E. Lattice Semiconductor Corporation - LFE3-17EA-8LFN484I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	222
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-8lfn484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection

MMAC DSP Element

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges

The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory interfaces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-35 shows the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS control logic block.

Bottom Edge

PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces.

Top Edge

PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR memories that support 10 bits of data.

	PIO A	↓	PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	L+	PADB "C"
_ DQS	PIO A	SysIO Buffer Delay ◀	PADA "T" LVDS Pair
	PIO B		PADB "C"
	PIO A		PADA "T" LVDS Pair
	→ PIO A → PIO B		PADA "T" LVDS Pair PADB "C"
	→ PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-35. DQS Grouping on the Left, Right and Top Edges

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock (referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and process variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block that generates control signals for the read side and DQS Write Control logic that generates the control signals required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing in the Output register block which generates the DDR data output and the DQS output. They are also used to control the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

SCI (SERDES Client Interface) Bus

The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by registers rather than the configuration memory cells. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each quad in a design.

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the core.

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary and secondary protocol combinations.

Flexible Quad SERDES Architecture

The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and standards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one standard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol	Secondary Protocol
PCI Express 1.1	SGMII
PCI Express 1.1	Gigabit Ethernet
PCI Express 1.1	Serial RapidIO Type I
PCI Express 1.1	Serial RapidIO Type II
Serial RapidIO Type I	SGMII
Serial RapidIO Type I	Gigabit Ethernet
Serial RapidIO Type II	SGMII
Serial RapidIO Type II	Gigabit Ethernet
Serial RapidIO Type II	Serial RapidIO Type I
CPRI-3	CPRI-2 and CPRI-1
3G-SDI	HD-SDI and SD-SDI

sysl/O Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{II}	4	Voi	Vou		
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} ¹ (mA)	I _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
	-03	0.35 Vacua	0.65 Vacia	36	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
	-0.5	0.00 VCCIO	0.03 VCCIO	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
	-0.3	0.35 Vaa	0.65 Vaa	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
LVONICOTZ	-0.0	0.00 VCC	0.03 VCC	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
SSTL18_II	_0.3	V0 125	V + 0.125	3.6	0.28	V 0 28	8	-8
(DDR2 Memory)	-0.5	V _{REF} - 0.123	V _{REF} + 0.125	5.0	0.20	V CCIO - 0.20	11	-11
	_0.3	V0 18	V \ 0.18	2.6	0.54	V	7.6	-7.6
551L2_1	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.54	V CCIO - 0.02	12	-12
SSTL2_II	_0.3	V0.18	V \ 0.18	3.6	0.35	V	15.2	-15.2
(DDR Memory)	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.00	V CCIO - 0.43	20	-20
SSTL3_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL3_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTL15	0.2	V 01	V + 0.1	2.6	0.2	V _{CCIO} - 0.3	7.5	-7.5
(DDR3 Memory)	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.0	0.5	V _{CCIO} * 0.8	9	-9
	_0.3	V01	V 101	3.6	0.4	V 0 4	4	-4
	-0.5	V _{REF} - 0.1	VREF + 0.1	5.0	0.4	V CCIO - 0.4	8	-8
	_0.3	V01	V 1 0 1	3.6	0.4	V04	8	-8
	-0.3	VREF - 0.1	VREF + 0.1	3.0	0.4	VCCIO - 0.4	12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

1. For electromigration, the average DC current drawn by I/O pads between two consecutive V_{CCIO} or GND pad connections, or between the last V_{CCIO} or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed n * 8 mA, where n is the number of I/O pads between the two consecutive bank V_{CCIO} or GND connections or between the last V_{CCIO} and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

LatticeECP3 Internal Switching Characteristics^{1, 2, 5} (Continued)

		-8		-7		-6		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.141		0.145		0.149		ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.087		0.096		0.104		ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.066		-0.080		-0.094		ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.071		-0.070		-0.068		ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register	0.118	_	0.098	_	0.077	_	ns
DSP Block Tin	ning ³							
t _{SUI_DSP}	Input Register Setup Time	0.32	_	0.36	_	0.39	_	ns
t _{HI_DSP}	Input Register Hold Time	-0.17	_	-0.19	_	-0.21	_	ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.23	_	2.30	_	2.37	_	ns
t _{HP_DSP}	Pipeline Register Hold Time	-1.02	_	-1.09	_	-1.15	_	ns
t _{SUO_DSP}	Output Register Setup Time	3.09	_	3.22	_	3.34	_	ns
t _{HO_DSP}	Output Register Hold Time	-1.67	_	-1.76	_	-1.84	_	ns
t _{COI_DSP}	Input Register Clock to Output Time	_	3.05	_	3.35	_	3.73	ns
t _{COP_DSP}	Pipeline Register Clock to Output Time	_	1.30	_	1.47	_	1.64	ns
t _{COO_DSP}	Output Register Clock to Output Time	—	0.58	—	0.60	—	0.62	ns
t _{SUOPT_DSP}	Opcode Register Setup Time	0.31	_	0.35	_	0.39	_	ns
t _{HOPT_DSP}	Opcode Register Hold Time	-0.20	_	-0.24		-0.27	_	ns
t _{SUDATA_DSP}	Cascade_data through ALU to Output Register Setup Time	1.69		1.94		2.14		ns
t _{HPDATA_DSP}	Cascade_data through ALU to Output Register Hold Time	-0.58		-0.80		-0.97		ns

Over Recommended Commercial Operating Conditions

1. Internal parameters are characterized but not tested on every device.

2. Commercial timing numbers are shown. Industrial timing numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. DSP slice is configured in Multiply Add/Sub 18 x 18 mode.

4. The output register is in Flip-flop mode.

5. For details on –9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units
Input Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns
Output Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7} (Continued)

Buffer Type	Description	-8	-7	-6	Units
RSDS25	RSDS, VCCIO = 2.5 V	-0.07	-0.04	-0.01	ns
PPLVDS	Point-to-Point LVDS, True LVDS, VCCIO = 2.5 V or 3.3 V	-0.22	-0.19	-0.16	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.67	0.76	0.86	ns
HSTL18_I	HSTL_18 class I 8mA drive, VCCIO = 1.8 V	1.20	1.34	1.47	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.89	1.00	1.11	ns
HSTL18D_I	Differential HSTL 18 class I 8 mA drive	1.20	1.34	1.47	ns
HSTL18D_II	Differential HSTL 18 class II	0.89	1.00	1.11	ns
HSTL15_I	HSTL_15 class I 4 mA drive, VCCIO = 1.5 V	1.67	1.83	1.99	ns
HSTL15D_I	Differential HSTL 15 class I 4 mA drive	1.67	1.83	1.99	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	1.12	1.17	1.21	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	1.08	1.12	1.15	ns
SSTL33D_I	Differential SSTL_3 class I	1.12	1.17	1.21	ns
SSTL33D_II	Differential SSTL_3 class II	1.08	1.12	1.15	ns
SSTL25_I	SSTL_2 class I 8 mA drive, VCCIO = 2.5 V	1.06	1.19	1.31	ns
SSTL25_II	SSTL_2 class II 16 mA drive, VCCIO = 2.5 V	1.04	1.17	1.31	ns
SSTL25D_I	Differential SSTL_2 class I 8 mA drive	1.06	1.19	1.31	ns
SSTL25D_II	Differential SSTL_2 class II 16 mA drive	1.04	1.17	1.31	ns
SSTL18_I	SSTL_1.8 class I, VCCIO = 1.8 V	0.70	0.84	0.97	ns
SSTL18_II	SSTL_1.8 class II 8 mA drive, VCCIO = 1.8 V	0.70	0.84	0.97	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.70	0.84	0.97	ns
SSTL18D_II	Differential SSTL_1.8 class II 8 mA drive	0.70	0.84	0.97	ns
SSTL15	SSTL_1.5, VCCIO = 1.5 V	1.22	1.35	1.48	ns
SSTL15D	Differential SSTL_15	1.22	1.35	1.48	ns
LVTTL33_4mA	LVTTL 4 mA drive, VCCIO = 3.3V	0.25	0.24	0.23	ns
LVTTL33_8mA	LVTTL 8 mA drive, VCCIO = 3.3V	-0.06	-0.06	-0.07	ns
LVTTL33_12mA	LVTTL 12 mA drive, VCCIO = 3.3V	-0.01	-0.02	-0.02	ns
LVTTL33_16mA	LVTTL 16 mA drive, VCCIO = 3.3V	-0.07	-0.07	-0.08	ns
LVTTL33_20mA	LVTTL 20 mA drive, VCCIO = 3.3V	-0.12	-0.13	-0.14	ns
LVCMOS33_4mA	LVCMOS 3.3 4 mA drive, fast slew rate	0.25	0.24	0.23	ns
LVCMOS33_8mA	LVCMOS 3.3 8 mA drive, fast slew rate	-0.06	-0.06	-0.07	ns
LVCMOS33_12mA	LVCMOS 3.3 12 mA drive, fast slew rate	-0.01	-0.02	-0.02	ns
LVCMOS33_16mA	LVCMOS 3.3 16 mA drive, fast slew rate	-0.07	-0.07	-0.08	ns
LVCMOS33_20mA	LVCMOS 3.3 20 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS25_4mA	LVCMOS 2.5 4 mA drive, fast slew rate	0.12	0.10	0.09	ns
LVCMOS25_8mA	LVCMOS 2.5 8 mA drive, fast slew rate	-0.05	-0.06	-0.07	ns
LVCMOS25_12mA	LVCMOS 2.5 12 mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS25_20mA	LVCMOS 2.5 20 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS18_4mA	LVCMOS 1.8 4 mA drive, fast slew rate	0.11	0.12	0.14	ns
LVCMOS18_8mA	LVCMOS 1.8 8 mA drive, fast slew rate	0.11	0.12	0.14	ns
LVCMOS18_12mA	LVCMOS 1.8 12 mA drive, fast slew rate	-0.04	-0.03	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16 mA drive, fast slew rate	-0.04	-0.03	-0.03	ns

Over Recommended Commercial Operating Conditions

Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps

Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-17. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	_	80		ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	—	0.10	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.24	UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 1.25 Gbps.

Table 3-18. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10			dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6			dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	_	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		-		0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		-		0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	_	0.71	UI
T _{RX_EYE}	Receiver eye opening		0.29	_	_	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 1.25 Gbps.

Figure 3-19. Test Loads

Test Loads

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins
For Left and Right Edges	of the Device	
D[Edgo] [n 2]	А	DQ
	В	DQ
P[Edge] [n-2]	A	DQ
	В	DQ
D[Edgo] [n 1]	A	DQ
	В	DQ
P[Edge] [n]	A	[Edge]DQSn
	В	DQ
P[Edge] [n 1]	А	DQ
	В	DQ
D[Edgo] [n 2]	A	DQ
r[Euge][II+2]	В	DQ
For Top Edge of the Devi	ce	
P[Edge] [n-3]	А	DQ
	В	DQ
P[Edge] [n-2]	А	DQ
	В	DQ
P[Edge] [n-1]	А	DQ
	В	DQ
P[Edge] [n]	А	[Edge]DQSn
, [raâc] [ii]	В	DQ
P[Edge] [n+1]	А	DQ
i [Euge] [iit i]	В	DQ
P[Edge] [n 2]	А	DQ
י נבטשכן נוידבן	В	DQ

Note: "n" is a row PIC number.

Package Pinout Information

Package pinout information can be found under "Data Sheets" on the LatticeECP3 product pages on the Lattice website at http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3 and in the Diamond or ispLEVER software tools. To create pinout information from within ispLEVER Design Planner, select **Tools > Spreadsheet View**. Then select **Select File > Export** and choose a type of output file. To create a pin information file from within Diamond select **Tools > Spreadsheet View** or **Tools >Package View**; then, select **File > Export** and choose a type of output file. See Diamond or ispLEVER Help for more information.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values.

For Further Information

For further information regarding Thermal Management, refer to the following:

- Thermal Management document
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- Power Calculator tool included with the Diamond and ispLEVER design tools, or as a standalone download from www.latticesemi.com/software

Industrial

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256I	1.2 V	-6	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-7FTN256I	1.2 V	-7	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-8FTN256I	1.2 V	-8	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-6LFTN256I	1.2 V	-6	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-7LFTN256I	1.2 V	-7	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-8LFTN256I	1.2 V	-8	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-6MG328I	1.2 V	-6	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-7MG328I	1.2 V	-7	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-8MG328I	1.2 V	-8	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-6LMG328I	1.2 V	-6	LOW	Green csBGA	328	IND	17
LFE3-17EA-7LMG328I	1.2 V	-7	LOW	Green csBGA	328	IND	17
LFE3-17EA-8LMG328I	1.2 V	-8	LOW	Green csBGA	328	IND	17
LFE3-17EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	17
LFE3-17EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	17
LFE3-17EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	17

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256I	1.2 V	-6	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-7FTN256I	1.2 V	-7	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-8FTN256I	1.2 V	-8	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-6LFTN256I	1.2 V	-6	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-7LFTN256I	1.2 V	-7	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-8LFTN256I	1.2 V	-8	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	33
LFE3-35EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	33
LFE3-35EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Date	Version	Section	Change Summary
			LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.
			Updated SERDES External Reference Clock Waveforms.
			Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break- down table.
		Pinout Information	"Logic Signal Connections" section heading renamed "Package Pinout Information". Software menu selections within this section have been updated.
			Signal Descriptions table – Updated description for V _{CCA} signal.
April 2012	02.2EA	Architecture	Updated first paragraph of Output Register Block section.
			Updated the information about sysIO buffer pairs below Figure 2-38.
			Updated the information relating to migration between devices in the Density Shifting section.
		DC and Switching Characteristics	Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$
		Ordering Information	Updated topside marks with new logos in the Ordering Information sec- tion.
February 2012	02.1EA	All	Updated document with new corporate logo.
November 2011	02.0EA	Introduction	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Architecture	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		DC and Switching Characteristics	Updated LatticeECP3 Supply Current table power numbers.
			Typical Building Block Function Performance table, LatticeECP3 Exter- nal Switching Characteristics table, LatticeECP3 Internal Switching Characteristics table and LatticeECP3 Family Timing Adders: Added speed grade -9 and updated speed grade -8, -7 and -6 timing numbers.
		Pinout Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Ordering Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
			Added ordering information for low power devices and -9 speed grade devices.
July 2011 01.9EA		DC and Switching Characteristics	Removed ESD Performance table and added reference to LatticeECP3 Product Family Qualification Summary document.
			sysCLOCK PLL TIming table, added footnote 4.
			External Reference Clock Specification table – removed reference to VREF-CM-AC and removed footnote for VREF-CM-AC.
		Pinout Information	Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.
April 2011	01.8EA	Architecture	Updated Secondary Clock/Control Sources text section.
		DC and Switching Characteristics	Added data for 150 Mbps to SERDES Power Supply Requirements table.
			Updated Frequencies in Table 3-6 Serial Output Timing and Levels
			Added Data for 150 Mbps to Table 3-7 Channel Output Jitter
			Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, $t_{J T}\!.$
			Corrected Internal Switching Characteristics table, Description for EBR Timing, t _{SUWBEN EBB} and t _{HWBEN EBB} .
			Added footnote 1 to sysConfig Port Timing Specifications table.
			Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications

Date	Version	Section	Change Summary		
March 2010	01.6	Architecture	Added Read-Before-Write information.		
		DC and Switching	Added footnote #6 to Maximum I/O Buffer Speed table.		
		Characteristics	Corrected minimum operating conditions for input and output differential voltages in the Point-to-Point LVDS table.		
		Pinout Information	Added pin information for the LatticeECP3-70EA and LatticeECP3- 95EA devices.		
	Ordering Ir		Added ordering part numbers for the LatticeECP3-70EA and LatticeECP3-95EA devices.		
			Removed dual mark information.		
November 2009	01.5	Introduction	Updated Embedded SERDES features.		
			Added SONET/SDH to Embedded SERDES protocols.		
		Architecture	Updated Figure 2-4, General Purpose PLL Diagram.		
			Updated SONET/SDH to SERDES and PCS protocols.		
			Updated Table 2-13, SERDES Standard Support to include SONET/ SDH and updated footnote 2.		
		DC and Switching Characterisitcs	Added footnote to ESD Performance table.		
			Updated SERDES Power Supply Requirements table and footnotes.		
			Updated Maximum I/O Buffer Speed table.		
			Updated Pin-to-Pin Peformance table.		
			Updated sysCLOCK PLL Timing table.		
			Updated DLL timing table.		
			Updated High-Speed Data Transmitter tables.		
			Updated High-Speed Data Receiver table.		
			Updated footnote for Receiver Total Jitter Tolerance Specification table.		
			Updated Periodic Receiver Jitter Tolerance Specification table.		
			Updated SERDES External Reference Clock Specification table.		
			Updated PCI Express Electrical and Timing AC and DC Characteristics.		
		Deleted Reference Clock table for PCI Express Electrical and Timing AC and DC Characteristics.			
			Updated SMPTE AC/DC Characteristics Transmit table.		
			Updated Mini LVDS table.		
			Updated RSDS table.		
		Added Supply Current (Standby) table for EA devices.			
		Updated Internal Switching Characteristics table.			
		Updated Register-to-Register Performance table.			
		Added HDMI Electrical and Timing Characteristics data.			
		Updated Family Timing Adders table.			
		Updated sysCONFIG Port Timing Specifications table.			
		Updated Recommended Operating Conditions table.			
		Updated Hot Socket Specifications table.			
		Updated Single-Ended DC table.			
		Updated TRLVDS table and figure.			
			Updated Serial Data Input Specifications table.		
			Updated HDMI Transmit and Receive table.		
		Ordering Information	Added LFE3-150EA "TW" devices and footnotes to the Commercial and Industrial tables.		