E. Lattice Semiconductor Corporation - LFE3-150EA-9FN1156I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Not For New Designs
Number of LABs/CLBs	18625
Number of Logic Elements/Cells	149000
Total RAM Bits	7014400
Number of I/O	586
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1156-BBGA
Supplier Device Package	1156-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-150ea-9fn1156i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Architecture

June 2013

Data Sheet DS1021

Architecture Overview

Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sys-DSP[™] Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES Quads on the bottom of the device.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The functionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by registers that are addressable during device operation. The registers in every quad can be programmed via the SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysl/O buffers. The sysl/O buffers of the LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3.

The LatticeECP3 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the end of the EBR/DSP rows.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family supports a sysCONFIG[™] port located in the corner between banks one and two, which allows for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-3. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK WRE is from LSR

DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 WAD [A:D] is a 4-bit address from slice 2 LUT input

Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FC	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6 and LUT7
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6 and LUT7
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Slice 2 of each PFU is the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Table 2-5. DLL Signals

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	DLL feed input from DLL output, clock net, routing or external pin
RSTN	I	Active low synchronous reset
ALUHOLD	I	Active high freezes the ALU
UDDCNTL	I	Synchronous enable signal (hold high for two cycles) from routing
CLKOP	0	The primary clock output
CLKOS	0	The secondary clock output with fine delay shift and/or division by 2 or by 4
LOCK	0	Active high phase lock indicator
INCI	I	Incremental indicator from another DLL via CIB.
GRAYI[5:0]	I	Gray-coded digital control bus from another DLL in time reference mode.
DIFF	0	Difference indicator when DCNTL is difference than the internal setting and update is needed.
INCO	0	Incremental indicator to other DLLs via CIB.
GRAYO[5:0]	0	Gray-coded digital control bus to other DLLs via CIB

LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between Banks 6 and 7 and Banks 2 and 3.

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

* This signal is not user accessible. It can only be used to feed the slave delay line.

Figure 2-10. Primary Clock Sources for LatticeECP3-35

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and process variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block that generates control signals for the read side and DQS Write Control logic that generates the control signals required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing in the Output register block which generates the DDR data output and the DQS output. They are also used to control the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs.

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals.

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side pads can be identified by the Lattice Diamond tool.

sysI/O Differential Electrical Characteristics LVDS25

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} ¹ , V _{INM} ¹	Input Voltage		0	_	2.4	V
V _{CM} ¹	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100	_	_	mV
I _{IN}	Input Current	Power On or Power Off		_	+/-10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm		1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	$(V_{OP} + V_{OM})/2$, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L		_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

1, On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8		-7		-6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-150EA	0.0	_	0.0	—	0.0	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	ECP3-150EA		500		420		375	MHz
t _{CO}	Clock to Output - PIO Output Register	ECP3-70EA/95EA	—	3.8	—	4.2	_	4.6	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-70EA/95EA	0.0	—	0.0	_	0.0	—	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-70EA/95EA	1.4	—	1.6	—	1.8	—	ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-70EA/95EA	1.3	—	1.5	—	1.7	—	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-70EA/95EA	0.0	—	0.0	—	0.0	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	ECP3-70EA/95EA	—	500	—	420	—	375	MHz
t _{CO}	Clock to Output - PIO Output Register	ECP3-35EA	—	3.7	_	4.1	—	4.5	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-35EA	0.0	—	0.0	-	0.0	-	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-35EA	1.2	_	1.4	—	1.6	—	ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-35EA	1.3	—	1.4	—	1.5	—	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-35EA	0.0	—	0.0	—	0.0	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	ECP3-35EA	—	500	—	420	—	375	MHz
t _{CO}	Clock to Output - PIO Output Register	ECP3-17EA	—	3.5	—	3.9	—	4.3	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-17EA	0.0	—	0.0	—	0.0	—	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-17EA	1.3	_	1.5	—	1.6	—	ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-17EA	1.3	—	1.4	—	1.5	—	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-17EA	0.0	—	0.0	—	0.0	—	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	ECP3-17EA	_	500	_	420	_	375	MHz
General I/O Pin Pa	rameters Using Dedicated Clock	nput Primary Clock w	ith PLL v	vith Cloc	k Injectio	on Remo	val Settir	וg²	
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-150EA	_	3.3	—	3.6	—	39	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.7	—	0.8	—	0.9	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-150EA	0.8	—	0.9	—	1.0	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.6	—	1.8	—	2.0	—	ns
^t H_DELPLL	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-150EA	—	0.0	—	0.0	—	0.0	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-70EA/95EA	_	3.3	_	3.5	_	3.8	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-70EA/95EA	0.7		0.8	_	0.9	_	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8		-7		-6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775	—	UI
f _{MAX_GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	_	250	_	250	MHz
Generic DDRX2 In Input	puts with Clock and Data (>10	Bits Wide) Centered at P	in (GDDF	RX2_RX.E	CLK.Ce	ntered) L	Ising PC	LK Pin fo	or Clock
Left and Right Sid	les								
t _{SUGDDR}	Data Setup Before CLK	ECP3-150EA	321		403		471		ps
t _{HOGDDR}	Data Hold After CLK	ECP3-150EA	321	_	403	—	471	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA		405	_	325	_	280	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	321		403		535		ps
t _{HOGDDR}	Data Hold After CLK	ECP3-70EA/95EA	321	_	403		535	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA		405	_	325	_	250	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-35EA	335		425		535	—	ps
t _{HOGDDR}	Data Hold After CLK	ECP3-35EA	335		425		535	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	405	_	325		250	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-17EA	335		425		535		ps
t _{HOGDDR}	Data Hold After CLK	ECP3-17EA	335		425		535		ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	405		325		250	MHz
Generic DDRX2 In	puts with Clock and Data (>10	Bits Wide) Aligned at Pin	(GDDR)	(2_RX.EC	CLK.Alig	ned)	•		
Left and Right Sid	le Using DLLCLKIN Pin for Cloo	ck Input							
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA	—	0.225	—	0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775		0.775	_	0.775	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA	_	460	_	385		345	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	_	0.225	—	0.225	—	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775	_	0.775	—	0.775	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA	_	460	—	385	_	311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA	_	0.210	_	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790	_	0.790	—	0.790	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	460	—	385		311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA	—	0.210	_	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	_	0.790	—	0.790	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA		460		385	_	311	MHz
Top Side Using P	CLK Pin for Clock Input								
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA		0.225	_	0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775		0.775	_	0.775	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA		235		170	—	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA		0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775	_	0.775	—	0.775	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA		235		170	_	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA		0.210	_	0.210	—	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790	_	0.790	—	0.790	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA		235		170		130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA		0.210		0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790		0.790		0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	—	235	—	170	—	130	MHz

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

								6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
fMAX GDDB	DDRX1 Clock Frequency	ECP3-70EA/95EA		250		250	_	250	MHz	
	Data Valid Before CLK	ECP3-35EA	683	—	688	_	690	_	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	683	_	688	_	690	_	ps	
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	_	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	683	—	688	_	690	_	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	683	—	688	—	690	—	ps	
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250	—	250	MHz	
Generic DDRX1 Output with Clock and Data Aligned at Pin (GDDRX1_TX.SCLK.Aligned) ¹⁰										
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-150EA	—	335	—	338	—	341	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-150EA		335	_	338	—	341	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA		250	_	250	—	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-70EA/95EA	_	339	_	343	—	347	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-70EA/95EA	_	339	_	343	—	347	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	—	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-35EA	_	322	_	320	—	321	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-35EA	_	322	_	320	—	321	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	—	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-17EA	_	322	_	320	_	321	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-17EA	_	322	_	320	_	321	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-17EA		250	_	250	—	250	MHz	
Generic DDRX1 Ou	itput with Clock and Data (<10 Bi	ts Wide) Centered at P	in (GDD	RX1_TX.	DQS.Cen	tered) ¹⁰				
Left and Right Side	es									
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670	_	670	—	670	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	—	670	—	670	—	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA	_	250		250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-70EA/95EA	657	—	652	—	650	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-70EA/95EA	657	—	652	_	650	_	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-35EA	670	—	675	—	676	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	670	—	675	_	676	_	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	670	—	670	—	670	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	670	—	670	—	670	—	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250	—	250	MHz	
Generic DDRX2 Ou	itput with Clock and Data (>10 Bi	ts Wide) Aligned at Pir	n (GDDR	X2_TX.A	igned)					
Left and Right Side	25									
t _{DIBGDDR}	Data Invalid Before Clock	All ECP3EA Devices		200		210		220	ps	
t _{DIAGDDR}	Data Invalid After Clock	All ECP3EA Devices	_	200	_	210	_	220	ps	
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	—	375	MHz	
Generic DDRX2 Ou	Itput with Clock and Data (>10 Bi	ts Wide) Centered at P	in Using		L (GDDF	X2_TX.D	QSDLL.	Centered)11	
Left and Right Side	es									
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	400		400		431		ps	
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	400		400	—	432		ps	
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	—	375	MHz	

Over Recommended Commercial Operating Conditions

Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7} (Continued)

Over Recommended Commercial	Operating	Conditions
------------------------------------	-----------	------------

Buffer Type	Description	-8	-7	-6	Units
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, fast slew rate	0.21	0.25	0.29	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, fast slew rate	0.05	0.07	0.09	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, fast slew rate	0.43	0.51	0.59	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, fast slew rate	0.23	0.28	0.33	ns
LVCMOS33_4mA	LVCMOS 3.3 4 mA drive, slow slew rate	1.44	1.58	1.72	ns
LVCMOS33_8mA	LVCMOS 3.3 8 mA drive, slow slew rate	0.98	1.10	1.22	ns
LVCMOS33_12mA	LVCMOS 3.3 12 mA drive, slow slew rate	0.67	0.77	0.86	ns
LVCMOS33_16mA	LVCMOS 3.3 16 mA drive, slow slew rate	0.97	1.09	1.21	ns
LVCMOS33_20mA	LVCMOS 3.3 20 mA drive, slow slew rate	0.67	0.76	0.85	ns
LVCMOS25_4mA	LVCMOS 2.5 4 mA drive, slow slew rate	1.48	1.63	1.78	ns
LVCMOS25_8mA	LVCMOS 2.5 8 mA drive, slow slew rate	1.02	1.14	1.27	ns
LVCMOS25_12mA	LVCMOS 2.5 12 mA drive, slow slew rate	0.74	0.84	0.94	ns
LVCMOS25_16mA	LVCMOS 2.5 16 mA drive, slow slew rate	1.02	1.14	1.26	ns
LVCMOS25_20mA	LVCMOS 2.5 20 mA drive, slow slew rate	0.74	0.83	0.93	ns
LVCMOS18_4mA	LVCMOS 1.8 4 mA drive, slow slew rate	1.60	1.77	1.93	ns
LVCMOS18_8mA	LVCMOS 1.8 8 mA drive, slow slew rate	1.11	1.25	1.38	ns
LVCMOS18_12mA	LVCMOS 1.8 12 mA drive, slow slew rate	0.87	0.98	1.09	ns
LVCMOS18_16mA	LVCMOS 1.8 16 mA drive, slow slew rate	0.86	0.97	1.07	ns
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, slow slew rate	1.71	1.89	2.08	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, slow slew rate	1.20	1.34	1.48	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, slow slew rate	1.37	1.56	1.74	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, slow slew rate	1.11	1.27	1.43	ns
PCI33	PCI, VCCIO = 3.3 V	-0.12	-0.13	-0.14	ns

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.

5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

6. This data does not apply to the LatticeECP3-17EA device.

7. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter			_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—		dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-17. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	—	80		ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	—	0.10	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.24	UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 1.25 Gbps.

Table 3-18. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10			dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6			dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	_	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		-		0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		-		0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	_	0.71	UI
T _{RX_EYE}	Receiver eye opening		0.29	_	_	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 1.25 Gbps.

sysl/O Differential Electrical Characteristics

Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Symbol	Description	Min.	Nom.	Max.	Units
V _{CCO}	Driver supply voltage (+/- 5%)	3.14	3.3	3.47	V
V _{ID}	Input differential voltage	150	_	1200	mV
V _{ICM}	Input common mode voltage	3	_	3.265	V
V _{CCO}	Termination supply voltage	3.14	3.3	3.47	V
R _T	Termination resistance (off-chip)	45	50	55	Ohms

Note: LatticeECP3 only supports the TRLVDS receiver.

Mini LVDS

Over Recommended Operating Conditions

Parameter Symbol	Description	Min.	Тур.	Max.	Units
Z _O	Single-ended PCB trace impedance	30	50	75	Ohms
R _T	Differential termination resistance	50	100	150	Ohms
V _{OD}	Output voltage, differential, V _{OP} - V _{OM}	300	_	600	mV
V _{OS}	Output voltage, common mode, $ V_{OP} + V_{OM} /2$	1	1.2	1.4	V
ΔV_{OD}	Change in V _{OD} , between H and L	—	_	50	mV
ΔV_{ID}	Change in V _{OS} , between H and L	—	_	50	mV
V _{THD}	Input voltage, differential, V _{INP} - V _{INM}	200	_	600	mV
V _{CM}	Input voltage, common mode, $ V_{INP} + V_{INM} /2$	0.3+(V _{THD} /2)	_	2.1-(V _{THD} /2)	
T _R , T _F	Output rise and fall times, 20% to 80%	—	_	550	ps
T _{ODUTY}	Output clock duty cycle	40	—	60	%

Note: Data is for 6 mA differential current drive. Other differential driver current options are available.

LatticeECP3 Family Data Sheet Pinout Information

March 2015

Data Sheet DS1021

Signal Descriptions

Signal Name	I/O	Description		
General Purpose				
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).		
	1/0	[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Column Number. When Edge is L (Left) or R (Right), only need to specify Row Number.		
P[Eage] [Row/Column Number]_[A/B]	1/0	[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.		
P[Edge][Row Number]E_[A/B/C/D]	I	These general purpose signals are input-only pins and are located near the PLLs.		
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.		
NC	—	No connect.		
RESERVED	—	This pin is reserved and should not be connected to anything on the board.		
GND	—	Ground. Dedicated pins.		
V _{CC}	—	Power supply pins for core logic. Dedicated pins.		
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.		
V _{CCIOx}	—	Dedicated power supply pins for I/O bank x.		
V _{CCA}	_	SERDES, transmit, receive, PLL and reference clock buffer power supply. All V_{CCA} supply pins must always be powered to the recommended operating voltage range. If no SERDES channels are used, connect V_{CCA} to V_{CC} .		
V _{CCPLL_[LOC]}	—	General purpose PLL supply pins where LOC=L (left) or R (right).		
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.		
VTTx	—	Power supply for on-chip termination of I/Os.		
XRES ¹	—	10 kOhm +/-1% resistor must be connected between this pad and ground.		
PLL, DLL and Clock Functions				
[LOC][num]_GPLL[T, C]_IN_[index]	I	General Purpose PLL (GPLL) input pads: LUM, LLM, RUM, RLM, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.		
[LOC][num]_GPLL[T, C]_FB_[index]	I	Optional feedback GPLL input pads: LUM, LLM, RUM, RLM, num = row from center, T = true and C = complement, index A,B,Cat each side.		
[LOC]0_GDLLT_IN_[index] ²	I/O	General Purpose DLL (GDLL) input pads where LOC=RUM or LUM, T is True Complement, index is A or B.		
[LOC]0_GDLLT_FB_[index] ²	I/O	Optional feedback GDLL input pads where LOC=RUM or LUM, T is True Complement, index is A or B.		
PCLK[T, C][n:0]_[3:0] ²	I/O	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0, 1, 2, 3 within bank.		

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-17EA			ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	
	Bank 0	13	10	18	13	21	24	
	Bank 1	7	5	12	7	18	18	
	Bank 2	2	2	4	1	8	8	
Emulated Differential I/O per	Bank 3	4	2	13	5	20	19	
Dank	Bank 6	5	1	13	6	22	20	
	Bank 7	6	9	10	6	11	13	
	Bank 8	12	12	12	12	12	12	
	Bank 0	0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	0	
	Bank 2	2	2	3	3	6	6	
Highspeed Differential I/O per	Bank 3	5	4	9	4	9	12	
Dank	Bank 6	5	4	9	4	11	12	
	Bank 7	5	6	8	5	9	10	
	Bank 8	0	0	0	0	0	0	
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24	
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18	
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14	
Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31	
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32	
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23	
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12	
	Bank 0	2	1	3	2	3	4	
	Bank 1	1	0	2	1	3	3	
	Bank 2	0	0	1	0	2	2	
DDR Groups Bonded per	Bank 3	1	0	3	1	3	4	
Bank [∠]	Bank 6	1	0	3	1	4	4	
	Bank 7	1	2	2	1	3	3	
	Configuration Bank 8	0	0	0	0	0	0	
SERDES Quads		1	1	1	1	1	1	

These pins must remain floating on the board.
Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.