E. Lattice Semiconductor Corporation - LFE3-17EA-7LFN484C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	222
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-7lfn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Introduction

February 2012

Features

- Higher Logic Density for Increased System Integration
 - 17K to 149K LUTs
 - 116 to 586 I/Os
- Embedded SERDES
 - 150 Mbps to 3.2 Gbps for Generic 8b10b, 10-bit SERDES, and 8-bit SERDES modes
 - Data Rates 230 Mbps to 3.2 Gbps per channel for all other protocols
 - Up to 16 channels per device: PCI Express, SONET/SDH, Ethernet (1GbE, SGMII, XAUI), CPRI, SMPTE 3G and Serial RapidIO

■ sysDSP[™]

- Fully cascadable slice architecture
- 12 to 160 slices for high performance multiply and accumulate
- Powerful 54-bit ALU operations
- Time Division Multiplexing MAC Sharing
- Rounding and truncation
- Each slice supports
 - -Half 36x36, two 18x18 or four 9x9 multipliers
 - Advanced 18x36 MAC and 18x18 Multiply-
 - Multiply-Accumulate (MMAC) operations

■ Flexible Memory Resources

- Up to 6.85Mbits sysMEM[™] Embedded Block RAM (EBR)
- 36K to 303K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs
 Two DLLs and up to ten PLLs per device
- Pre-Engineered Source Synchronous I/O
 - DDR registers in I/O cells

Table 1-1. LatticeECP3™ Family Selection Guide

• Dedicated read/write levelling functionality

Data Sheet DS1021

- Dedicated gearing logic
- Source synchronous standards support
 ADC/DAC, 7:1 LVDS, XGMII
 Link Speed ADC/DAC devices
 - -High Speed ADC/DAC devices
- Dedicated DDR/DDR2/DDR3 memory with DQS support
- Optional Inter-Symbol Interference (ISI) correction on outputs
- Programmable sysl/O[™] Buffer Supports Wide Range of Interfaces
 - On-chip termination
 - Optional equalization filter on inputs
 - LVTTL and LVCMOS 33/25/18/15/12
 - SSTL 33/25/18/15 I, II
 - HSTL15 I and HSTL18 I, II
 - PCI and Differential HSTL, SSTL
 - LVDS, Bus-LVDS, LVPECL, RSDS, MLVDS

Flexible Device Configuration

- Dedicated bank for configuration I/Os
- SPI boot flash interface
- Dual-boot images supported
- Slave SPI
- TransFR™ I/O for simple field updates
- Soft Error Detect embedded macro

System Level Support

- IEEE 1149.1 and IEEE 1532 compliant
- Reveal Logic Analyzer
- ORCAstra FPGA configuration utility
- · On-chip oscillator for initialization & general use
- 1.2 V core power supply

Device	ECP3-17	ECP3-35	ECP3-70	ECP3-95	ECP3-150
LUTs (K)	17	33	67	92	149
sysMEM Blocks (18 Kbits)	38	72	240	240	372
Embedded Memory (Kbits)	700	1327	4420	4420	6850
Distributed RAM Bits (Kbits)	36	68	145	188	303
18 x 18 Multipliers	24	64	128	128	320
SERDES (Quad)	1	1	3	3	4
PLLs/DLLs	2/2	4/2	10/2	10 / 2	10/2
Packages and SERDES Channels	/ I/O Combinatio	ns		•	
328 csBGA (10 x 10 mm)	2/116				
256 ftBGA (17 x 17 mm)	4 / 133	4 / 133			
484 fpBGA (23 x 23 mm)	4 / 222	4 / 295	4 / 295	4 / 295	
672 fpBGA (27 x 27 mm)		4 / 310	8 / 380	8 / 380	8 / 380
1156 fpBGA (35 x 35 mm)			12 / 490	12 / 490	16 / 586

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-2. PFU Diagram

Slice

Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Table 2-1.	Resources ar	nd Modes	Available	per Slice
	11000 di 000 di		/ 11 aa	

	PFU E	BLock	PFF E	Block
Slice	Resources	Modes	Resources	Modes
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 3	2 LUT4s	Logic, ROM	2 LUT4s	Logic, ROM

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Table 2-6. Secondary Clock Regions

Device	Number of Secondary Clock Regions
ECP3-17	16
ECP3-35	16
ECP3-70	20
ECP3-95	20
ECP3-150	36

Spine Repeaters

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection

Figure 2-25. Detailed sysDSP Slice Diagram

Note: A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

The LatticeECP2 sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1 ¹	1/2	_

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MAC DSP Element

In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element

MMAC DSP Element

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

Note: Simplified diagram does not show CE/SET/REST details.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysl/O buffers. The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is used in DDR3 memory interfaces. The PIO blocks on the bottom contain the SDR registers but do not support generic DDR.

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges.

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.

Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs.

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals.

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side pads can be identified by the Lattice Diamond tool.

SCI (SERDES Client Interface) Bus

The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by registers rather than the configuration memory cells. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each quad in a design.

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the core.

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary and secondary protocol combinations.

Flexible Quad SERDES Architecture

The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and standards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one standard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol	Secondary Protocol
PCI Express 1.1	SGMII
PCI Express 1.1	Gigabit Ethernet
PCI Express 1.1	Serial RapidIO Type I
PCI Express 1.1	Serial RapidIO Type II
Serial RapidIO Type I	SGMII
Serial RapidIO Type I	Gigabit Ethernet
Serial RapidIO Type II	SGMII
Serial RapidIO Type II	Gigabit Ethernet
Serial RapidIO Type II	Serial RapidIO Type I
CPRI-3	CPRI-2 and CPRI-1
3G-SDI	HD-SDI and SD-SDI

LVPECL33

The LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-3. LVPECL33 DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
fMAX GDDB	DDRX1 Clock Frequency	ECP3-70EA/95EA		250		250	_	250	MHz	
	Data Valid Before CLK	ECP3-35EA	683	—	688	_	690	_	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	683	_	688	_	690	_	ps	
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	_	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	683	—	688	_	690	_	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	683	—	688	—	690	—	ps	
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250	—	250	MHz	
Generic DDRX1 Ou	itput with Clock and Data Aligned	at Pin (GDDRX1_TX.	SCLK.Ali	gned) ¹⁰						
t _{DIBGDDR}	Diata Invalid Before Clock ECP3-150EA - 335 - 338 - 341 ps									
t _{DIAGDDR}	Data Invalid After Clock	ECP3-150EA		335	_	338	—	341	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA		250	_	250	—	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-70EA/95EA	_	339	_	343	_	347	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-70EA/95EA	_	339	_	343	_	347	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	_	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-35EA	_	322	_	320	_	321	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-35EA	_	322	_	320	_	321	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	_	250	MHz	
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-17EA	_	322	_	320	_	321	ps	
t _{DIAGDDR}	Data Invalid After Clock	ECP3-17EA	_	322	_	320	_	321	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-17EA		250	_	250	—	250	MHz	
Generic DDRX1 Ou	itput with Clock and Data (<10 Bi	ts Wide) Centered at P	in (GDD	RX1_TX.	DQS.Cen	tered) ¹⁰				
Left and Right Side	es									
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670	_	670	—	670	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	—	670	—	670	—	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA	_	250		250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-70EA/95EA	657	—	652	—	650	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-70EA/95EA	657	—	652	_	650	_	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-35EA	670	—	675	—	676	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	670	—	675	_	676	_	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250	—	250	MHz	
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	670	—	670	—	670	—	ps	
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	670	—	670	—	670	—	ps	
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250	—	250	MHz	
Generic DDRX2 Ou	itput with Clock and Data (>10 Bi	ts Wide) Aligned at Pir	n (GDDR	X2_TX.A	igned)					
Left and Right Side	es									
t _{DIBGDDR}	Data Invalid Before Clock	All ECP3EA Devices		200		210		220	ps	
t _{DIAGDDR}	Data Invalid After Clock	All ECP3EA Devices	_	200	_	210	_	220	ps	
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	—	375	MHz	
Generic DDRX2 Ou	Itput with Clock and Data (>10 Bi	ts Wide) Centered at P	in Using		L (GDDF	X2_TX.D	QSDLL.	Centered)11	
Left and Right Side	es									
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	400		400		431		ps	
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	400		400	—	432		ps	
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	—	375	MHz	

Over Recommended Commercial Operating Conditions

Figure 3-7. DDR/DDR2/DDR3 Parameters

DLL Timing

Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{CLKOP} ¹	Output clock frequency, CLKOP		133	—	500	MHz
f _{CLKOS²}	Output clock frequency, CLKOS		33.3	—	500	MHz
t _{PJIT}	Output clock period jitter (clean input)			—	200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit	Primary Clock ≥ 250 MHz	30		70	%
	enabled, time reference delay mode)	Edge Clock	45		Max. C 500 500 500 500 500 1 500 1 500 1 60 1 70 55 70 55 60 1 70 55 100 1 +/-400 1 1 500 8200 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1 4.4 1	%
t _{DUTYTRD} t _{DUTYCIR} t _{DUTYCIR} t _{SKEW} ³ t _{SKEW} ³ Out out ena cas Out out ena cas Out tena out ena out ena cas Out out ena out	Output clock duty cycle (at 50% levels, arbitrary duty cycle input clock, 50% duty cycle circuit enabled, clock injection removal mode) with DLL cascading	Primary Clock < 250 MHz	40		60	%
		Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	—	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	—	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	—	_	ps
t _{INSTB}	Input clock period jitter			—	500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3	—	—	ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns

1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.

Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter			_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—		dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

HDMI (High-Definition Multimedia Interface) Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-22. Transmit and Receive^{1, 2}

		Spec. Compliance		
Symbol	Description	Min. Spec.	Max. Spec.	Units
Transmit		•		
Intra-pair Skew		—	75	ps
Inter-pair Skew		—	800	ps
TMDS Differential Clock Jitter		—	0.25	UI
Receive				
R _T	Termination Resistance	40	60	Ohms
V _{ICM}	Input AC Common Mode Voltage (50-Ohm Set- ting)	—	50	mV
TMDS Clock Jitter	Clock Jitter Tolerance	—	0.25	UI

1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable equalizer before data/clock is forwarded to the LatticeECP3 device.

sysl/O Differential Electrical Characteristics

Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Symbol	Description	Min.	Nom.	Max.	Units
V _{CCO}	Driver supply voltage (+/- 5%)	3.14	3.3	3.47	V
V _{ID}	Input differential voltage	150	_	1200	mV
V _{ICM}	Input common mode voltage	3	_	3.265	V
V _{CCO}	Termination supply voltage	3.14	3.3	3.47	V
R _T	Termination resistance (off-chip)	45	50	55	Ohms

Note: LatticeECP3 only supports the TRLVDS receiver.

Mini LVDS

Over Recommended Operating Conditions

Parameter Symbol	bol Description Min. Ty		Тур.	Max.	Units
Z _O	Single-ended PCB trace impedance	30	50	75	Ohms
R _T	Differential termination resistance	50	100	150	Ohms
V _{OD}	Output voltage, differential, V _{OP} - V _{OM}	300	_	600	mV
V _{OS}	Output voltage, common mode, $ V_{OP} + V_{OM} /2$	1	1.2	1.4	V
ΔV_{OD}	Change in V _{OD} , between H and L	—	_	50	mV
ΔV_{ID}	Change in V_{OS} , between H and L	—	_	50	mV
V _{THD}	Input voltage, differential, V _{INP} - V _{INM}	200	_	600	mV
V _{CM}	Input voltage, common mode, $ V_{INP} + V_{INM} /2$	0.3+(V _{THD} /2)	_	2.1-(V _{THD} /2)	
T _R , T _F	Output rise and fall times, 20% to 80%	—	_	550	ps
T _{ODUTY}	Output clock duty cycle	40	—	60	%

Note: Data is for 6 mA differential current drive. Other differential driver current options are available.

Date	Version	Section	Change Summary
March 2010	01.6	Architecture	Added Read-Before-Write information.
		DC and Switching	Added footnote #6 to Maximum I/O Buffer Speed table.
		Characteristics	Corrected minimum operating conditions for input and output differential voltages in the Point-to-Point LVDS table.
		Pinout Information	Added pin information for the LatticeECP3-70EA and LatticeECP3- 95EA devices.
		Ordering Information	Added ordering part numbers for the LatticeECP3-70EA and LatticeECP3-95EA devices.
			Removed dual mark information.
November 2009	01.5	Introduction	Updated Embedded SERDES features.
			Added SONET/SDH to Embedded SERDES protocols.
		Architecture	Updated Figure 2-4, General Purpose PLL Diagram.
			Updated SONET/SDH to SERDES and PCS protocols.
		DC and Switching Characterisitcs	Updated Table 2-13, SERDES Standard Support to include SONET/ SDH and updated footnote 2.
			Added footnote to ESD Performance table.
			Updated SERDES Power Supply Requirements table and footnotes.
			Updated Maximum I/O Buffer Speed table.
			Updated Pin-to-Pin Peformance table.
			Updated sysCLOCK PLL Timing table.
			Updated DLL timing table.
			Updated High-Speed Data Transmitter tables.
			Updated High-Speed Data Receiver table.
			Updated footnote for Receiver Total Jitter Tolerance Specification table.
			Updated Periodic Receiver Jitter Tolerance Specification table.
			Updated SERDES External Reference Clock Specification table.
			Updated PCI Express Electrical and Timing AC and DC Characteristics.
			Deleted Reference Clock table for PCI Express Electrical and Timing AC and DC Characteristics.
			Updated SMPTE AC/DC Characteristics Transmit table.
			Updated Mini LVDS table.
			Updated RSDS table.
			Added Supply Current (Standby) table for EA devices.
			Updated Internal Switching Characteristics table.
			Updated Register-to-Register Performance table.
			Added HDMI Electrical and Timing Characteristics data.
			Updated Family Timing Adders table.
			Updated sysCONFIG Port Timing Specifications table.
			Updated Recommended Operating Conditions table.
			Updated Hot Socket Specifications table.
			Updated Single-Ended DC table.
			Updated TRLVDS table and figure.
			Updated Serial Data Input Specifications table.
			Updated HDMI Transmit and Receive table.
		Ordering Information	Added LFE3-150EA "TW" devices and footnotes to the Commercial and Industrial tables.