

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	116
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	328-LFBGA, CSBGA
Supplier Device Package	328-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-7lmg328c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.

PFU Blocks

The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM

	SPR 16X4	PDPR 16X4
Number of slices	3	3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

Figure 2-8. Clock Divider Connections

Clock Distribution Network

LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two high performance edge clocks are available on the top, left, and right edges of the device to support high speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock sources are fed throughout the chip via a clock distribution system.

Primary Clock Sources

LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, dedicated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-25. Detailed sysDSP Slice Diagram

Note: A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

The LatticeECP2 sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1 ¹	1/2	_

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MAC DSP Element

In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-32. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs.

Table 2-11. PIO Signal List

Name	Туре	Description
INDD	Input Data	Register bypassed input. This is not the same port as INCK.
IPA, INA, IPB, INB	Input Data	Ports to core for input data
OPOSA, ONEGA ¹ , OPOSB, ONEGB ¹	Output Data	Output signals from core. An exception is the ONEGB port, used for tristate logic at the DQS pad.
CE	PIO Control	Clock enables for input and output block flip-flops.
SCLK	PIO Control	System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.
LSR	PIO Control	Local Set/Reset
ECLK1, ECLK2	PIO Control	Edge clock sources. Entire PIO selects one of two sources using mux.
ECLKDQSR ¹	Read Control	From DQS_STROBE, shifted strobe for memory interfaces only.
DDRCLKPOL ¹	Read Control	Ensures transfer from DQS domain to SCLK domain.
DDRLAT ¹	Read Control	Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat- apath.
DEL[3:0]	Read Control	Dynamic input delay control bits.
INCK	To Clock Distribution and PLL	PIO treated as clock PIO, path to distribute to primary clocks and PLL.
TS	Tristate Data	Tristate signal from core (SDR)
DQCLK0 ¹ , DQCLK1 ¹	Write Control	Two clocks edges, 90 degrees out of phase, used in output gearing.
DQSW ²	Write Control	Used for output and tristate logic at DQS only.
DYNDEL[7:0]	Write Control	Shifting of write clocks for specific DQS group, using 6:0 each step is approxi- mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). There is also a static control for this 8-bit setting, enabled with a memory cell.
DCNTL[6:0]	PIO Control	Original delay code from DDR DLL
DATAVALID ¹	Output Data	Status flag from DATAVALID logic, used to indicate when input data is captured in IOLOGIC and valid to core.
READ	For DQS_Strobe	Read signal for DDR memory interface
DQSI	For DQS_Strobe	Unshifted DQS strobe from input pad
PRMBDET	For DQS_Strobe	DQSI biased to go high when DQSI is tristate, goes to input logic block as well as core logic.
GSRN	Control from routing	Global Set/Reset

1. Signals available on left/right/top edges only.

2. Selected PIO.

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and top edges. The input register block for the bottom edge contains one element to register the input signal and no DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges only.

On-Chip Programmable Termination

The LatticeECP3 supports a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40, 50, or 60 Ohms. External termination to Vtt should be used for DDR2 and DDR3 memory controller implementation.
- Common mode termination of 80, 100, 120 Ohms for differential inputs

Figure 2-39. On-Chip Termination

Programmable resistance (40, 50 and 60 Ohms)
Parallel Single-Ended Input

Differential Input

See Table 2-12 for termination options for input modes.

Table 2-12. On-Chip Termination Options for Input Modes

IO_TYPE	TERMINATE to VTT ^{1, 2}	DIFFERENTIAL TERMINATION RESISTOR ¹
LVDS25	þ	80, 100, 120
BLVDS25	þ	80, 100, 120
MLVDS	þ	80, 100, 120
HSTL18_I	40, 50, 60	þ
HSTL18_II	40, 50, 60	þ
HSTL18D_I	40, 50, 60	þ
HSTL18D_II	40, 50, 60	þ
HSTL15_I	40, 50, 60	þ
HSTL15D_I	40, 50, 60	þ
SSTL25_I	40, 50, 60	þ
SSTL25_II	40, 50, 60	þ
SSTL25D_I	40, 50, 60	þ
SSTL25D_II	40, 50, 60	þ
SSTL18_I	40, 50, 60	þ
SSTL18_II	40, 50, 60	þ
SSTL18D_I	40, 50, 60	þ
SSTL18D_II	40, 50, 60	þ
SSTL15	40, 50, 60	þ
SSTL15D	40, 50, 60	þ

1. TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature. Use of TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in

an I/O bank.

On-chip termination tolerance +/- 20%

2. External termination to VTT should be used when implementing DDR2 and DDR3 memory controller.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1, 4}$	Input or I/O Low Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2 \text{ V})$	—	_	10	μΑ
I _{IH} ^{1, 3}	Input or I/O High Leakage	$(V_{CCIO} - 0.2 \text{ V}) < V_{IN} \leq 3.6 \text{ V}$	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	—	-210	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30	—	210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	—	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	—	210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	—	-210	μΑ
V _{BHT}	Bus Hold Trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	—	V_{IH} (MIN)	V
C1	I/O Capacitance ²		_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = 1.2 V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	_	5	7	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Applicable to general purpose I/Os in top and bottom banks. 4. When used as V_{REF} maximum leakage= 25 μ A.

sysI/O Differential Electrical Characteristics LVDS25

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} ¹ , V _{INM} ¹	Input Voltage		0	_	2.4	V
V _{CM} ¹	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100	_	_	mV
I _{IN}	Input Current	Power On or Power Off		_	+/-10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm		1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	$(V_{OP} + V_{OM})/2$, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L		_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

1, On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

LatticeECP3 External Switching Characteristics ^{1, 2, 3, 13}

			-	-8		7	-6			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Clocks				1			1		1	
Primary Clock ⁶										
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-150EA	—	500	—	420	—	375	MHz	
t _{w_PRI}	Clock Pulse Width for Primary Clock	ECP3-150EA	0.8	—	0.9		1.0		ns	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-150EA	_	300	_	330	—	360	ps	
tskew_prib	Primary Clock Skew Within a Bank	ECP3-150EA	—	250	_	280	—	300	ps	
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-70EA/95EA	—	500	_	420	—	375	MHz	
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-70EA/95EA	0.8	—	0.9		1.0		ns	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-70EA/95EA	—	360	_	370	—	380	ps	
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-70EA/95EA	—	310		320	—	330	ps	
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-35EA	—	500	_	420	—	375	MHz	
tw_pri	Pulse Width for Primary Clock	ECP3-35EA	0.8	_	0.9		1.0	_	ns	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-35EA	_	300	_	330	—	360	ps	
tskew_prib	Primary Clock Skew Within a Bank	ECP3-35EA	—	250	_	280	—	300	ps	
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-17EA	—	500	_	420		375	MHz	
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-17EA	0.8	—	0.9	_	1.0		ns	
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-17EA	_	310		340	_	370	ps	
tskew_prib	Primary Clock Skew Within a Bank	ECP3-17EA	—	220	_	230	—	240	ps	
Edge Clock ⁶										
fMAX_EDGE	Frequency for Edge Clock	ECP3-150EA	—	500	—	420	_	375	MHz	
tw_edge	Clock Pulse Width for Edge Clock	ECP3-150EA	0.9	—	1.0	—	1.2	_	ns	
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-150EA	_	200	_	210	—	220	ps	
fMAX_EDGE	Frequency for Edge Clock	ECP3-70EA/95EA	—	500	_	420	—	375	MHz	
tw_edge	Clock Pulse Width for Edge Clock	ECP3-70EA/95EA	0.9	—	1.0	—	1.2	-	ns	
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-70EA/95EA	_	200	_	210	—	220	ps	
fMAX_EDGE	Frequency for Edge Clock	ECP3-35EA	—	500	_	420	—	375	MHz	
tw_edge	Clock Pulse Width for Edge Clock	ECP3-35EA	0.9	—	1.0	—	1.2	_	ns	
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-35EA	_	200	_	210	—	220	ps	
fMAX_EDGE	Frequency for Edge Clock	ECP3-17EA	—	500	_	420	—	375	MHz	
tw_edge	Clock Pulse Width for Edge Clock	ECP3-17EA	0.9	—	1.0	_	1.2	_	ns	
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-17EA	—	200	_	210	—	220	ps	
Generic SDR										
General I/O Pin Par	ameters Using Dedicated Clock In	put Primary Clock W	Vithout Pl	LL ²						
t _{co}	Clock to Output - PIO Output Register	ECP3-150EA	_	3.9	_	4.3	—	4.7	ns	
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.0	_	0.0		0.0		ns	
t _H	Clock to Data Hold - PIO Input Register	ECP3-150EA	1.5	—	1.7	_	2.0	_	ns	
	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.3	—	1.5	_	1.7	_	ns	

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8		-7		-6			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Generic DDRX2 Ou	Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin Using PLL (GDDRX2_TX.PLL.Centered) ¹⁰									
Left and Right Side	es									
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	285	—	370	_	431	—	ps	
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	285	—	370	_	432	—	ps	
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	—	420	—	375	MHz	
Memory Interface		•								
DDR/DDR2 I/O Pin	Parameters (Input Data are Strobe	Edge Aligned, Output	ut Strobe	e Edge is	Data Ce	ntered)4				
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	—	0.225		0.225		0.225	UI	
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	—	0.64	—	UI	
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI	
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI	
f _{MAX_DDR}	DDR Clock Frequency	All ECP3 Devices	95	200	95	200	95	166	MHz	
f _{MAX_DDR2}	DDR2 clock frequency	All ECP3 Devices	125	266	125	200	125	166	MHz	
DDR3 (Using PLL f	or SCLK) I/O Pin Parameters	•								
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	_	0.225		0.225		0.225	UI	
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	_	0.64	—	UI	
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI	
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI	
f _{MAX_DDR3}	DDR3 clock frequency	All ECP3 Devices	300	400	266	333	266	300	MHz	
DDR3 Clock Timing	9									
t _{CH} (avg) ⁹	Average High Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI	
t _{CL} (avg) ⁹	Average Low Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI	
t _{JIT} (per, lck) ⁹	Output Clock Period Jitter During DLL Locking Period	All ECP3 Devices	-90	90	-90	90	-90	90	ps	
t _{JIT} (cc, lck) ⁹	Output Cycle-to-Cycle Period Jit- ter During DLL Locking Period	All ECP3 Devices	_	180	—	180	—	180	ps	

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

6. Uses LVDS I/O standard.

7. The current version of software does not support per bank skew numbers; this will be supported in a future release.

8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

9. Using settings generated by IPexpress.

10. These numbers are generated using best case PLL located in the center of the device.

11. Uses SSTL25 Class II Differential I/O Standard.

12. All numbers are generated with ispLEVER 8.1 software.

13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Internal Switching Characteristics^{1, 2, 5}

		-8		-7		-6		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
PFU/PFF Logi	c Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	—	0.147	_	0.163	_	0.179	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.281		0.335	_	0.379	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asynchronous)	—	0.593	—	0.674	—	0.756	ns
t _{LSRREC_PFU}	Asynchronous Set/Reset recovery time for PFU Logic		0.298		0.345		0.391	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.134	_	0.144	_	0.153		ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.097	_	-0.103	_	-0.109	_	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	_	0.068	_	0.075		ns
t _{HD_PFU}	Clock to D input hold time	0.019	_	0.013	_	0.015		ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	_	0.243	_	0.273	_	0.303	ns
PFU Dual Port	Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	0.710	—	0.803	—	0.897	ns
t _{SUDATA_PFU}	Data Setup Time	-0.137	_	-0.155	_	-0.174		ns
t _{HDATA_PFU}	Data Hold Time	0.188	_	0.217	_	0.246	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.227	_	-0.257	_	-0.286		ns
t _{HADDR_PFU}	Address Hold Time	0.240	_	0.275	_	0.310	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.055		-0.055	_	-0.063	_	ns
t _{HWREN_} PFU	Write/Read Enable Hold Time	0.059	_	0.059	_	0.071	_	ns
PIC Timing								
PIO Input/Out	out Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)		0.423		0.466		0.508	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	—	1.241	_	1.301	_	1.361	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.956		1.124		1.293		ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.225		0.184		0.240		ns
t _{COO_PIO}	Output Register Clock to Output Delay ⁴	-	1.09	-	1.16	-	1.23	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.220	_	0.185	_	0.150	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.085		-0.072		-0.058		ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.117	_	0.103	_	0.088	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.107	_	-0.094	_	-0.081	_	ns
EBR Timing								
t _{CO_EBR}	Clock (Read) to output from Address or Data	—	2.78	—	2.89	—	2.99	ns
t _{COO_EBR}	Clock (Write) to output from EBR output Register	—	0.31	—	0.32	—	0.33	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.218	_	-0.227	_	-0.237	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.249		0.257		0.265	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.071		-0.070		-0.068		ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.118		0.098		0.077		ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.107	_	-0.106	_	-0.106	—	ns

Over Recommended Commercial Operating Conditions

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

PCI Express Electrical and Timing Characteristics

AC and DC Characteristics

Symbol	Description	Test Conditions	Min	Тур	Max	Units		
Transmit ¹								
UI	Unit interval		399.88	400	400.12	ps		
V _{TX-DIFF_P-P}	Differential peak-to-peak output voltage		0.8	1.0	1.2	V		
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio		-3	-3.5	-4	dB		
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage		_	_	20	mV		
V _{TX-RCV-DETECT}	Amount of voltage change allowed dur- ing receiver detection		_	_	600	mV		
V _{TX-DC-CM}	Tx DC common mode voltage		0		$V_{CCOB} + 5\%$	V		
ITX-SHORT	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	_	_	90	mA		
Z _{TX-DIFF-DC}	Differential output impedance		80	100	120	Ohms		
RL _{TX-DIFF}	Differential return loss		10		—	dB		
RL _{TX-CM}	Common mode return loss		6.0		—	dB		
T _{TX-RISE}	Tx output rise time	20 to 80%	0.125	_	—	UI		
T _{TX-FALL}	Tx output fall time	20 to 80%	0.125		—	UI		
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link		_	_	1.3	ns		
T _{TX-EYE}	Transmitter eye width				—	UI		
T _{TX-EYE-MEDIAN-TO-MAX-JITTER}	Maximum time between jitter median and maximum deviation from median		_	_	0.125	UI		
Receive ^{1, 2}		•						
UI	Unit Interval		399.88	400	400.12	ps		
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage		0.34 ³	—	1.2	V		
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage		65	_	340 ³	mV		
V _{RX-CM-AC_P}	Receiver common mode voltage for AC coupling			_	150	mV		
Z _{RX-DIFF-DC}	DC differential input impedance		80	100	120	Ohms		
Z _{RX-DC}	DC input impedance		40	50	60	Ohms		
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance		200K	_	—	Ohms		
RL _{RX-DIFF}	Differential return loss		10	—	_	dB		
RL _{RX-CM}	Common mode return loss		6.0	_	—	dB		
T _{RX-IDLE-DET-DIFF-ENTERTIME}	Maximum time required for receiver to recognize and signal an unexpected idle on link		_		_	ms		

1. Values are measured at 2.5 Gbps.

2. Measured with external AC-coupling on the receiver.

3.Not in compliance with PCI Express 1.1 standard.

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter		_	_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—	—	dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	_	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	_	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

Figure 3-19. Test Loads

Test Loads

Figure 3-21. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3-22. sysCONFIG Master Serial Port Timing

Pin Information Summary (Cont.)

Pin Information Sun		ECP3-17EA		ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA
	Bank 0	13	10	18	13	21	24
	Bank 1	7	5	12	7	18	18
	Bank 2	2	2	4	1	8	8
Emulated Differential I/O per	Bank 3	4	2	13	5	20	19
Dank	Bank 6	5	1	13	6	22	20
	Bank 7	6	9	10	6	11	13
	Bank 8	12	12	12	12	12	12
	Bank 0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0
	Bank 2	2	2	3	3	6	6
Highspeed Differential I/O per	Bank 3	5	4	9	4	9	12
Dank	Bank 6	5	4	9	4	11	12
	Bank 7	5	6	8	5	9	10
	Bank 8	0	0	0	0	0	0
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14
Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12
	Bank 0	2	1	3	2	3	4
DDR Groups Bonded per Bank ²	Bank 1	1	0	2	1	3	3
	Bank 2	0	0	1	0	2	2
	Bank 3	1	0	3	1	3	4
	Bank 6	1	0	3	1	4	4
	Bank 7	1	2	2	1	3	3
	Configuration Bank 8	0	0	0	0	0	0
SERDES Quads	1	1	1	1	1	1	

These pins must remain floating on the board.
 Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

LatticeECP3 Devices, Green and Lead-Free Packaging

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6MG328C	1.2 V	-6	STD	Green csBGA	328	COM	17
LFE3-17EA-7MG328C	1.2 V	-7	STD	Green csBGA	328	COM	17
LFE3-17EA-8MG328C	1.2 V	-8	STD	Green csBGA	328	COM	17
LFE3-17EA-6LMG328C	1.2 V	-6	LOW	Green csBGA	328	COM	17
LFE3-17EA-7LMG328C	1.2 V	-7	LOW	Green csBGA	328	COM	17
LFE3-17EA-8LMG328C	1.2 V	-8	LOW	Green csBGA	328	COM	17
LFE3-17EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	17

Commercial

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Date	Version	Section	Change Summary
			Updated Frequency to 150 Mbps in Table 3-11 Periodic Receiver Jitter Tolerance Specification
December 2010	01.7EA	Multiple	Data sheet made final. Removed "preliminary" headings.
			Removed data for 70E and 95E devices. A separate data sheet is available for these specific devices.
			Updated for Lattice Diamond design software.
		Introduction	Corrected number of user I/Os
		Architecture	Corrected the package type in Table 2-14 Available SERDES Quad per LatticeECP3 Devices.
			Updated description of General Purpose PLL
			Added additional information in the Flexible Quad SERDES Architecture section.
			Added footnotes and corrected the information in Table 2-16 Selectable master Clock (MCCLK) Frequencies During Configuration (Nominal).
			Updated Figure 2-16, Per Region Secondary Clock Selection.
			Updated description for On-Chip Programmable Termination.
			Added information about number of rows of DSP slices.
			Updated footnote 2 for Table 2-12, On-Chip Termination Options for Input Modes.
			Updated information for sysIO buffer pairs.
			Corrected minimum number of General Purpose PLLs (was 4, now 2).
		DC and Switching Characteristics	Regenerated sysCONFIG Port Timing figure.
			Added ${\rm t}_{\rm W}$ (clock pulse width) in External Switching Characteristics table.
			Corrected units, revised and added data, and corrected footnote 1 in External Switching Characteristics table.
			Added Jitter Transfer figures in SERDES External Reference Clock section.
			Corrected capacitance information in the DC Electrical Characteristics table.
			Corrected data in the Register-to-Register Performance table.
			Corrected GDDR Parameter name HOGDDR.
			Corrected RSDS25 -7 data in Family Timing Adders table.
			Added footnotes 10-12 to DDR data information in the External Switch- ing Characteristics table.
			Corrected titles for Figures 3-7 (DDR/DDR2/DDR3 Parameters) and 3-8 (Generic DDR/DDRX2 Parameters).
			Updated titles for Figures 3-5 (MLVDS25 (Multipoint Low Voltage Differ- ential Signaling)) and 3-6 (Generic DDRX1/DDRX2 (With Clock and Data Edges Aligned)).
			Updated Supply Current table.
			Added GDDR interface information to the External Switching and Characteristics table.
			Added footnote to sysIO Recommended Operating Conditions table.
			Added footnote to LVDS25 table.
			Corrected DDR section footnotes and references.
			Corrected Hot Socketing support from "top and bottom banks" to "top and bottom I/O pins".
		Pinout Information	Updated description for VTTx.