
Lattice Semiconductor Corporation - LFE3-17EA-6MG328I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 2125

Number of Logic Elements/Cells 17000

Total RAM Bits 716800

Number of I/O 116

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 328-LFBGA, CSBGA

Supplier Device Package 328-CSBGA (10x10)
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
—  A greater-than-or-equal-to B
—  A not-equal-to B
—  A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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Figure 2-34. Output and Tristate Block for Left and Right Edges

Tristate Register Block 
The tristate register block registers tri-state control signals from the core of the device before they are passed to the 
sysI/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 
mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The 
output of this register is used as a tristate control.

ISI Calibration
The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only 
available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-
12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern 
consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are 
quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will 
cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the 
block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control 
logic block. 

For more information about this topic, please see the list of technical documentation at the end of this data sheet.
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-37. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits 
to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at 
the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is reg-
istered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ 
cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 
1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer to 
support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dual-
boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 
system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data dur-
ing download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to 
the original backup golden configuration and try again. This all can be done without power cycling the system. 
For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support
LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configura-
tion, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device 
can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration 
SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LatticeECP3 devices require a single external, 10 kOhm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for 
configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is 
completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available 
MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence 
takes place: 

1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK 
frequency of 2.5 MHz.

This internal 130 MHz +/– 15% CMOS oscillator is available to the user by routing it as an input clock to the clock 
tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, 
LatticeECP3 sysCONFIG Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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Hot Socketing Specifications1, 2, 3

Hot Socketing Requirements1, 2

ESD Performance
Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including 
ESD performance.

Symbol Parameter Condition Min. Typ. Max. Units

IDK_HS4 Input or I/O Leakage Current 0 VIN  VIH (Max.) — — +/–1 mA

IDK5 Input or I/O Leakage Current
0  VIN < VCCIO — — +/–1 mA

VCCIO  VIN  VCCIO + 0.5V — 18 — mA

1. VCC, VCCAUX and VCCIO should rise/fall monotonically.
2. IDK is additive to IPU, IPD or IBH. 
3. LVCMOS and LVTTL only.
4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.
5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Description Min. Typ. Max. Units

Input current per SERDES I/O pin when device is powered down and inputs 
driven. — — 8 mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB 
(1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 
channels *2 input pins per channel = 256 mA

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=34723
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sysI/O Single-Ended DC Electrical Characteristics

Input/Output 
Standard

VIL VIH  VOL
Max. (V)

VOH
Min. (V) IOL

1 (mA) IOH
1 (mA)Min. (V) Max. (V) Min. (V) Max. (V)

LVCMOS33 –0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
–20, –16, 

–12, -8, –4

0.2 VCCIO - 0.2 0.1 –0.1

LVCMOS25 –0.3 0.7 1.7 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
–20, –16, 

–12, –8, –4

0.2 VCCIO - 0.2 0.1 –0.1

LVCMOS18 –0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 16, 12, 

8, 4
–16, –12,

–8, –4

0.2 VCCIO - 0.2 0.1 –0.1

LVCMOS15 –0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 8, 4 –8, –4

0.2 VCCIO - 0.2 0.1 –0.1

LVCMOS12 –0.3 0.35 VCC 0.65 VCC 3.6
0.4 VCCIO - 0.4 6, 2 –6, –2

0.2 VCCIO - 0.2 0.1 –0.1

LVTTL33 –0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
–20, –16, 

–12, –8, –4

0.2 VCCIO - 0.2 0.1 –0.1

PCI33 –0.3 0.3 VCCIO 0.5 VCCIO 3.6 0.1 VCCIO 0.9 VCCIO 1.5 –0.5

SSTL18_I –0.3 VREF - 0.125 VREF + 0.125 3.6 0.4 VCCIO - 0.4 6.7 –6.7

SSTL18_II
(DDR2 Memory) –0.3 VREF - 0.125 VREF + 0.125 3.6 0.28 VCCIO - 0.28

8 –8

11 –11

SSTL2_I –0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62
7.6 –7.6

12 –12

SSTL2_II
(DDR Memory) –0.3 VREF - 0.18 VREF + 0.18 3.6 0.35 VCCIO - 0.43

15.2 –15.2

20 –20

SSTL3_I –0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 –8

SSTL3_II –0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 –16

SSTL15 
(DDR3 Memory) –0.3 VREF - 0.1 VREF + 0.1 3.6 0.3

VCCIO - 0.3 7.5 –7.5

VCCIO * 0.8 9 –9

HSTL15_I –0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
4 –4

8 –8

HSTL18_I –0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
8 –8

12 –12

HSTL18_II –0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 –16

1. For electromigration, the average DC current drawn by I/O pads between two consecutive VCCIO or GND pad connections, or between the 
last VCCIO or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) 
shall not exceed n * 8 mA, where n is the number of I/O pads between the two consecutive bank VCCIO or GND connections or between the 
last VCCIO and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated 
from the Lattice Diamond software.
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MLVDS25
The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-5. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/–5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/–1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/–1%) 50.00 70.00 

RTR Receiver Termination (+/–1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12 mA Drive)1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 4.7 ns

32-bit Decoder 4.7 ns

64-bit Decoder 5.7 ns

4:1 MUX 4.1 ns

8:1 MUX 4.3 ns

16:1 MUX 4.7 ns

32:1 MUX 4.8 ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses 
internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

Register-to-Register Performance1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 500 MHz

32-bit Decoder 500 MHz

64-bit Decoder 500 MHz

4:1 MUX 500 MHz

8:1 MUX 500 MHz

16:1 MUX 500 MHz

32:1 MUX 445 MHz

8-bit adder 500 MHz

16-bit adder 500 MHz

64-bit adder 305 MHz

16-bit counter 500 MHz

32-bit counter 460 MHz

64-bit counter 320 MHz

64-bit accumulator 315 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 340 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 340 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers 130 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 245 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 500 MHz

32x4 Pseudo-Dual Port RAM 500 MHz

64x8 Pseudo-Dual Port RAM 400 MHz

DSP Function

18x18 Multiplier (All Registers) 400 MHz

9x9 Multiplier (All Registers) 400 MHz

36x36 Multiply (All Registers) 260 MHz
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LatticeECP3 Family Timing Adders1, 2, 3, 4, 5, 7 
Over Recommended Commercial Operating Conditions

Buffer Type Description –8 –7 –6 Units

Input Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5 V 0.03 –0.01 –0.03 ns

LVDS25 LVDS, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

MLVDS25 MLVDS, Emulated, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

RSDS25 RSDS, VCCIO = 2.5 V 0.03 –0.01 –0.03 ns

PPLVDS Point-to-Point LVDS 0.03 –0.01 –0.03 ns

TRLVDS Transition-Reduced LVDS 0.03 0.00 –0.04 ns

Mini MLVDS Mini LVDS 0.03 –0.01 –0.03 ns

LVPECL33 LVPECL, Emulated, VCCIO = 3.3 V 0.17 0.23 0.28 ns

HSTL18_I HSTL_18 class I, VCCIO = 1.8 V 0.20 0.17 0.13 ns

HSTL18_II HSTL_18 class II, VCCIO = 1.8 V 0.20 0.17 0.13 ns

HSTL18D_I Differential HSTL 18 class I 0.20 0.17 0.13 ns

HSTL18D_II Differential HSTL 18 class II 0.20 0.17 0.13 ns

HSTL15_I HSTL_15 class I, VCCIO = 1.5 V 0.10 0.12 0.13 ns

HSTL15D_I Differential HSTL 15 class I 0.10 0.12 0.13 ns

SSTL33_I SSTL_3 class I, VCCIO = 3.3 V 0.17 0.23 0.28 ns

SSTL33_II SSTL_3 class II, VCCIO = 3.3 V 0.17 0.23 0.28 ns

SSTL33D_I Differential SSTL_3 class I 0.17 0.23 0.28 ns

SSTL33D_II Differential SSTL_3 class II 0.17 0.23 0.28 ns

SSTL25_I SSTL_2 class I, VCCIO = 2.5 V 0.12 0.14 0.16 ns

SSTL25_II SSTL_2 class II, VCCIO = 2.5 V 0.12 0.14 0.16 ns

SSTL25D_I Differential SSTL_2 class I 0.12 0.14 0.16 ns

SSTL25D_II Differential SSTL_2 class II 0.12 0.14 0.16 ns

SSTL18_I SSTL_18 class I, VCCIO = 1.8 V 0.08 0.06 0.04 ns

SSTL18_II SSTL_18 class II, VCCIO = 1.8 V 0.08 0.06 0.04 ns

SSTL18D_I Differential SSTL_18 class I 0.08 0.06 0.04 ns

SSTL18D_II Differential SSTL_18 class II 0.08 0.06 0.04 ns

SSTL15 SSTL_15, VCCIO = 1.5 V 0.087 0.059 0.032 ns

SSTL15D Differential SSTL_15 0.087 0.059 0.032 ns

LVTTL33 LVTTL, VCCIO = 3.3 V 0.07 0.07 0.07 ns

LVCMOS33 LVCMOS, VCCIO = 3.3 V 0.07 0.07 0.07 ns

LVCMOS25 LVCMOS, VCCIO = 2.5 V 0.00 0.00 0.00 ns

LVCMOS18 LVCMOS, VCCIO = 1.8 V –0.13 –0.13 –0.13 ns

LVCMOS15 LVCMOS, VCCIO = 1.5 V –0.07 –0.07 –0.07 ns

LVCMOS12 LVCMOS, VCCIO = 1.2 V –0.20 –0.19 –0.19 ns

PCI33 PCI, VCCIO = 3.3 V 0.07 0.07 0.07 ns

Output Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5 V 1.02 1.14 1.26 ns

LVDS25 LVDS, VCCIO = 2.5 V –0.11 –0.07 –0.03 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5 V 1.01 1.13 1.25 ns

MLVDS25 MLVDS, Emulated, VCCIO = 2.5 V 1.01 1.13 1.25 ns
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PCI Express Electrical and Timing Characteristics 
AC and DC Characteristics

Over Recommended Operating Conditions

Symbol Description Test Conditions Min Typ Max Units

Transmit1

UI Unit interval 399.88 400 400.12 ps

VTX-DIFF_P-P Differential peak-to-peak output voltage 0.8 1.0 1.2 V

VTX-DE-RATIO
De-emphasis differential output voltage 
ratio –3 –3.5 -4 dB

VTX-CM-AC_P
RMS AC peak common-mode output 
voltage — — 20 mV

VTX-RCV-DETECT
Amount of voltage change allowed dur-
ing receiver detection — — 600 mV

VTX-DC-CM Tx DC common mode voltage 0 — VCCOB + 5% V

ITX-SHORT Output short circuit current VTX-D+=0.0 V
VTX-D-=0.0 V — — 90 mA

ZTX-DIFF-DC Differential output impedance 80 100 120 Ohms

RLTX-DIFF Differential return loss 10 — — dB

RLTX-CM Common mode return loss 6.0 — — dB

TTX-RISE Tx output rise time 20 to 80% 0.125 — — UI

TTX-FALL Tx output fall time 20 to 80% 0.125 — — UI

LTX-SKEW
Lane-to-lane static output skew for all 
lanes in port/link — — 1.3 ns

TTX-EYE Transmitter eye width 0.75 — — UI

TTX-EYE-MEDIAN-TO-MAX-JITTER
Maximum time between jitter median 
and maximum deviation from median — — 0.125 UI

Receive1, 2

UI Unit Interval 399.88 400 400.12 ps

VRX-DIFF_P-P Differential peak-to-peak input voltage 0.343 — 1.2 V

VRX-IDLE-DET-DIFF_P-P Idle detect threshold voltage 65 — 3403 mV

VRX-CM-AC_P
Receiver common mode voltage for AC 
coupling — — 150 mV

ZRX-DIFF-DC DC differential input impedance 80 100 120 Ohms

ZRX-DC DC input impedance 40 50 60 Ohms

ZRX-HIGH-IMP-DC Power-down DC input impedance 200K — — Ohms

RLRX-DIFF Differential return loss 10 — — dB

RLRX-CM Common mode return loss 6.0 — — dB

TRX-IDLE-DET-DIFF-ENTERTIME

Maximum time required for receiver to 
recognize and signal an unexpected idle 
on link

— — — ms

1. Values are measured at 2.5 Gbps.
2. Measured with external AC-coupling on the receiver.
3.Not in compliance with PCI Express 1.1 standard.
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Figure 3-21. sysCONFIG Parallel Port Write Cycle

Figure 3-22. sysCONFIG Master Serial Port Timing

Figure 3-23. sysCONFIG Slave Serial Port Timing

CCLK 1

CS1N
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WRITEN
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D[0:7]
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Byte 0 Byte 1 Byte 2 Byte n

1.  In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95EA ECP3-150EA

Pin Type 484 fpBGA 672 fpBGA 1156 fpBGA
672 

fpBGA
1156

fpBGA

Emulated 
Differential I/O 
per Bank

Bank 0 21 30 43 30 47

Bank 1 18 24 39 24 43

Bank 2 8 12 13 12 18

Bank 3 20 23 33 23 37

Bank 6 22 25 33 25 37

Bank 7 11 16 18 16 24

Bank 8 12 12 12 12 12

Highspeed 
Differential I/O 
per Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 6 9 9 9 15

Bank 3 9 12 16 12 21

Bank 6 11 14 16 14 21

Bank 7 9 12 13 12 18

Bank 8 0 0 0 0 0

Total Single Ended/ 
Total Differential
I/O per Bank

Bank 0 42/21 60/30 86/43 60/30 94/47

Bank 1 36/18 48/24 78/39 48/24 86/43

Bank 2 28/14 42/21 44/22 42/21 66/33

Bank 3 58/29 71/35 98/49 71/35 116/58

Bank 6 67/33 78/39 98/49 78/39 116/58

Bank 7 40/20 56/28 62/31 56/28 84/42

Bank 8 24/12 24/12 24/12 24/12 24/12

DDR Groups 
Bonded 
per Bank

Bank 0 3 5 7 5 7

Bank 1 3 4 7 4 7

Bank 2 2 3 3 3 4

Bank 3 3 4 5 4 7

Bank 6 4 4 5 4 7

Bank 7 3 4 4 4 6

Configuration 
Bank8 0 0 0 0 0

SERDES Quads 1 2 3 2 4

1.These pins must remain floating on the board.


