

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	116
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	328-LFBGA, CSBGA
Supplier Device Package	328-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-6lmg328i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.

PFU Blocks

The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Figure 2-3. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK WRE is from LSR

DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 WAD [A:D] is a 4-bit address from slice 2 LUT input

Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FC	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6 and LUT7
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6 and LUT7
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Slice 2 of each PFU is the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Figure 2-8. Clock Divider Connections

Clock Distribution Network

LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two high performance edge clocks are available on the top, left, and right edges of the device to support high speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock sources are fed throughout the chip via a clock distribution system.

Primary Clock Sources

LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, dedicated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or Generic DDR interfaces.

Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs.

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals.

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side pads can be identified by the Lattice Diamond tool.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1, 4}$	Input or I/O Low Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2 \text{ V})$	—	_	10	μΑ
I _{IH} ^{1, 3}	Input or I/O High Leakage	$(V_{CCIO} - 0.2 \text{ V}) < V_{IN} \leq 3.6 \text{ V}$	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	—	-210	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30	—	210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	—	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	—	210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	—	-210	μΑ
V _{BHT}	Bus Hold Trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	—	V_{IH} (MIN)	V
C1	I/O Capacitance ²		_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = 1.2 V, V_{IO} = 0 \text{ to } V_{IH} (MAX)$	_	5	7	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Applicable to general purpose I/Os in top and bottom banks. 4. When used as V_{REF} maximum leakage= 25 μ A.

sysl/O Recommended Operating Conditions

		V _{CCIO}		V _{REF} (V)		
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS33 ²	3.135	3.3	3.465	—	—	—
LVCMOS33D	3.135	3.3	3.465	—	—	—
LVCMOS25 ²	2.375	2.5	2.625	—	—	—
LVCMOS18	1.71	1.8	1.89	—	—	—
LVCMOS15	1.425	1.5	1.575	—	—	—
LVCMOS12 ²	1.14	1.2	1.26	—	—	—
LVTTL33 ²	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—	—	—
SSTL15 ³	1.43	1.5	1.57	0.68	0.75	0.9
SSTL18_I, II ²	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I, II ²	2.375	2.5	2.625	1.15	1.25	1.35
SSTL33_I, II ²	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15_l ²	1.425	1.5	1.575	0.68	0.75	0.9
HSTL18_I, II ²	1.71	1.8	1.89	0.816	0.9	1.08
LVDS25 ²	2.375	2.5	2.625	—	—	—
LVDS25E	2.375	2.5	2.625	—	—	—
MLVDS ¹	2.375	2.5	2.625	—	—	—
LVPECL33 ^{1, 2}	3.135	3.3	3.465	—	—	—
Mini LVDS	2.375	2.5	2.625	—	—	—
BLVDS25 ^{1, 2}	2.375	2.5	2.625		—	—
RSDS ²	2.375	2.5	2.625	—	—	—
RSDSE ^{1, 2}	2.375	2.5	2.625	—	—	—
TRLVDS	3.14	3.3	3.47	—	—	—
PPLVDS	3.14/2.25	3.3/2.5	3.47/2.75	—	—	—
SSTL15D ³	1.43	1.5	1.57		—	—
SSTL18D_I ^{2, 3} , II ^{2, 3}	1.71	1.8	1.89		—	—
SSTL25D_ I ² , II ²	2.375	2.5	2.625	—	—	—
SSTL33D_ I ² , II ²	3.135	3.3	3.465	—	—	—
HSTL15D_ I ²	1.425	1.5	1.575	_	—	—
HSTL18D_ I ² , II ²	1.71	1.8	1.89	—	—	—

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. For input voltage compatibility, see TN1177, LatticeECP3 sysIO Usage Guide.

3. VREF is required when using Differential SSTL to interface to DDR memory.

MLVDS25

The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

Table 3-5. MLVDS25 DC Conditions¹

		Typical		
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage	1.52	1.60	V
V _{OL}	Output Low Voltage	0.98	0.90	V
V _{OD}	Output Differential Voltage	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			_	-8	-	-7	_	6	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250		250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-35EA	683	_	688		690	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	683	—	688	—	690	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	_	250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	683	_	688		690		ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	683	—	688	—	690	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-17EA	—	250	_	250	_	250	MHz
Generic DDRX1 Ou	tput with Clock and Data Aligne	d at Pin (GDDRX1_TX.	SCLK.Ali	gned) ¹⁰					
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-150EA	—	335	—	338	—	341	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-150EA	—	335	—	338		341	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-150EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-70EA/95EA	_	339	_	343		347	ps
t _{DIAGDDB}	Data Invalid After Clock	ECP3-70EA/95EA	_	339	_	343		347	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-35EA		322		320		321	ps
	Data Invalid After Clock	ECP3-35EA	_	322	_	320		321	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-17EA		322		320		321	ps
	Data Invalid After Clock	ECP3-17EA	_	322	_	320		321	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250		250	MHz
Generic DDRX1 Ou	Itput with Clock and Data (<10 B	its Wide) Centered at F	in (GDD	RX1_TX.	DQS.Cen	tered) ¹⁰			
Left and Right Side	25		-			-			
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670		670		670	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	_	670	_	670	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-150EA	_	250	_	250	_	250	MHz
	Data Valid Before CLK	ECP3-70EA/95EA	657		652		650	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-70EA/95EA	657	_	652		650	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	_	250	MHz
	Data Valid Before CLK	ECP3-35EA	670		675		676	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	670	—	675	—	676	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	—	250	—	250	_	250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	670	—	670	—	670	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	670	_	670	_	670	_	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250		250	MHz
Generic DDRX2 Ou	tput with Clock and Data (>10 B	its Wide) Aligned at Pi	n (GDDR	X2_TX.A	ligned)				
Left and Right Side	es								
t _{DIBGDDR}	Data Invalid Before Clock	All ECP3EA Devices	—	200	—	210	_	220	ps
t _{DIAGDDR}	Data Invalid After Clock	All ECP3EA Devices	—	200	—	210	—	220	ps
f _{MAX GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	_	375	MHz
Generic DDRX2 Ou	tput with Clock and Data (>10 B	its Wide) Centered at P	in Using	DQSDL	L (GDDF	X2_TX.C	QSDLL.	Centered)11
Left and Right Side	S								
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	400		400		431	_	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	400	—	400	—	432	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	—	400	—	400	—	375	MHz

Over Recommended Commercial Operating Conditions

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units			
Input Adjusters								
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns			
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns			
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns			
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns			
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns			
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns			
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns			
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns			
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns			
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns			
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns			
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns			
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns			
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns			
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns			
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns			
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns			
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns			
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns			
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns			
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns			
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns			
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns			
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns			
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns			
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns			
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns			
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns			
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns			
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns			
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns			
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns			
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns			
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns			
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns			
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns			
Output Adjusters								
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns			
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns			
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns			
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns			

Over Recommended Commercial Operating Conditions

Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37 UIpp of Deterministic jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55 UIpp. Therefore, the sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65 UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).

Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-17. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	_	80		ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	—	0.10	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.24	UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 1.25 Gbps.

Table 3-18. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10			dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6			dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	_	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		-		0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		-		0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	_	0.71	UI
T _{RX_EYE}	Receiver eye opening		0.29	_	_	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 1.25 Gbps.

HDMI (High-Definition Multimedia Interface) Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-22. Transmit and Receive^{1, 2}

		Spec. Compliance		
Symbol	Description	Min. Spec.	Max. Spec.	Units
Transmit				
Intra-pair Skew		—	75	ps
Inter-pair Skew		—	800	ps
TMDS Differential Clock Jitter		—	0.25	UI
Receive				
R _T	Termination Resistance	40	60	Ohms
V _{ICM}	Input AC Common Mode Voltage (50-Ohm Set- ting)	—	50	mV
TMDS Clock Jitter	Clock Jitter Tolerance	—	0.25	UI

1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable equalizer before data/clock is forwarded to the LatticeECP3 device.

Figure 3-24. Power-On-Reset (POR) Timing

Time taken from V_{CC}, V_{CCAUX} or V_{CCIO8}, whichever is the last to cross the POR trip point.
Device is in a Master Mode (SPI, SPIm).
The CFG pins are normally static (hard wired).

Figure 3-25. sysCONFIG Port Timing

sysl/O Differential Electrical Characteristics

Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Symbol	Description	Min.	Nom.	Max.	Units
V _{CCO}	Driver supply voltage (+/- 5%)	3.14	3.3	3.47	V
V _{ID}	Input differential voltage	150	_	1200	mV
V _{ICM}	Input common mode voltage	3	_	3.265	V
V _{CCO}	Termination supply voltage	3.14	3.3	3.47	V
R _T	Termination resistance (off-chip)	45	50	55	Ohms

Note: LatticeECP3 only supports the TRLVDS receiver.

Mini LVDS

Over Recommended Operating Conditions

Parameter Symbol	Description	Min.	Тур.	Max.	Units
Z _O	Single-ended PCB trace impedance	30	50	75	Ohms
R _T	Differential termination resistance	50	100	150	Ohms
V _{OD}	Output voltage, differential, V _{OP} - V _{OM}	300	_	600	mV
V _{OS}	Output voltage, common mode, $ V_{OP} + V_{OM} /2$	1	1.2	1.4	V
ΔV_{OD}	Change in V _{OD} , between H and L	—	_	50	mV
ΔV_{ID}	Change in V_{OS} , between H and L	—	_	50	mV
V _{THD}	Input voltage, differential, V _{INP} - V _{INM}	200	_	600	mV
V _{CM}	Input voltage, common mode, $ V_{INP} + V_{INM} /2$	0.3+(V _{THD} /2)	_	2.1-(V _{THD} /2)	
T _R , T _F	Output rise and fall times, 20% to 80%	—	_	550	ps
T _{ODUTY}	Output clock duty cycle	40	—	60	%

Note: Data is for 6 mA differential current drive. Other differential driver current options are available.

Signal Descriptions (Cont.)

Signal Name	I/O	Description				
[LOC]DQS[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball function number.				
[LOC]DQ[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated DQS number.				
Test and Programming (Dedicated Pins)						
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.				
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.				
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.				
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.				
VCCJ	—	Power supply pin for JTAG Test Access Port.				
Configuration Pads (Used During sys	CONFIG	G)				
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.				
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.				
PROGRAMN	Ι	Initiates configuration sequence when asserted low. This pin always has an active pull-up. It is a dedicated pin.				
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. It is a dedicated pin.				
ССГК	Ι	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. It is a dedicated pin.				
MCLK	I/O	Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Master configuration modes.				
BUSY/SISPI	0	Parallel configuration mode busy indicator. SPI/SPIm mode data output.				
CSN/SN/OEN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. Parallel burst Flash output enable.				
CS1N/HOLDN/RDY	I	Parallel configuration mode active-low chip select. Slave SPI hold input.				
WRITEN	Ι	Write enable for parallel configuration modes.				
DOUT/CSON/CSSPI1N	0	Serial data output. Chip select output. SPI/SPIm mode chip select.				
	I/O	sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.				
D[0]/SPIFASTN		sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm mode, this pin should either be tied high or low, must not be left floating. Open drain during configuration.				
D1	I/O	Parallel configuration I/O. Open drain during configuration.				
D2	I/O	Parallel configuration I/O. Open drain during configuration.				
D3/SI	I/O	Parallel configuration I/O. Slave SPI data input. Open drain during configura- tion.				
D4/SO	I/O	Parallel configuration I/O. Slave SPI data output. Open drain during configura- tion.				
D5	I/O	Parallel configuration I/O. Open drain during configuration.				
D6/SPID1	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.				

Pin Information Summary

Pin Information	Summary	E	CP3-17E	A	E	CP3-35E	Α	ECP3-70E		A
Pin Tyr	De	256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA	1156 fpBGA
General Purpose Inputs/Outputs per Bank	Bank 0	26	20	36	26	42	48	42	60	86
	Bank 1	14	10	24	14	36	36	36	48	78
	Bank 2	6	7	12	6	24	24	24	34	36
	Bank 3	18	12	44	16	54	59	54	59	86
	Bank 6	20	11	44	18	63	61	63	67	86
	Bank 7	19	26	32	19	36	42	36	48	54
	Bank 8	24	24	24	24	24	24	24	24	24
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	2	2	2	2	4	4	4	8	8
General Purpose Inputs	Bank 3	0	0	0	2	4	4	4	12	12
per bank	Bank 6	0	0	0	2	4	4	4	12	12
	Bank 7	4	4	4	4	4	4	4	8	8
	Bank 8	0	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0	0
General Purpose Out-	Bank 3	0	0	0	0	0	0	0	0	0
	Bank 6	0	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0	0
Total Single-Ended User	I/O	133	116	222	133	295	310	295	380	490
VCC		6	16	16	6	16	32	16	32	32
VCCAUX		4	5	8	4	8	12	8	12	16
VTT		4	7	4	4	4	4	4	4	8
VCCA		4	6	4	4	4	8	4	8	16
VCCPLL		2	2	4	2	4	4	4	4	4
	Bank 0	2	3	2	2	2	4	2	4	4
	Bank 1	2	3	2	2	2	4	2	4	4
	Bank 2	2	2	2	2	2	4	2	4	4
VCCIO	Bank 3	2	3	2	2	2	4	2	4	4
	Bank 6	2	3	2	2	2	4	2	4	4
	Bank 7	2	3	2	2	2	4	2	4	4
	Bank 8	1	2	2	1	2	2	2	2	2
VCCJ		1	1	1	1	1	1	1	1	1
TAP		4	4	4	4	4	4	4	4	4
GND, GNDIO		51	126	98	51	98	139	98	139	233
NC		0	0	73	0	0	96	0	0	238
Reserved ¹		0	0	2	0	2	2	2	2	2
SERDES		26	18	26	26	26	26	26	52	78
Miscellaneous Pins		8	8	8	8	8	8	8	8	8
Total Bonded Pins		256	328	484	256	484	672	484	672	1156

Pin Information Summary (Cont.)

Pin Information Summary			ECP3-17EA		ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	
Emulated Differential I/O per Bank	Bank 0	13	10	18	13	21	24	
	Bank 1	7	5	12	7	18	18	
	Bank 2	2	2	4	1	8	8	
	Bank 3	4	2	13	5	20	19	
	Bank 6	5	1	13	6	22	20	
	Bank 7	6	9	10	6	11	13	
	Bank 8	12	12	12	12	12	12	
	Bank 0	0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	0	
	Bank 2	2	2	3	3	6	6	
Highspeed Differential I/O per Bank	Bank 3	5	4	9	4	9	12	
	Bank 6	5	4	9	4	11	12	
	Bank 7	5	6	8	5	9	10	
	Bank 8	0	0	0	0	0	0	
Total Single Ended/ Total Differential I/O per Bank	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24	
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18	
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14	
	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31	
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32	
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23	
	Bank 8	24/12	24/12	13 13 21 12 7 18 4 1 8 13 5 20 13 6 22 10 6 11 12 12 12 0 0 0 3 3 6 9 4 9 9 4 9 9 4 9 9 4 11 8 5 9 0 0 0 0 0 0 14/7 8/4 28/1 5 24/12 14/7 3 2 3 2 24/12 24/12 2 24/12 24/12 3 2 3 2 24/12 24/12 3 2 3 2 1 3 3 1 3	24/12	24/12		
DDR Groups Bonded per Bank ²	Bank 0	2	1	3	2	3	4	
	Bank 1	1	0	2	1	3	3	
	Bank 2	0	0	1	0	2	2	
	Bank 3	1	0	3	1	3	4	
	Bank 6	1	0	3	1	4	4	
	Bank 7	1	2	2	1	3	3	
	Configuration Bank 8	0	0	0	0	0	0	
SERDES Quads				1				

These pins must remain floating on the board.
Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Package Pinout Information

Package pinout information can be found under "Data Sheets" on the LatticeECP3 product pages on the Lattice website at http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3 and in the Diamond or ispLEVER software tools. To create pinout information from within ispLEVER Design Planner, select **Tools > Spreadsheet View**. Then select **Select File > Export** and choose a type of output file. To create a pin information file from within Diamond select **Tools > Spreadsheet View** or **Tools >Package View**; then, select **File > Export** and choose a type of output file. See Diamond or ispLEVER Help for more information.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- Power Calculator tool included with the Diamond and ispLEVER design tools, or as a standalone download from www.latticesemi.com/software