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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Architecture Overview
Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-
spersed between the rows of logic blocks are rows of sysMEM™ Embedded Block RAM (EBR) and rows of sys-
DSP™ Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; 
all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES 
Quads on the bottom of the device. 

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit 
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF 
block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for 
flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row. 

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 
18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or 
ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and 
adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each 
SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each 
group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The func-
tionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by regis-
ters that are addressable during device operation. The registers in every quad can be programmed via the 
SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices. 

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the 
LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. 
In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and 
right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engi-
neered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 
LVDS, along with memory interfaces including DDR3.

The LatticeECP3 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and the 
device is configured, it enters into user mode with these registers SET/RESET according to the configuration set-
ting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two 
Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the 
end of the EBR/DSP rows. 

The configuration block that supports features such as configuration bit-stream decryption, transparent updates 
and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family sup-
ports a sysCONFIG™ port located in the corner between banks one and two, which allows for serial or parallel 
device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error 
detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

LatticeECP3 Family Data Sheet
Architecture
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Figure 2-10. Primary Clock Sources for LatticeECP3-35

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150
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Figure 2-37. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits 
to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at 
the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is reg-
istered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ 
cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high 
speed DDR data from and to the DDR3 Memory. 

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, 
refer to the sysIO section of this data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on the 
bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank (Config-
uration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is 
not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. 
Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration Bank, 
has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. Figure 2-38 
shows the seven banks and their associated supplies. 

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter
Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential 
inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of 
sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input 
DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with 
settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 
1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set 
uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a 
DQS-12 group.

Hot Socketing
LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is 
high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. 
Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)
LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the 
devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-
150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

• PCI Express 1.1

• Ethernet (XAUI, GbE - 1000 Base CS/SX/LX and SGMII)

• Serial RapidIO

• SMPTE SDI (3G, HD, SD)

• CPRI

• SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a 
PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the stan-
dards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated pro-
tocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad 
with the use of dedicated, per channel 1, 2 and 11 rate dividers. Additionally, multiple quads can be arranged 
together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine 
multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage 
Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block
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As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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There are some restrictions to be aware of when using spread spectrum. When a quad shares a PCI Express x1 
channel with a non-PCI Express channel, ensure that the reference clock for the quad is compatible with all proto-
cols within the quad. For example, a PCI Express spread spectrum reference clock is not compatible with most 
Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LatticeECP3 architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, Serial 
RapidIO or SGMII channel within the same quad, using a PCI Express spread spectrum clocking as the transmit 
reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter specifica-
tions.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage 
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. 

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration 
All LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), 
which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. 
The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In- 
System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with the 
remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more information 
about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LatticeECP3 device:

1. JTAG

2. Standard Serial Peripheral Interface (SPI and SPIm modes) - interface to boot PROM memory

3. System microprocessor to drive a x8 CPU port (PCM mode)

4. System microprocessor to drive a serial slave SPI port (SSPI mode)

5. Generic byte wide flash with a MachXO™ device, providing control and addressing

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration 
port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any 
time after power-up by sending the appropriate command through the TAP port. 

LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device 
(slave mode) with the SPI port of the FPGA to perform read-write operations.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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SERDES Power Supply Requirements1, 2, 3

Over Recommended Operating Conditions

Symbol Description Typ. Max. Units

Standby (Power Down)

ICCA-SB VCCA current (per channel) 3 5 mA

ICCIB-SB Input buffer current (per channel) — — mA

ICCOB-SB Output buffer current (per channel) — — mA

Operating (Data Rate = 3.2 Gbps)

ICCA-OP VCCA current (per channel) 68 77 mA

ICCIB-OP Input buffer current (per channel) 5 7 mA

ICCOB-OP Output buffer current (per channel) 19 25 mA

Operating (Data Rate = 2.5 Gbps)

ICCA-OP VCCA current (per channel) 66 76 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 1.25 Gbps)

ICCA-OP VCCA current (per channel) 62 72 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 250 Mbps)

ICCA-OP VCCA current (per channel) 55 65 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 14 17 mA

Operating (Data Rate = 150 Mbps)

ICCA-OP VCCA current (per channel) 55 65 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 14 17 mA

1. Equalization enabled, pre-emphasis disabled.
2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, 

pre-emphasis disabled, equalization enabled).
3. Pre-emphasis adds 20 mA to ICCA-OP data.
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LVDS25E
The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS 
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one 
possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

LVCMOS33D
All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external 
resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V 
VCCIO. The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 
4 mA, 8 mA, 16 mA or 20 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/–5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/–1%) 158 

RP Driver Parallel Resistor (+/–1%) 140 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage 1.43 V

VOL Output Low Voltage 1.07 V

VOD Output Differential Voltage 0.35 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 6.03 mA

+ 
- 

RS=158 Ohms
(±1%)

RS=158 Ohms
(±1%)

RP = 140 Ohms
(±1%)

RT = 100 Ohms
(±1%)

OFF-chip 

Transmission line, Zo = 100 Ohm differential 

VCCIO = 2.5 V (±5%)

8 mA

VCCIO = 2.5 V (±5%)

ON-chip OFF-chip ON-chip

8 mA
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BLVDS25
The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS 
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when 
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one 
possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS25 Multi-point Output Example

Table 3-2. BLVDS25 DC Conditions1

Over Recommended Operating Conditions

Parameter Description

Typical

UnitsZo = 45 Zo = 90

VCCIO Output Driver Supply (+/– 5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/– 1%) 90.00 90.00 

RTL Driver Parallel Resistor (+/– 1%) 45.00 90.00 

RTR Receiver Termination (+/– 1%) 45.00 90.00 

VOH Output High Voltage 1.38 1.48 V

VOL Output Low Voltage 1.12 1.02 V

VOD Output Differential Voltage 0.25 0.46 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 11.24 10.20 mA

1. For input buffer, see LVDS table.

Heavily loaded backplane, effective Zo ~ 45 to 90 Ohms differential

2.5 V

RTL RTR

RS = 90 Ohms
RS = 90 Ohms RS = 

90 Ohms

RS = 
90 Ohms RS = 

90 Ohms

RS = 
90 Ohms

RS = 
90 Ohms

RS = 
90 Ohms

45-90 
Ohms

45-90 
Ohms

2.5 V

2.5 V

2.5 V 2.5 V 2.5 V 2.5 V

2.5 V

+
–

. . .
+ –

. . .
+
–

+ –

16 mA

16 mA

16 mA 16 mA 16 mA 16 mA

16 mA

16 mA
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12 mA Drive)1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 4.7 ns

32-bit Decoder 4.7 ns

64-bit Decoder 5.7 ns

4:1 MUX 4.1 ns

8:1 MUX 4.3 ns

16:1 MUX 4.7 ns

32:1 MUX 4.8 ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses 
internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

Register-to-Register Performance1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 500 MHz

32-bit Decoder 500 MHz

64-bit Decoder 500 MHz

4:1 MUX 500 MHz

8:1 MUX 500 MHz

16:1 MUX 500 MHz

32:1 MUX 445 MHz

8-bit adder 500 MHz

16-bit adder 500 MHz

64-bit adder 305 MHz

16-bit counter 500 MHz

32-bit counter 460 MHz

64-bit counter 320 MHz

64-bit accumulator 315 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 340 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 340 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers 130 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 245 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 500 MHz

32x4 Pseudo-Dual Port RAM 500 MHz

64x8 Pseudo-Dual Port RAM 400 MHz

DSP Function

18x18 Multiplier (All Registers) 400 MHz

9x9 Multiplier (All Registers) 400 MHz

36x36 Multiply (All Registers) 260 MHz
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LVCMOS15_4mA LVCMOS 1.5 4 mA drive, fast slew rate 0.21 0.25 0.29 ns
LVCMOS15_8mA LVCMOS 1.5 8 mA drive, fast slew rate 0.05 0.07 0.09 ns
LVCMOS12_2mA LVCMOS 1.2 2 mA drive, fast slew rate 0.43 0.51 0.59 ns
LVCMOS12_6mA LVCMOS 1.2 6 mA drive, fast slew rate 0.23 0.28 0.33 ns
LVCMOS33_4mA LVCMOS 3.3 4 mA drive, slow slew rate 1.44 1.58 1.72 ns
LVCMOS33_8mA LVCMOS 3.3 8 mA drive, slow slew rate 0.98 1.10 1.22 ns
LVCMOS33_12mA LVCMOS 3.3 12 mA drive, slow slew rate 0.67 0.77 0.86 ns
LVCMOS33_16mA LVCMOS 3.3 16 mA drive, slow slew rate 0.97 1.09 1.21 ns
LVCMOS33_20mA LVCMOS 3.3 20 mA drive, slow slew rate 0.67 0.76 0.85 ns
LVCMOS25_4mA LVCMOS 2.5 4 mA drive, slow slew rate 1.48 1.63 1.78 ns
LVCMOS25_8mA LVCMOS 2.5 8 mA drive, slow slew rate 1.02 1.14 1.27 ns
LVCMOS25_12mA LVCMOS 2.5 12 mA drive, slow slew rate 0.74 0.84 0.94 ns
LVCMOS25_16mA LVCMOS 2.5 16 mA drive, slow slew rate 1.02 1.14 1.26 ns
LVCMOS25_20mA LVCMOS 2.5 20 mA drive, slow slew rate 0.74 0.83 0.93 ns
LVCMOS18_4mA LVCMOS 1.8 4 mA drive, slow slew rate 1.60 1.77 1.93 ns
LVCMOS18_8mA LVCMOS 1.8 8 mA drive, slow slew rate 1.11 1.25 1.38 ns
LVCMOS18_12mA LVCMOS 1.8 12 mA drive, slow slew rate 0.87 0.98 1.09 ns
LVCMOS18_16mA LVCMOS 1.8 16 mA drive, slow slew rate 0.86 0.97 1.07 ns
LVCMOS15_4mA LVCMOS 1.5 4 mA drive, slow slew rate 1.71 1.89 2.08 ns
LVCMOS15_8mA LVCMOS 1.5 8 mA drive, slow slew rate 1.20 1.34 1.48 ns
LVCMOS12_2mA LVCMOS 1.2 2 mA drive, slow slew rate 1.37 1.56 1.74 ns
LVCMOS12_6mA LVCMOS 1.2 6 mA drive, slow slew rate 1.11 1.27 1.43 ns
PCI33 PCI, VCCIO = 3.3 V �0.12 �0.13 �0.14 ns
1. Timing adders are characterized but not tested on every device.
2. LVCMOS timing measured with the load specified in Switching Test Condition table.
3. All other standards tested according to the appropriate specifications. 
4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.
5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-

ware.
6. This data does not apply to the LatticeECP3-17EA device.
7. For details on �9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Timing Adders 1, 2, 3, 4, 5, 7 (Continued)
Over Recommended Commercial Operating Conditions

Buffer Type Description �8 �7 �6 Units
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Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units
Periodic 2.97 Gbps 600 mV differential eye � � 0.24 UI, p-p 
Periodic 2.5 Gbps 600 mV differential eye � � 0.22 UI, p-p 
Periodic 1.485 Gbps 600 mV differential eye � � 0.24 UI, p-p 
Periodic 622 Mbps 600 mV differential eye � � 0.15 UI, p-p 
Periodic 150 Mbps 600 mV differential eye � � 0.5 UI, p-p

Note: Values are measured with PRBS 27�1, all channels operating, FPGA  Logic active, I/Os around SERDES 
pins quiet, voltages are nominal, room temperature.
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units
POR, Configuration Init ialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode � 23 ms

Slave mode � 6 ms

tVMC Time from tICFG to the Valid Master MCLK � 5 µs
tPRGM PROGRAMN Low Time to Start Configuration 25 � ns
tPRGMRJ PROGRAMN Pin Pulse Rejection � 10 ns
tDPPINIT Delay Time from PROGRAMN Low to INITN Low � 37 ns
tDPPDONE Delay Time from PROGRAMN Low to DONE Low � 37 ns
tDINIT

1 PROGRAMN High to INITN High Delay � 1 ms
tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles
tCZ MCLK From Active To Low To High-Z � 300 ns
tIODISS User I/O Disable from PROGRAMN Low � 100 ns
tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence � 100 ns
All Configuration Modes
tSUCDI Data Setup Time to CCLK/MCLK 5 � ns
tHCDI Data Hold Time to CCLK/MCLK 1 � ns
tCODO CCLK/MCLK to DOUT in Flowthrough Mode -0.2 12 ns
Slave Serial
tSSCH CCLK Minimum High Pulse 5 � ns
tSSCL CCLK Minimum Low Pulse 5 � ns

fCCLK CCLK Frequency
Without encryption � 33 MHz
With encryption � 20 MHz

Master and Slave Parallel
tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 � ns
tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 � ns
tSUWD WRITEN Setup Time to CCLK/MCLK 7 � ns
tHWD WRITEN Hold Time to CCLK/MCLK 1 � ns
tDCB CCLK/MCLK to BUSY Delay Time � 12 ns
tCORD CCLK to Out for Read Data � 12 ns
tBSCH CCLK Minimum High Pulse 6 � ns
tBSCL CCLK Minimum Low Pulse 6 � ns
tBSCYC Byte Slave Cycle Time 30 � ns

fCCLK CCLK/MCLK Frequency
Without encryption � 33 MHz
With encryption � 20 MHz

Master and Slave SPI
tCFGX INITN High to MCLK Low � 80 ns
tCSSPI INITN High to CSSPIN Low 0.2 2 µs
tSOCDO MCLK Low to Output Valid � 15 ns
tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption � 33 MHz
With encryption � 20 MHz

tSSCH CCLK Minimum High Pulse 5 � ns


