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Understanding Embedded - FPGAs (Field
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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Architecture Overview
Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-
spersed between the rows of logic blocks are rows of sysMEM™ Embedded Block RAM (EBR) and rows of sys-
DSP™ Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; 
all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES 
Quads on the bottom of the device. 

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit 
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF 
block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for 
flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row. 

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 
18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or 
ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and 
adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each 
SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each 
group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The func-
tionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by regis-
ters that are addressable during device operation. The registers in every quad can be programmed via the 
SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices. 

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the 
LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. 
In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and 
right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engi-
neered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 
LVDS, along with memory interfaces including DDR3.

The LatticeECP3 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and the 
device is configured, it enters into user mode with these registers SET/RESET according to the configuration set-
ting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two 
Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the 
end of the EBR/DSP rows. 

The configuration block that supports features such as configuration bit-stream decryption, transparent updates 
and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family sup-
ports a sysCONFIG™ port located in the corner between banks one and two, which allows for serial or parallel 
device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error 
detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

LatticeECP3 Family Data Sheet
Architecture
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
—  A greater-than-or-equal-to B
—  A not-equal-to B
—  A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two 
high performance edge clocks are available on the top, left, and right edges of the device to support high speed 
interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock 
sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, ded-
icated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two 
DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two 
on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources 
for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17
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Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection
Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All 
the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used 
as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other 
signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection
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The edge clocks on the top, left, and right sides of the device can drive the secondary clocks or general routing 
resources of the device. The left and right side edge clocks also can drive the primary clock network through the 
clock dividers (CLKDIV).

sysMEM Memory 
LatticeECP3 devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18-Kbit 
RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each 
EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers 
(via external PFUs). 

sysMEM Memory Block 
The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in 
a variety of depths and widths as shown in Table 2-7. FIFOs can be implemented in sysMEM EBR blocks by imple-
menting support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for 
each data byte. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths. For 
more information, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-7. sysMEM Block Configurations

Bus Size Matching 
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB 
word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for 
each port varies, this mapping scheme applies to each port. 

RAM Initialization and ROM Operation 
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block 
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a 
ROM. 

Memory Cascading 
Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools 
cascade memory transparently, based on specific design inputs. 

Memory Mode Configurations

Single Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18
512 x 36

True Dual Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18

Pseudo Dual Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18
512 x 36

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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Control Logic Block 
The control logic block allows the selection and modification of control signals for use in the PIO block. 

DDR Memory Support 
Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, 
DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges
The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory inter-
faces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-35 shows 
the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS 
control logic block.

Bottom Edge
PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces. 

Top Edge
PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the 
output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Addi-
tional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR 
data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR 
memories that support 10 bits of data.

Figure 2-35. DQS Grouping on the Left, Right and Top Edges
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block
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As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 
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sysI/O Differential Electrical Characteristics
LVDS25

Over Recommended Operating Conditions

Differential HSTL and SSTL
Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allow-
able single-ended output classes (class I and class II) are supported in this mode.

Parameter Description Test Conditions Min. Typ. Max. Units

VINP
1, VINM

1 Input Voltage 0 — 2.4 V

VCM
1 Input Common Mode Voltage Half the Sum of the Two Inputs 0.05 — 2.35 V

VTHD Differential Input Threshold Difference Between the Two Inputs +/–100 — — mV

IIN Input Current Power On or Power Off — — +/–10 µA

VOH Output High Voltage for VOP or VOM RT = 100 Ohm — 1.38 1.60 V

VOL Output Low Voltage for VOP or VOM RT = 100 Ohm 0.9 V 1.03 — V

VOD Output Voltage Differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV

VOD 
Change in VOD Between High and 
Low — — 50 mV

VOS Output Voltage Offset (VOP + VOM)/2, RT = 100 Ohm 1.125 1.20 1.375 V

VOS Change in VOS Between H and L — — 50 mV

ISAB Output Short Circuit Current VOD = 0V Driver Outputs Shorted to 
Each Other — — 12 mA

1, On the left and right sides of the device, this specification is valid only for VCCIO = 2.5 V or 3.3 V.
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MLVDS25
The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-5. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/–5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/–1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/–1%) 50.00 70.00 

RTR Receiver Termination (+/–1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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LatticeECP3 Internal Switching Characteristics1, 2, 5 
Over Recommended Commercial Operating Conditions

Parameter Description

–8 –7 –6

Units.Min. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.147 — 0.163 — 0.179 ns

tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.281 — 0.335 — 0.379 ns

tLSR_PFU Set/Reset to output of PFU (Asynchronous) — 0.593 — 0.674 — 0.756 ns

tLSRREC_PFU
Asynchronous Set/Reset recovery time for 
PFU Logic 0.298 0.345 0.391 ns

tSUM_PFU Clock to Mux (M0,M1) Input Setup Time 0.134 — 0.144 — 0.153 — ns

tHM_PFU Clock to Mux (M0,M1) Input Hold Time –0.097 — –0.103 — –0.109 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.068 — 0.075 — ns

tHD_PFU Clock to D input hold time 0.019 — 0.013 — 0.015 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.243 — 0.273 — 0.303 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 0.710 — 0.803 — 0.897 ns

tSUDATA_PFU Data Setup Time –0.137 — –0.155 — –0.174 — ns

tHDATA_PFU Data Hold Time 0.188 — 0.217 — 0.246 — ns

tSUADDR_PFU Address Setup Time –0.227 — –0.257 — –0.286 — ns

tHADDR_PFU Address Hold Time 0.240 — 0.275 — 0.310 — ns

tSUWREN_PFU Write/Read Enable Setup Time –0.055 — –0.055 — –0.063 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.059 — 0.059 — 0.071 — ns

PIC Timing

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.423 — 0.466 — 0.508 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.241 — 1.301 — 1.361 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data Before 
Clock) 0.956 — 1.124 — 1.293 — ns

tHI_PIO Input Register Hold Time (Data after Clock) 0.225 — 0.184 — 0.240 — ns

tCOO_PIO Output Register Clock to Output Delay4 - 1.09 - 1.16 - 1.23 ns

tSUCE_PIO Input Register Clock Enable Setup Time 0.220 — 0.185 — 0.150 — ns

tHCE_PIO Input Register Clock Enable Hold Time –0.085 — –0.072 — –0.058 — ns

tSULSR_PIO Set/Reset Setup Time 0.117 — 0.103 — 0.088 — ns

tHLSR_PIO Set/Reset Hold Time –0.107 — –0.094 — –0.081 — ns

EBR Timing

tCO_EBR Clock (Read) to output from Address or Data — 2.78 — 2.89 — 2.99 ns

tCOO_EBR
Clock (Write) to output from EBR output 
Register — 0.31 — 0.32 — 0.33 ns

tSUDATA_EBR Setup Data to EBR Memory –0.218 — –0.227 — –0.237 — ns

tHDATA_EBR Hold Data to EBR Memory 0.249 — 0.257 — 0.265 — ns

tSUADDR_EBR Setup Address to EBR Memory –0.071 — –0.070 — –0.068 — ns

tHADDR_EBR Hold Address to EBR Memory 0.118 — 0.098 — 0.077 — ns

tSUWREN_EBR Setup Write/Read Enable to EBR Memory –0.107 — –0.106 — –0.106 — ns
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Figure 3-19. Test Loads
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT
1 PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

tIODISS User I/O Disable from PROGRAMN Low — 100 ns

tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence — 100 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode -0.2 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns
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Figure 3-24. Power-On-Reset (POR) Timing

Figure 3-25. sysCONFIG Port Timing
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Point-to-Point LVDS (PPLVDS)
Over Recommended Operating Conditions

RSDS
Over Recommended Operating Conditions

 Description Min. Typ. Max. Units

Output driver supply (+/– 5%)
3.14 3.3 3.47 V

2.25 2.5 2.75 V

Input differential voltage 100 — 400 mV

Input common mode voltage 0.2 — 2.3 V

Output differential voltage 130 — 400 mV

Output common mode voltage 0.5 0.8 1.4 V

Parameter Symbol Description Min. Typ. Max. Units

VOD Output voltage, differential, RT = 100 Ohms 100 200 600 mV

VOS Output voltage, common mode 0.5 1.2 1.5 V

IRSDS Differential driver output current 1 2 6 mA

VTHD Input voltage differential 100 — — mV

VCM Input common mode voltage 0.3 — 1.5 V

TR, TF Output rise and fall times, 20% to 80% — 500 — ps

TODUTY Output clock duty cycle 35 50 65 %

Note: Data is for 2 mA drive. Other differential driver current options are available.
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95EA ECP3-150EA

Pin Type
484 

fpBGA
672 

fpBGA
1156 

fpBGA
672 

fpBGA
1156

fpBGA

General Purpose 
Inputs/Outputs per bank

Bank 0 42 60 86 60 94

Bank 1 36 48 78 48 86

Bank 2 24 34 36 34 58

Bank 3 54 59 86 59 104

Bank 6 63 67 86 67 104

Bank 7 36 48 54 48 76

Bank 8 24 24 24 24 24

General Purpose Inputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 4 8 8 8 8

Bank 3 4 12 12 12 12

Bank 6 4 12 12 12 12

Bank 7 4 8 8 8 8

Bank 8 0 0 0 0 0

General Purpose Outputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 0 0 0 0 0

Bank 3 0 0 0 0 0

Bank 6 0 0 0 0 0

Bank 7 0 0 0 0 0

Bank 8 0 0 0 0 0

Total Single-Ended User I/O 295 380 490 380 586

VCC 16 32 32 32 32

VCCAUX 8 12 16 12 16

VTT 4 4 8 4 8

VCCA 4 8 16 8 16

VCCPLL 4 4 4 4 4

VCCIO

Bank 0 2 4 4 4 4

Bank 1 2 4 4 4 4

Bank 2 2 4 4 4 4

Bank 3 2 4 4 4 4

Bank 6 2 4 4 4 4

Bank 7 2 4 4 4 4

Bank 8 2 2 2 2 2

VCCJ 1 1 1 1 1

TAP 4 4 4 4 4

GND, GNDIO 98 139 233 139 233

NC 0 0 238 0 116

Reserved1 2 2 2 2 2

SERDES 26 52 78 52 104

Miscellaneous Pins 8 8 8 8 8

Total Bonded Pins 484 672 1156 672 1156
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.


