E. Attice Semiconductor Corporation - <u>LFE3-17EA-7LFTN256C Datasheet</u>

Welcome to E-XFL.COM

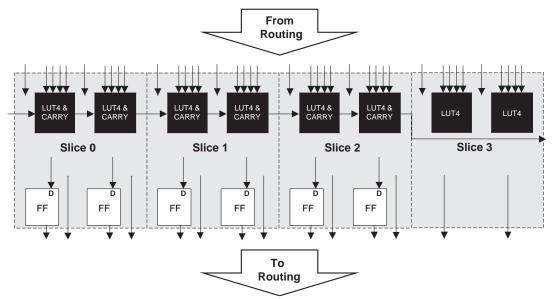
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	133
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-7lftn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. PFU Diagram

Slice

Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

	PFU	3Lock	PFF E	Block
Slice	Resources	Modes	Resources	Modes
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 3	2 LUT4s	Logic, ROM	2 LUT4s	Logic, ROM

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

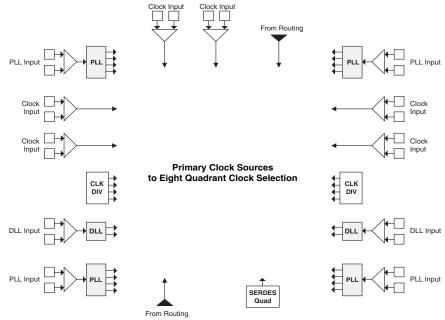
Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.


Table 2-3. Number of Slices Required to Implement Distributed RAM

	SPR 16X4	PDPR 16X4
Number of slices	3	3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

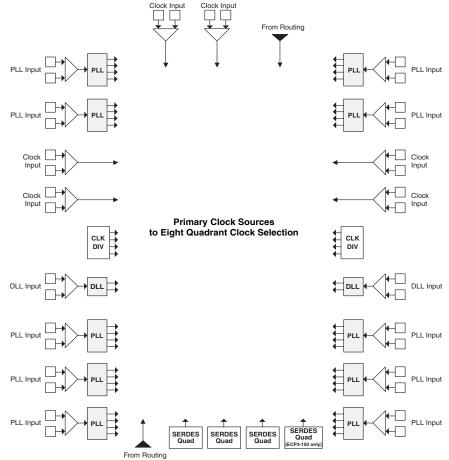


Figure 2-10. Primary Clock Sources for LatticeECP3-35

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150

Note: Clock inputs can be configured in differential or single-ended mode.

ALU Flags

The sysDSP slice provides a number of flags from the ALU including:

- Equal to zero (EQZ)
- Equal to zero with mask (EQZM)
- Equal to one with mask (EQOM)
- Equal to pattern with mask (EQPAT)
- Equal to bit inverted pattern with mask (EQPATB)
- Accumulator Overflow (OVER)
- Accumulator Underflow (UNDER)
- Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and output register.

Resources Available in the LatticeECP3 Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Slices	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
ECP3-17	12	48	24	6
ECP3-35	32	128	64	16
ECP3-70	64	256	128	32
ECP3-95	64	256	128	32
ECP3-150	160	640	320	80

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
ECP3-17	38	700
ECP3-35	72	1327
ECP3-70	240	4420
ECP3-95	240	4420
ECP3-150	372	6850

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and process variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block that generates control signals for the read side and DQS Write Control logic that generates the control signals required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing in the Output register block which generates the DDR data output and the DQS output. They are also used to control the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
IDK_HS⁴	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (Max.)			+/-1	mA
	DK° LINDUT OF I/O Leakage Current	$0 \le V_{IN} < V_{CCIO}$			+/-1	mA
		$V_{CCIO} \le V_{IN} \le V_{CCIO} + 0.5V$	_	18	_	mA

1. $V_{CC},\,V_{CCAUX}$ and V_{CCIO} should rise/fall monotonically.

2. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} .

3. LVCMOS and LVTTL only.

4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.

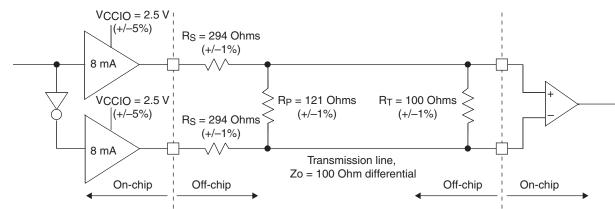
5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Hot Socketing Requirements^{1, 2}

Description	Min.	Тур.	Max.	Units
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	-	8	mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB (1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 channels *2 input pins per channel = 256 mA


ESD Performance

Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including ESD performance.

RSDS25E

The LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-4. RSDS25E DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/–5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	294	Ω
R _P	Driver Parallel Resistor (+/-1%)	121	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	1.35	V
V _{OL}	Output Low Voltage	1.15	V
V _{OD}	Output Differential Voltage	0.20	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	101.5	Ω
I _{DC}	DC Output Current	3.66	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

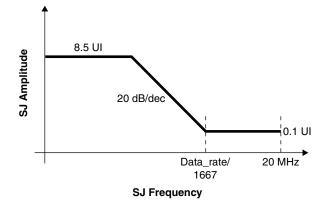
			-	-8	-7		-6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
fMAX_GDDR	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250		250		250	MHz
	Data Valid Before CLK	ECP3-35EA	683	_	688	<u> </u>	690	_	ps
	Data Valid After CLK	ECP3-35EA	683	_	688	—	690	—	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-35EA		250	—	250	—	250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	683	—	688	—	690	—	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	683	—	688	—	690	—	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-17EA	—	250	—	250	—	250	MHz
Generic DDRX1 (Dutput with Clock and Data Alig	ned at Pin (GDDRX1_TX.	SCLK.AI	igned) ¹⁰					
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-150EA	—	335	—	338	—	341	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-150EA		335	—	338	—	341	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA		250	—	250	—	250	MHz
	Data Invalid Before Clock	ECP3-70EA/95EA	—	339	—	343	—	347	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-70EA/95EA	—	339	—	343	-	347	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA		250	—	250	—	250	MHz
	Data Invalid Before Clock	ECP3-35EA	—	322	—	320	—	321	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-35EA		322	—	320	—	321	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA		250	—	250	—	250	MHz
	Data Invalid Before Clock	ECP3-17EA	_	322	—	320	—	321	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-17EA		322	—	320	—	321	ps
fMAX GDDR	DDRX1 Clock Frequency	ECP3-17EA		250	—	250	—	250	MHz
Generic DDRX1 (Dutput with Clock and Data (<10	Bits Wide) Centered at F	Pin (GDD	RX1_TX.	DQS.Cer	ntered) ¹⁰			
Left and Right Si	des								
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670	_	670	_	670	—	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	_	670	_	670	—	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA		250	—	250	—	250	MHz
	Data Valid Before CLK	ECP3-70EA/95EA	657	_	652	_	650	—	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-70EA/95EA	657	_	652	_	650	—	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA		250	—	250	—	250	MHz
	Data Valid Before CLK	ECP3-35EA	670	_	675	_	676	—	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	670	_	675	_	676	—	ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-35EA		250	—	250	—	250	MHz
	Data Valid Before CLK	ECP3-17EA	670	_	670	_	670	—	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	670	_	670	_	670	—	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-17EA		250	—	250	—	250	MHz
Generic DDRX2 (Dutput with Clock and Data (>10	Bits Wide) Aligned at Pi	n (GDDR	X2_TX.A	ligned)				
Left and Right Si	des								
	Data Invalid Before Clock	All ECP3EA Devices		200	—	210	—	220	ps
tDIAGDDR	Data Invalid After Clock	All ECP3EA Devices	_	200	—	210	—	220	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	—	500	—	420	—	375	MHz
_	Output with Clock and Data (>10	Bits Wide) Centered at F	in Usin	g DQSDL	L (GDDF	X2_TX.C	QSDLL.	Centered)11
Left and Right Si	des								
	Data Valid Before CLK	All ECP3EA Devices	400	_	400	_	431	—	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	400	_	400	—	432	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	_	375	MHz

Over Recommended Commercial Operating Conditions

DLL Timing

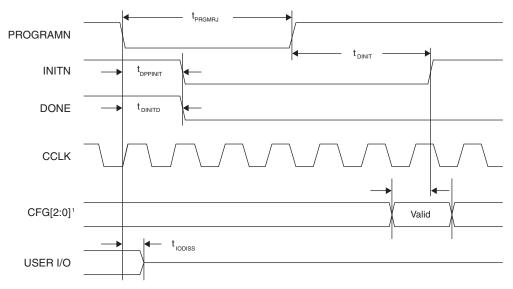
Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	_	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133		500	MHz
f _{CLKOP} 1	Output clock frequency, CLKOP		133		500	MHz
f _{CLKOS²}	Output clock frequency, CLKOS		33.3		500	MHz
t _{PJIT}	Output clock period jitter (clean input)				200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	cycle input clock, 50% duty cycle circuit turned off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit	Primary Clock ≥ 250 MHz	30		70	%
	enabled, time reference delay mode)	Edge Clock	45		55	%
	duty cycle input clock, 50% duty cycle circuit IR enabled, clock injection removal mode) with DLL	Primary Clock < 250 MHz	40		60	%
t _{DUTYCIR}		Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	_	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	_	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	_	_	ps
t _{INSTB}	Input clock period jitter		_		500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3			ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns


1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.


Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37 UIpp of Deterministic jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55 UIpp. Therefore, the sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65 UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).

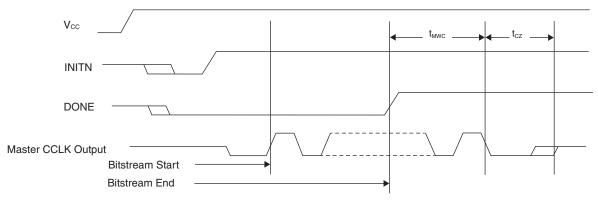
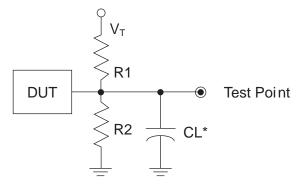


Figure 3-26. Configuration from PROGRAMN Timing

1. The CFG pins are normally static (hard wired)

Figure 3-27. Wake-Up Timing



Switching Test Conditions

Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-23.

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞ 0	∞	0 pF	LVCMOS 1.8 = V _{CCIO} /2	—
				LVCMOS 1.5 = V _{CCIO} /2	—
				LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)	x	1MΩ	0 pF	V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> L)	1 MΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	0 pF	V _{OH} - 0.10	—
LVCMOS 2.5 I/O (L -> Z)	100	∞	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins					
For Left and Right Edges of the Device							
P[Edge] [n-3]	А	DQ					
	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
P[Edge] [n-1]	А	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
	В	DQ					
P[Edge] [n+1]	А	DQ					
	В	DQ					
P[Edge] [n+2]	А	DQ					
	В	DQ					
For Top Edge of the Devic	e	·					
D[Edga] [n 2]	А	DQ					
P[Edge] [n-3]	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
P[Edge] [n-1]	А	DQ					
	В	DQ					
D[Edga] [n]	А	[Edge]DQSn					
P[Edge] [n]	В	DQ					
P[Edge] [n+1]	А	DQ					
	В	DQ					
D[Edgo] [n 2]	А	DQ					
P[Edge] [n+2]	В	DQ					

Note: "n" is a row PIC number.

Pin Information Summary

Pin Information Summary		E	CP3-17E	A	ECP3-35EA			ECP3-70EA		
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	26	20	36	26	42	48	42	60	86
	Bank 1	14	10	24	14	36	36	36	48	78
	Bank 2	6	7	12	6	24	24	24	34	36
General Purpose Inputs/Outputs per Bank	Bank 3	18	12	44	16	54	59	54	59	86
	Bank 6	20	11	44	18	63	61	63	67	86
	Bank 7	19	26	32	19	36	42	36	48	54
	Bank 8	24	24	24	24	24	24	24	24	24
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	2	2	2	2	4	4	4	8	8
General Purpose Inputs per Bank	Bank 3	0	0	0	2	4	4	4	12	12
per Darik	Bank 6	0	0	0	2	4	4	4	12	12
	Bank 7	4	4	4	4	4	4	4	8	8
	Bank 8	0	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0	0
General Purpose Out-	Bank 3	0	0	0	0	0	0	0	0	0
puts per Bank	Bank 6	0	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0	0
Total Single-Ended User I/O		133	116	222	133	295	310	295	380	490
VCC		6	16	16	6	16	32	16	32	32
VCCAUX		4	5	8	4	8	12	8	12	16
VTT		4	7	4	4	4	4	4	4	8
VCCA		4	6	4	4	4	8	4	8	16
VCCPLL		2	2	4	2	4	4	4	4	4
	Bank 0	2	3	2	2	2	4	2	4	4
	Bank 1	2	3	2	2	2	4	2	4	4
	Bank 2	2	2	2	2	2	4	2	4	4
VCCIO	Bank 3	2	3	2	2	2	4	2	4	4
	Bank 6	2	3	2	2	2	4	2	4	4
	Bank 7	2	3	2	2	2	4	2	4	4
	Bank 8	1	2	2	1	2	2	2	2	2
VCCJ		1	1	1	1	1	1	1	1	1
ТАР		4	4	4	4	4	4	4	4	4
GND, GNDIO		51	126	98	51	98	139	98	139	233
NC		0	0	73	0	0	96	0	0	238
Reserved ¹		0	0	2	0	2	2	2	2	2
SERDES		26	18	26	26	26	26	26	52	78
Miscellaneous Pins		8	8	8	8	8	8	8	8	8
Total Bonded Pins		256	328	484	256	484	672	484	672	1156

Pin Information Summary (Cont.)

Pin Information Summary Pin Type		ECP3-70EA					
		484 fpBGA	672 fpBGA	1156 fpBGA			
	Bank 0	21	30	43			
	Bank 1	18	24	39			
	Bank 2	8	12	13			
Emulated Differential I/O per Bank	Bank 3	20	23	33			
	Bank 6	22	25	33			
	Bank 7	11	16	18			
	Bank 8	12	12	12			
	Bank 0	0	0	0			
	Bank 1	0	0	0			
	Bank 2	6	9	9			
High-Speed Differential I/ O per Bank	Bank 3	9	12	16			
o por Barik	Bank 6	11	14	16			
	Bank 7	9	12	13			
	Bank 8	0	0	0			
	Bank 0	42/21	60/30	86/43			
	Bank 1	36/18	48/24	78/39			
Total Single-Ended/	Bank 2	28/14	42/21	44/22			
Total Differential I/O	Bank 3	58/29	71/35	98/49			
per Bank	Bank 6	67/33	78/39	98/49			
	Bank 7	40/20	56/28	62/31			
	Bank 8	24/12	24/12	24/12			
	Bank 0	3	5	7			
	Bank 1	3	4	7			
DDR Groups Bonded per Bank ¹	Bank 2	2	3	3			
	Bank 3	3	4	5			
	Bank 6	4	4	5			
	Bank 7	3	4	4			
	Configuration Bank 8	0	0	0			
SERDES Quads		1	2	3			

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

LatticeECP3 Family Data Sheet Supplemental Information

February 2014

Data Sheet DS1021

For Further Information

A variety of technical notes for the LatticeECP3 family are available on the Lattice website at <u>www.latticesemi.com</u>.

- TN1169, LatticeECP3 sysCONFIG Usage Guide
- TN1176, LatticeECP3 SERDES/PCS Usage Guide
- TN1177, LatticeECP3 sysIO Usage Guide
- TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide
- TN1179, LatticeECP3 Memory Usage Guide
- TN1180, LatticeECP3 High-Speed I/O Interface
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- TN1182, LatticeECP3 sysDSP Usage Guide
- TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide
- TN1189, LatticeECP3 Hardware Checklist
- TN1215, LatticeECP2MS and LatticeECP2S Devices
- TN1216, LatticeECP2/M and LatticeECP3 Dual Boot Feature Advanced Security Encryption Key Programming Guide for LatticeECP3
- TN1222, LatticeECP3 Slave SPI Port User's Guide

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeECP3 Family Data Sheet Revision History

March 2015

Data Sheet DS1021

Date	Version	Section	Change Summary
March 2015	2.8EA	Pinout Information All	Updated Package Pinout Information section. Changed reference to http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.
			Minor style/formatting changes.
April 2014	02.7EA	DC and Switching	Updated LatticeECP3 Supply Current (Standby) table power numbers.
		Characteristics	Removed speed grade -9 timing numbers in the following sections: — Typical Building Block Function Performance — LatticeECP3 External Switching Characteristics — LatticeECP3 Internal Switching Characteristics — LatticeECP3 Family Timing Adders
		Ordering Information	Removed ordering information for -9 speed grade devices.
March 2014	02.6EA	DC and Switching Characteristics	Added information to the sysl/O Single-Ended DC Electrical Character- istics section footnote.
February 2014	02.5EA	DC and Switching Characteristics	Updated Hot Socketing Specifications table. Changed I_{PW} to I_{PD} in footnote 3.
			Updated the following figures: — Figure 3-25, sysCONFIG Port Timing — Figure 3-27, Wake-Up Timing
		Supplemental Information	Added technical note references.
September 2013	02.4EA	EA DC and Switching Characteristics	Updated the Wake-Up Timing Diagram
			Added the following figures: — Master SPI POR Waveforms — SPI Configuration Waveforms — Slave SPI HOLDN Waveforms
			Added tIODISS and tIOENSS parameters in LatticeECP3 sysCONFIG Port Timing Specifications table.
June 2013	02.3EA	Architecture	sysl/O Buffer Banks text section – Updated description of "Top (Bank 0 and Bank 1) and Bottom syslO Buffer Pairs (Single-Ended Outputs Only)" for hot socketing information.
			sysl/O Buffer Banks text section – Updated description of "Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)" for PCI clamp information.
			On-Chip Oscillator section – clarified the speed of the internal CMOS oscillator (130 MHz +/- 15%).
			Architecture Overview section – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	sysl/O Recommended Operating Conditions table – Removed reference to footnote 1 from RSDS standard.
			sysl/O Single-Ended DC Electrical Characteristics table – Modified foot- note 1.
			Added Oscillator Output Frequency table.
			LatticeECP3 sysCONFIG Port Timing Specifications table – Updated min. column for t _{CODO} parameter.
			LatticeECP3 Family Timing Adders table – Description column, references to VCCIO = 3.0V changed to 3.3V. For PPLVDS, description changed from emulated to True LVDS and VCCIO = 2.5V changed to VCCIO = 2.5V or 3.3V.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.
			Updated SERDES External Reference Clock Waveforms.
			Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break- down table.
		Pinout Information	"Logic Signal Connections" section heading renamed "Package Pinout Information". Software menu selections within this section have been updated.
			Signal Descriptions table – Updated description for V _{CCA} signal.
April 2012	02.2EA	Architecture	Updated first paragraph of Output Register Block section.
			Updated the information about sysIO buffer pairs below Figure 2-38.
			Updated the information relating to migration between devices in the Density Shifting section.
		DC and Switching Characteristics	Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$
		Ordering Information	Updated topside marks with new logos in the Ordering Information sec- tion.
February 2012	02.1EA	All	Updated document with new corporate logo.
November 2011	02.0EA	Introduction	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Architecture	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		DC and Switching Characteristics	Updated LatticeECP3 Supply Current table power numbers.
			Typical Building Block Function Performance table, LatticeECP3 Exter- nal Switching Characteristics table, LatticeECP3 Internal Switching Characteristics table and LatticeECP3 Family Timing Adders: Added speed grade -9 and updated speed grade -8, -7 and -6 timing numbers.
		Pinout Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Ordering Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
			Added ordering information for low power devices and -9 speed grade devices.
July 2011	01.9EA	DC and Switching Characteristics	Removed ESD Performance table and added reference to LatticeECP3 Product Family Qualification Summary document.
			sysCLOCK PLL TIming table, added footnote 4.
			External Reference Clock Specification table – removed reference to VREF-CM-AC and removed footnote for VREF-CM-AC.
		Pinout Information	Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.
April 2011	01.8EA	Architecture	Updated Secondary Clock/Control Sources text section.
		DC and Switching Characteristics	Added data for 150 Mbps to SERDES Power Supply Requirements table.
			Updated Frequencies in Table 3-6 Serial Output Timing and Levels
			Added Data for 150 Mbps to Table 3-7 Channel Output Jitter
			Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, t_{JIT} .
			Corrected Internal Switching Characteristics table, Description for EBR Timing, t _{SUWREN_EBR} and t _{HWREN_EBR} .
			Added footnote 1 to sysConfig Port Timing Specifications table.
			Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications

Date	Version	Section	Change Summary
			Updated Simplified Channel Block Diagram for SERDES/PCS Block diagram.
			Updated Device Configuration text section.
			Corrected software default value of MCCLK to be 2.5 MHz.
		DC and Switching Characteristics	Updated VCCOB Min/Max data in Recommended Operating Conditions table.
			Corrected footnote 2 in sysIO Recommended Operating Conditions table.
			Added added footnote 7 for t _{SKEW_PRIB} to External Switching Characteristics table.
			Added 2-to-1 Gearing text section and table.
			Updated External Reference Clock Specification (refclkp/refclkn) table.
			LatticeECP3 sysCONFIG Port Timing Specifications - updated t _{DINIT} information.
			Added sysCONFIG Port Timing waveform.
			Serial Input Data Specifications table, delete Typ data for V _{RX-DIFF-S} .
			Added footnote 4 to sysCLOCK PLL Timing table for t _{PFD} .
			Added SERDES/PCS Block Latency Breakdown table.
			External Reference Clock Specifications table, added footnote 4, add symbol name vREF-IN-DIFF.
			Added SERDES External Reference Clock Waveforms.
			Updated Serial Output Timing and Levels table.
			Pin-to-pin performance table, changed "typically 3% slower" to "typically slower".
			Updated timing information
			Updated SERDES minimum frequency.
			Added data to the following tables: External Switching Characteristics, Internal Switching Characteristics, Family Timing Adders, Maximum I/O Buffer Speed, DLL Timing, High Speed Data Transmitter, Channel Out- put Jitter, Typical Building Block Function Performance, Register-to- Register Performance, and Power Supply Requirements.
			Updated Serial Input Data Specifications table.
			Updated Transmit table, Serial Rapid I/O Type 2 Electrical and Timing Characteristics section.
		Pinout Information	Updated Signal Description tables.
			Updated Pin Information Summary tables and added footnote 1.
February 2009	01.0	—	Initial release.