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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 18625

Number of Logic Elements/Cells 149000

Total RAM Bits 7014400

Number of I/O 586

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 1156-BBGA

Supplier Device Package 1156-FPBGA (35x35)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-150ea-8lfn1156i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
—  A greater-than-or-equal-to B
—  A not-equal-to B
—  A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The pri-
mary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources 
are connected to these muxes. Figure 2-12 shows the clock routing for one quadrant. Each quadrant mux is identi-
cal. If desired, any clock can be routed globally.

Figure 2-12. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-12).

Figure 2-13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-13. DCS Waveforms
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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ALU Flags
The sysDSP slice provides a number of flags from the ALU including:

• Equal to zero (EQZ)

• Equal to zero with mask (EQZM)

• Equal to one with mask (EQOM)

• Equal to pattern with mask (EQPAT)

• Equal to bit inverted pattern with mask (EQPATB)

• Accumulator Overflow (OVER)

• Accumulator Underflow (UNDER)

• Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock 
sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output 
register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and out-
put register.

Resources Available in the LatticeECP3 Family 
Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows 
the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM 
can be used to store variables locally for fast DSP operations. 

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family 

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device DSP Slices 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

ECP3-17 12 48 24 6

ECP3-35 32 128 64 16

ECP3-70 64 256 128 32

ECP3-95 64 256 128 32

ECP3-150 160 640 320 80

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 

ECP3-17 38 700

ECP3-35 72 1327

ECP3-70 240 4420

ECP3-95 240 4420

ECP3-150 372 6850
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Figure 2-33. Input Register Block for Left, Right and Top Edges

Output Register Block 
The output register block registers signals from the core of the device before they are passed to the sysI/O buffers. 
The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the 
same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is 
used in DDR3 memory interfaces.The PIO blocks on the bottom contain the SDR registers but do not support 
generic DDR. 

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges. 

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a 
Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next 
clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed 
the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, 
OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them 
are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 
clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock 
domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the 
DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and 
Diamond software for specific restrictions and limitations.

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=32&sloc=01-01-00-10
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sysI/O Recommended Operating Conditions

Standard

VCCIO VREF (V)

Min. Typ. Max. Min. Typ. Max.

LVCMOS332 3.135 3.3 3.465 — — —

LVCMOS33D 3.135 3.3 3.465 — — —

LVCMOS252 2.375 2.5 2.625 — — —

LVCMOS18 1.71 1.8 1.89 — — —

LVCMOS15 1.425 1.5 1.575 — — —

LVCMOS122 1.14 1.2 1.26 — — —

LVTTL332 3.135 3.3 3.465 — — —

PCI33 3.135 3.3 3.465 — — —

SSTL153 1.43 1.5 1.57 0.68 0.75 0.9

SSTL18_I, II2 1.71 1.8 1.89 0.833 0.9 0.969

SSTL25_I, II2 2.375 2.5 2.625 1.15 1.25 1.35

SSTL33_I, II2 3.135 3.3 3.465 1.3 1.5 1.7

HSTL15_I2 1.425 1.5 1.575 0.68 0.75 0.9

HSTL18_I, II2 1.71 1.8 1.89 0.816 0.9 1.08

LVDS252 2.375 2.5 2.625 — — —

LVDS25E 2.375 2.5 2.625 — — —

MLVDS1 2.375 2.5 2.625 — — —

LVPECL331, 2 3.135 3.3 3.465 — — —

Mini LVDS 2.375 2.5 2.625 — — —

BLVDS251, 2 2.375 2.5 2.625 — — —

RSDS2 2.375 2.5 2.625 — — —

RSDSE1, 2 2.375 2.5 2.625 — — —

TRLVDS 3.14 3.3 3.47 — — —

PPLVDS 3.14/2.25 3.3/2.5 3.47/2.75 — — —

SSTL15D3 1.43 1.5 1.57 — — —

SSTL18D_I2, 3, II2, 3 1.71 1.8 1.89 — — —

SSTL25D_ I2, II2 2.375 2.5 2.625 — — —

SSTL33D_ I2, II2 3.135 3.3 3.465 — — —

HSTL15D_ I2 1.425 1.5 1.575 — — —

HSTL18D_ I2, II2 1.71 1.8 1.89 — — —

1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. For input voltage compatibility, see TN1177, LatticeECP3 sysIO Usage Guide. 
3. VREF is required when using Differential SSTL to interface to DDR memory.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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sysI/O Differential Electrical Characteristics
LVDS25

Over Recommended Operating Conditions

Differential HSTL and SSTL
Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allow-
able single-ended output classes (class I and class II) are supported in this mode.

Parameter Description Test Conditions Min. Typ. Max. Units

VINP
1, VINM

1 Input Voltage 0 — 2.4 V

VCM
1 Input Common Mode Voltage Half the Sum of the Two Inputs 0.05 — 2.35 V

VTHD Differential Input Threshold Difference Between the Two Inputs +/–100 — — mV

IIN Input Current Power On or Power Off — — +/–10 µA

VOH Output High Voltage for VOP or VOM RT = 100 Ohm — 1.38 1.60 V

VOL Output Low Voltage for VOP or VOM RT = 100 Ohm 0.9 V 1.03 — V

VOD Output Voltage Differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV

VOD 
Change in VOD Between High and 
Low — — 50 mV

VOS Output Voltage Offset (VOP + VOM)/2, RT = 100 Ohm 1.125 1.20 1.375 V

VOS Change in VOS Between H and L — — 50 mV

ISAB Output Short Circuit Current VOD = 0V Driver Outputs Shorted to 
Each Other — — 12 mA

1, On the left and right sides of the device, this specification is valid only for VCCIO = 2.5 V or 3.3 V.
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12 mA Drive)1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 4.7 ns

32-bit Decoder 4.7 ns

64-bit Decoder 5.7 ns

4:1 MUX 4.1 ns

8:1 MUX 4.3 ns

16:1 MUX 4.7 ns

32:1 MUX 4.8 ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses 
internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

Register-to-Register Performance1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 500 MHz

32-bit Decoder 500 MHz

64-bit Decoder 500 MHz

4:1 MUX 500 MHz

8:1 MUX 500 MHz

16:1 MUX 500 MHz

32:1 MUX 445 MHz

8-bit adder 500 MHz

16-bit adder 500 MHz

64-bit adder 305 MHz

16-bit counter 500 MHz

32-bit counter 460 MHz

64-bit counter 320 MHz

64-bit accumulator 315 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 340 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 340 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers 130 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 245 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 500 MHz

32x4 Pseudo-Dual Port RAM 500 MHz

64x8 Pseudo-Dual Port RAM 400 MHz

DSP Function

18x18 Multiplier (All Registers) 400 MHz

9x9 Multiplier (All Registers) 400 MHz

36x36 Multiply (All Registers) 260 MHz
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Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)
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Figure 3-16. Jitter Transfer – 1.25 Gbps

Figure 3-17. Jitter Transfer – 622 Mbps
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Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-15. Transmit

Table 3-16. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF
1 Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.17 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.35 UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 2.5 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 2.5 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and 
Timing Characteristics
AC and DC Characteristics
Table 3-17. Transmit

Table 3-18. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.10 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.24 UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 1.25 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 1.25 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 1.25 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.34 UI

JRX_RJ
1, 2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.26 UI

JRX_SJ
1, 2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.11 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.71 UI

TRX_EYE Receiver eye opening 0.29 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 1.25 Gbps.



3-51

DC and Switching Characteristics
LatticeECP3 Family Data Sheet

Figure 3-19. Test Loads
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Figure 3-30. SPI Configuration Waveforms

Figure 3-31. Slave SPI HOLDN Waveforms
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals3

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. These pins are dedicated inputs or can be used as general purpose I/O.
3. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 
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Updated Frequency to 150 Mbps in Table 3-11 Periodic Receiver Jitter 
Tolerance Specification

December 2010 01.7EA Multiple Data sheet made final. Removed “preliminary” headings.

Removed data for 70E and 95E devices. A separate data sheet is avail-
able for these specific devices.

Updated for Lattice Diamond design software.

Introduction Corrected number of user I/Os

Architecture Corrected the package type in Table 2-14 Available SERDES Quad per 
LatticeECP3 Devices. 

Updated description of General Purpose PLL

Added additional information in the Flexible Quad SERDES Architecture 
section.

Added footnotes and corrected the information in Table 2-16 Selectable 
master Clock (MCCLK) Frequencies During Configuration (Nominal).

Updated Figure 2-16, Per Region Secondary Clock Selection.

Updated description for On-Chip Programmable Termination.

Added information about number of rows of DSP slices.

Updated footnote 2 for Table 2-12, On-Chip Termination Options for 
Input Modes.

Updated information for sysIO buffer pairs.

Corrected minimum number of General Purpose PLLs (was 4, now 2).

DC and Switching 
Characteristics

Regenerated sysCONFIG Port Timing figure.

Added tW (clock pulse width) in External Switching Characteristics 
table.

Corrected units, revised and added data, and corrected footnote 1 in 
External Switching Characteristics table.

Added Jitter Transfer figures in SERDES External Reference Clock sec-
tion.

Corrected capacitance information in the DC Electrical Characteristics 
table.

Corrected data in the Register-to-Register Performance table.

Corrected GDDR Parameter name HOGDDR.

Corrected RSDS25 -7 data in Family Timing Adders table.

Added footnotes 10-12 to DDR data information in the External Switch-
ing Characteristics table.

Corrected titles for Figures 3-7 (DDR/DDR2/DDR3 Parameters) and 
3-8 (Generic DDR/DDRX2 Parameters).

Updated titles for Figures 3-5 (MLVDS25 (Multipoint Low Voltage Differ-
ential Signaling)) and 3-6 (Generic DDRX1/DDRX2 (With Clock and 
Data Edges Aligned)).

Updated Supply Current table.

Added GDDR interface information to the External Switching and Char-
acteristics table.

Added footnote to sysIO Recommended Operating Conditions table.

Added footnote to LVDS25 table.

Corrected DDR section footnotes and references.

Corrected Hot Socketing support from “top and bottom banks” to “top 
and bottom I/O pins”.

Pinout Information Updated description for VTTx.
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