹	—	10 kOhm +/-1% resistor must be connected between this pad and ground.				
PLL, DLL and Clock Functions						
[LOC][num]_GPLL[T, C]_IN_[index]		General Purpose PLL (GPLL) input pads: LUM, LLM, RUM, RLM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.				
[LOC][num]_GPLL[T, C]_FB_[index]	I	Optional feedback GPLL input pads: LUM, LLM, RUM, RLM, num = row from center, T = true and C = complement, index A,B,Cat each side.				
[LOC]0_GDLLT_IN_[index] ²	I/O	General Purpose DLL (GDLL) input pads where LOC=RUM or LUM, T is True Complement, index is A or B.				
[LOC]0_GDLLT_FB_[index] ²	I/O	Optional feedback GDLL input pads where LOC=RUM or LUM, T is True Complement, index is A or B.				
PCLK[T, C][n:0]_[3:0] ²	I/O	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0, 1, 2, 3 within bank.				

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-70EA				
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA		
	Bank 0	21	30	43		
	Bank 1	18	24	39		
	Bank 2	8	12	13		
Emulated Differential	Bank 3	20	23	33		
	Bank 6	22	25	33		
	Bank 7	11	16	18		
	Bank 8	12	12	12		
	Bank 0	0	0	0		
	Bank 1	0	0	0		
	Bank 2	6	9	9		
High-Speed Differential I/	Bank 3	9	12	16		
	Bank 6	11	14	16		
	Bank 7	9	12	13		
	Bank 8	0	0	0		
	Bank 0	42/21	60/30	86/43		
	Bank 1	36/18	48/24	78/39		
Total Single-Ended/	Bank 2	28/14	42/21	44/22		
Total Differential I/O	Bank 3	58/29	71/35	98/49		
per Bank	Bank 6	67/33	78/39	98/49		
	Bank 7	40/20	56/28	62/31		
	Bank 8	24/12	24/12	24/12		
	Bank 0	3	5	7		
	Bank 1	3	4	7		
	Bank 2	2	3	3		
DDR Groups Bonded	Bank 3	3	4	5		
por Dank	Bank 6	4	4	5		
	Bank 7	3	4	4		
	Configuration Bank 8	0	0	0		
SERDES Quads		1	2	3		

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

LatticeECP3 Family Data Sheet Ordering Information

April 2014

Data Sheet DS1021

LatticeECP3 Part Number Description

1. Green = Halogen free and lead free.

Ordering Information

LatticeECP3 devices have top-side markings, for commercial and industrial grades, as shown below:

Note: See PCN 05A-12 for information regarding a change to the top-side mark logo.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeECP3 Devices, Green and Lead-Free Packaging

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6MG328C	1.2 V	-6	STD	Green csBGA	328	COM	17
LFE3-17EA-7MG328C	1.2 V	-7	STD	Green csBGA	328	COM	17
LFE3-17EA-8MG328C	1.2 V	-8	STD	Green csBGA	328	COM	17
LFE3-17EA-6LMG328C	1.2 V	-6	LOW	Green csBGA	328	COM	17
LFE3-17EA-7LMG328C	1.2 V	-7	LOW	Green csBGA	328	COM	17
LFE3-17EA-8LMG328C	1.2 V	-8	LOW	Green csBGA	328	COM	17
LFE3-17EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	17

Commercial

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.