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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-150ea-9fn672i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/lfe3-150ea-9fn672i-4485841
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


2-2

Architecture
LatticeECP3 Family Data Sheet

Figure 2-1. Simplified Block Diagram, LatticeECP3-35 Device (Top Level)

PFU Blocks 
The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. 
The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF 
blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remain-
der of this data sheet will use the term PFU to refer to both PFU and PFF blocks. 

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains 
two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs 
associated with each PFU block. 
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Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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PLL/DLL Cascading 
LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable 
combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs 
are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL 
blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next 
to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Clock Dividers
LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave 
Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and 
feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all 
outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on 
clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows 
the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Table 2-6. Secondary Clock Regions

Figure 2-15. LatticeECP3-70 and LatticeECP3-95 Secondary Clock Regions

Device
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For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and 
AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline regis-
ters. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element
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www.latticesemi.com/dynamic/view_document.cfm?document_id=32322


2-32

Architecture
LatticeECP3 Family Data Sheet

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-32. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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There are some restrictions to be aware of when using spread spectrum. When a quad shares a PCI Express x1 
channel with a non-PCI Express channel, ensure that the reference clock for the quad is compatible with all proto-
cols within the quad. For example, a PCI Express spread spectrum reference clock is not compatible with most 
Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LatticeECP3 architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, Serial 
RapidIO or SGMII channel within the same quad, using a PCI Express spread spectrum clocking as the transmit 
reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter specifica-
tions.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage 
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. 

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration 
All LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), 
which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. 
The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In- 
System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with the 
remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more information 
about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LatticeECP3 device:

1. JTAG

2. Standard Serial Peripheral Interface (SPI and SPIm modes) - interface to boot PROM memory

3. System microprocessor to drive a x8 CPU port (PCM mode)

4. System microprocessor to drive a serial slave SPI port (SSPI mode)

5. Generic byte wide flash with a MachXO™ device, providing control and addressing

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration 
port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any 
time after power-up by sending the appropriate command through the TAP port. 

LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device 
(slave mode) with the SPI port of the FPGA to perform read-write operations.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and 
Diamond software for specific restrictions and limitations.

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=32&sloc=01-01-00-10
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RSDS25 RSDS, VCCIO = 2.5 V –0.07 –0.04 –0.01 ns

PPLVDS Point-to-Point LVDS, True LVDS, VCCIO = 2.5 V or 3.3 V –0.22 –0.19 –0.16 ns

LVPECL33 LVPECL, Emulated, VCCIO = 3.3 V 0.67 0.76 0.86 ns

HSTL18_I HSTL_18 class I 8mA drive, VCCIO = 1.8 V 1.20 1.34 1.47 ns

HSTL18_II HSTL_18 class II, VCCIO = 1.8 V 0.89 1.00 1.11 ns

HSTL18D_I Differential HSTL 18 class I 8 mA drive 1.20 1.34 1.47 ns

HSTL18D_II Differential HSTL 18 class II 0.89 1.00 1.11 ns

HSTL15_I HSTL_15 class I 4 mA drive, VCCIO = 1.5 V 1.67 1.83 1.99 ns

HSTL15D_I Differential HSTL 15 class I 4 mA drive 1.67 1.83 1.99 ns

SSTL33_I SSTL_3 class I, VCCIO = 3.3 V 1.12 1.17 1.21 ns

SSTL33_II SSTL_3 class II, VCCIO = 3.3 V 1.08 1.12 1.15 ns

SSTL33D_I Differential SSTL_3 class I 1.12 1.17 1.21 ns

SSTL33D_II Differential SSTL_3 class II 1.08 1.12 1.15 ns

SSTL25_I SSTL_2 class I 8 mA drive, VCCIO = 2.5 V 1.06 1.19 1.31 ns

SSTL25_II SSTL_2 class II 16 mA drive, VCCIO = 2.5 V 1.04 1.17 1.31 ns

SSTL25D_I Differential SSTL_2 class I 8 mA drive 1.06 1.19 1.31 ns

SSTL25D_II Differential SSTL_2 class II 16 mA drive 1.04 1.17 1.31 ns

SSTL18_I SSTL_1.8 class I, VCCIO = 1.8 V 0.70 0.84 0.97 ns

SSTL18_II SSTL_1.8 class II 8 mA drive, VCCIO = 1.8 V 0.70 0.84 0.97 ns

SSTL18D_I Differential SSTL_1.8 class I 0.70 0.84 0.97 ns

SSTL18D_II Differential SSTL_1.8 class II 8 mA drive 0.70 0.84 0.97 ns

SSTL15 SSTL_1.5, VCCIO = 1.5 V 1.22 1.35 1.48 ns

SSTL15D Differential SSTL_15 1.22 1.35 1.48 ns

LVTTL33_4mA LVTTL 4 mA drive, VCCIO = 3.3V 0.25 0.24 0.23 ns

LVTTL33_8mA LVTTL 8 mA drive, VCCIO = 3.3V –0.06 –0.06 –0.07 ns

LVTTL33_12mA LVTTL 12 mA drive, VCCIO = 3.3V –0.01 –0.02 –0.02 ns

LVTTL33_16mA LVTTL 16 mA drive, VCCIO = 3.3V –0.07 –0.07 –0.08 ns

LVTTL33_20mA LVTTL 20 mA drive, VCCIO = 3.3V –0.12 –0.13 –0.14 ns

LVCMOS33_4mA LVCMOS 3.3 4 mA drive, fast slew rate 0.25 0.24 0.23 ns

LVCMOS33_8mA LVCMOS 3.3 8 mA drive, fast slew rate –0.06 –0.06 –0.07 ns

LVCMOS33_12mA LVCMOS 3.3 12 mA drive, fast slew rate –0.01 –0.02 –0.02 ns

LVCMOS33_16mA LVCMOS 3.3 16 mA drive, fast slew rate –0.07 –0.07 –0.08 ns

LVCMOS33_20mA LVCMOS 3.3 20 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS25_4mA LVCMOS 2.5 4 mA drive, fast slew rate 0.12 0.10 0.09 ns

LVCMOS25_8mA LVCMOS 2.5 8 mA drive, fast slew rate –0.05 –0.06 –0.07 ns

LVCMOS25_12mA LVCMOS 2.5 12 mA drive, fast slew rate 0.00 0.00 0.00 ns

LVCMOS25_16mA LVCMOS 2.5 16 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS25_20mA LVCMOS 2.5 20 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS18_4mA LVCMOS 1.8 4 mA drive, fast slew rate 0.11 0.12 0.14 ns

LVCMOS18_8mA LVCMOS 1.8 8 mA drive, fast slew rate 0.11 0.12 0.14 ns

LVCMOS18_12mA LVCMOS 1.8 12 mA drive, fast slew rate –0.04 –0.03 –0.03 ns

LVCMOS18_16mA LVCMOS 1.8 16 mA drive, fast slew rate –0.04 –0.03 –0.03 ns

LatticeECP3 Family Timing Adders1, 2, 3, 4, 5, 7 (Continued)
Over Recommended Commercial Operating Conditions

Buffer Type Description –8 –7 –6 Units
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Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 150 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27–1, all channels operating, FPGA Logic active, I/Os around SERDES 
pins quiet, voltages are nominal, room temperature.
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XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-13. Transmit

Over Recommended Operating Conditions

Table 3-14. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
2, 3, 4 Output data deterministic jitter — — 0.17 UI

JTX_TJ
1, 2, 3, 4 Total output data jitter — — 0.35 UI

1. Total jitter includes both deterministic jitter and random jitter.
2. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz 
to 3.125 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz 
to 3.125 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
1, 2, 3 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
1, 2, 3 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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[LOC]DQS[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball 
function number.

[LOC]DQ[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated 
DQS number.

Test and Programming (Dedicated Pins)

TMS I Test Mode Select input, used to control the 1149.1 state machine. Pull-up is 
enabled during configuration. 

TCK I Test Clock input pin, used to clock the 1149.1 state machine. No pull-up 
enabled. 

TDI I 

Test Data in pin. Used to load data into device using 1149.1 state machine. 
After power-up, this TAP port can be activated for configuration by sending 
appropriate command. (Note: once a configuration port is selected it is 
locked. Another configuration port cannot be selected until the power-up 
sequence). Pull-up is enabled during configuration. 

TDO O Output pin. Test Data Out pin used to shift data out of a device using 1149.1. 

VCCJ — Power supply pin for JTAG Test Access Port. 

Configuration Pads (Used During sysCONFIG)

CFG[2:0] I 
Mode pins used to specify configuration mode values latched on rising edge 
of INITN. During configuration, a pull-up is enabled. These are dedicated 
pins. 

INITN I/O Open Drain pin. Indicates the FPGA is ready to be configured. During config-
uration, a pull-up is enabled. It is a dedicated pin. 

PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an 
active pull-up. It is a dedicated pin. 

DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and 
the startup sequence is in progress. It is a dedicated pin. 

CCLK I Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and 
CPU modes. It is a dedicated pin.

MCLK I/O Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Mas-
ter configuration modes.

BUSY/SISPI O Parallel configuration mode busy indicator. SPI/SPIm mode data output. 

CSN/SN/OEN I/O Parallel configuration mode active-low chip select. Slave SPI chip select. 
Parallel burst Flash output enable.

CS1N/HOLDN/RDY I Parallel configuration mode active-low chip select. Slave SPI hold input. 

WRITEN I Write enable for parallel configuration modes.

DOUT/CSON/CSSPI1N O Serial data output. Chip select output. SPI/SPIm mode chip select.

D[0]/SPIFASTN I/O

sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.

sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm 
mode, this pin should either be tied high or low, must not be left floating. Open 
drain during configuration.

D1 I/O Parallel configuration I/O. Open drain during configuration.

D2 I/O Parallel configuration I/O. Open drain during configuration.

D3/SI I/O Parallel configuration I/O. Slave SPI data input. Open drain during configura-
tion.

D4/SO I/O Parallel configuration I/O. Slave SPI data output. Open drain during configura-
tion.

D5 I/O Parallel configuration I/O. Open drain during configuration.

D6/SPID1 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

Signal Descriptions (Cont.)
Signal Name I/O Description 
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-70EA

Pin Type 484 fpBGA 672 fpBGA 1156 fpBGA

Emulated Differential 
I/O per Bank

Bank 0 21 30 43

Bank 1 18 24 39

Bank 2 8 12 13

Bank 3 20 23 33

Bank 6 22 25 33

Bank 7 11 16 18

Bank 8 12 12 12

High-Speed Differential I/
O per Bank

Bank 0 0 0 0

Bank 1 0 0 0

Bank 2 6 9 9

Bank 3 9 12 16

Bank 6 11 14 16

Bank 7 9 12 13

Bank 8 0 0 0

Total Single-Ended/
Total Differential I/O
per Bank

Bank 0 42/21 60/30 86/43

Bank 1 36/18 48/24 78/39

Bank 2 28/14 42/21 44/22

Bank 3 58/29 71/35 98/49

Bank 6 67/33 78/39 98/49

Bank 7 40/20 56/28 62/31

Bank 8 24/12 24/12 24/12

DDR Groups Bonded
per Bank1

Bank 0 3 5 7

Bank 1 3 4 7

Bank 2 2 3 3

Bank 3 3 4 5

Bank 6 4 4 5

Bank 7 3 4 4

Configuration Bank 8 0 0 0

SERDES Quads 1 2 3

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-150EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 149

LFE3-150EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 149

LFE3-150EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 149

LFE3-150EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 149

LFE3-150EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 149

LFE3-150EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 149

LFE3-150EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 149

LFE3-150EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 149

LFE3-150EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade Power Package Pins Temp. LUTs (K)

LFE3-150EA-6FN672CTW1 1.2 V –6 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-7FN672CTW1 1.2 V –7 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-8FN672CTW1 1.2 V –8 STD Lead-Free fpBGA 672 COM 149

LFE3-150EA-6FN1156CTW1 1.2 V –6 STD Lead-Free fpBGA 1156 COM 149

LFE3-150EA-7FN1156CTW1 1.2 V –7 STD Lead-Free fpBGA 1156 COM 149

LFE3-150EA-8FN1156CTW1 1.2 V –8 STD Lead-Free fpBGA 1156 COM 149

1. Note: Specifications for the LFE3-150EA-spFNpkgCTW and LFE3-150EA-spFNpkgITW devices, (where sp is the speed and 
pkg is the package), are the same as the LFE3-150EA-spFNpkgC and LFE3-150EA-spFNpkgI devices respectively, except 
as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed 
and implemented in soft IP.

•  The SERDES XRES pin on the TW device passes CDM testing at 250 V.
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484I 1.2 V –6 STD Lead-Free fpBGA 484 IND 67

LFE3-70EA-7FN484I 1.2 V –7 STD Lead-Free fpBGA 484 IND 67

LFE3-70EA-8FN484I 1.2 V –8 STD Lead-Free fpBGA 484 IND 67

LFE3-70EA-6LFN484I 1.2 V –6 LOW Lead-Free fpBGA 484 IND 67

LFE3-70EA-7LFN484I 1.2 V –7 LOW Lead-Free fpBGA 484 IND 67

LFE3-70EA-8LFN484I 1.2 V –8 LOW Lead-Free fpBGA 484 IND 67

LFE3-70EA-6FN672I 1.2 V –6 STD Lead-Free fpBGA 672 IND 67

LFE3-70EA-7FN672I 1.2 V –7 STD Lead-Free fpBGA 672 IND 67

LFE3-70EA-8FN672I 1.2 V –8 STD Lead-Free fpBGA 672 IND 67

LFE3-70EA-6LFN672I 1.2 V –6 LOW Lead-Free fpBGA 672 IND 67

LFE3-70EA-7LFN672I 1.2 V –7 LOW Lead-Free fpBGA 672 IND 67

LFE3-70EA-8LFN672I 1.2 V –8 LOW Lead-Free fpBGA 672 IND 67

LFE3-70EA-6FN1156I 1.2 V –6 STD Lead-Free fpBGA 1156 IND 67

LFE3-70EA-7FN1156I 1.2 V –7 STD Lead-Free fpBGA 1156 IND 67

LFE3-70EA-8FN1156I 1.2 V –8 STD Lead-Free fpBGA 1156 IND 67

LFE3-70EA-6LFN1156I 1.2 V –6 LOW Lead-Free fpBGA 1156 IND 67

LFE3-70EA-7LFN1156I 1.2 V –7 LOW Lead-Free fpBGA 1156 IND 67

LFE3-70EA-8LFN1156I 1.2 V –8 LOW Lead-Free fpBGA 1156 IND 67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484I 1.2 V –6 STD Lead-Free fpBGA 484 IND 92

LFE3-95EA-7FN484I 1.2 V –7 STD Lead-Free fpBGA 484 IND 92

LFE3-95EA-8FN484I 1.2 V –8 STD Lead-Free fpBGA 484 IND 92

LFE3-95EA-6LFN484I 1.2 V –6 LOW Lead-Free fpBGA 484 IND 92

LFE3-95EA-7LFN484I 1.2 V –7 LOW Lead-Free fpBGA 484 IND 92

LFE3-95EA-8LFN484I 1.2 V –8 LOW Lead-Free fpBGA 484 IND 92

LFE3-95EA-6FN672I 1.2 V –6 STD Lead-Free fpBGA 672 IND 92

LFE3-95EA-7FN672I 1.2 V –7 STD Lead-Free fpBGA 672 IND 92

LFE3-95EA-8FN672I 1.2 V –8 STD Lead-Free fpBGA 672 IND 92

LFE3-95EA-6LFN672I 1.2 V –6 LOW Lead-Free fpBGA 672 IND 92

LFE3-95EA-7LFN672I 1.2 V –7 LOW Lead-Free fpBGA 672 IND 92

LFE3-95EA-8LFN672I 1.2 V –8 LOW Lead-Free fpBGA 672 IND 92

LFE3-95EA-6FN1156I 1.2 V –6 STD Lead-Free fpBGA 1156 IND 92

LFE3-95EA-7FN1156I 1.2 V –7 STD Lead-Free fpBGA 1156 IND 92

LFE3-95EA-8FN1156I 1.2 V –8 STD Lead-Free fpBGA 1156 IND 92

LFE3-95EA-6LFN1156I 1.2 V –6 LOW Lead-Free fpBGA 1156 IND 92

LFE3-95EA-7LFN1156I 1.2 V –7 LOW Lead-Free fpBGA 1156 IND 92

LFE3-95EA-8LFN1156I 1.2 V –8 LOW Lead-Free fpBGA 1156 IND 92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.
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Updated Frequency to 150 Mbps in Table 3-11 Periodic Receiver Jitter 
Tolerance Specification

December 2010 01.7EA Multiple Data sheet made final. Removed “preliminary” headings.

Removed data for 70E and 95E devices. A separate data sheet is avail-
able for these specific devices.

Updated for Lattice Diamond design software.

Introduction Corrected number of user I/Os

Architecture Corrected the package type in Table 2-14 Available SERDES Quad per 
LatticeECP3 Devices. 

Updated description of General Purpose PLL

Added additional information in the Flexible Quad SERDES Architecture 
section.

Added footnotes and corrected the information in Table 2-16 Selectable 
master Clock (MCCLK) Frequencies During Configuration (Nominal).

Updated Figure 2-16, Per Region Secondary Clock Selection.

Updated description for On-Chip Programmable Termination.

Added information about number of rows of DSP slices.

Updated footnote 2 for Table 2-12, On-Chip Termination Options for 
Input Modes.

Updated information for sysIO buffer pairs.

Corrected minimum number of General Purpose PLLs (was 4, now 2).

DC and Switching 
Characteristics

Regenerated sysCONFIG Port Timing figure.

Added tW (clock pulse width) in External Switching Characteristics 
table.

Corrected units, revised and added data, and corrected footnote 1 in 
External Switching Characteristics table.

Added Jitter Transfer figures in SERDES External Reference Clock sec-
tion.

Corrected capacitance information in the DC Electrical Characteristics 
table.

Corrected data in the Register-to-Register Performance table.

Corrected GDDR Parameter name HOGDDR.

Corrected RSDS25 -7 data in Family Timing Adders table.

Added footnotes 10-12 to DDR data information in the External Switch-
ing Characteristics table.

Corrected titles for Figures 3-7 (DDR/DDR2/DDR3 Parameters) and 
3-8 (Generic DDR/DDRX2 Parameters).

Updated titles for Figures 3-5 (MLVDS25 (Multipoint Low Voltage Differ-
ential Signaling)) and 3-6 (Generic DDRX1/DDRX2 (With Clock and 
Data Edges Aligned)).

Updated Supply Current table.

Added GDDR interface information to the External Switching and Char-
acteristics table.

Added footnote to sysIO Recommended Operating Conditions table.

Added footnote to LVDS25 table.

Corrected DDR section footnotes and references.

Corrected Hot Socketing support from “top and bottom banks” to “top 
and bottom I/O pins”.

Pinout Information Updated description for VTTx.

Date Version Section Change Summary


