

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2010	
Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	116
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	328-LFBGA, CSBGA
Supplier Device Package	328-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-8lmg328c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Architecture

June 2013

Data Sheet DS1021

Architecture Overview

Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sys-DSP[™] Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES Quads on the bottom of the device.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The functionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by registers that are addressable during device operation. The registers in every quad can be programmed via the SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysl/O buffers. The sysl/O buffers of the LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3.

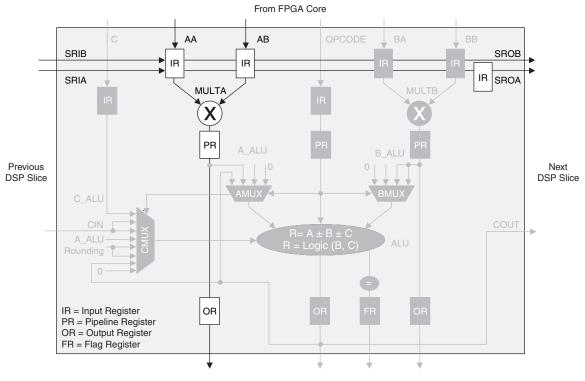
The LatticeECP3 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the end of the EBR/DSP rows.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family supports a sysCONFIG[™] port located in the corner between banks one and two, which allows for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-32. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs.

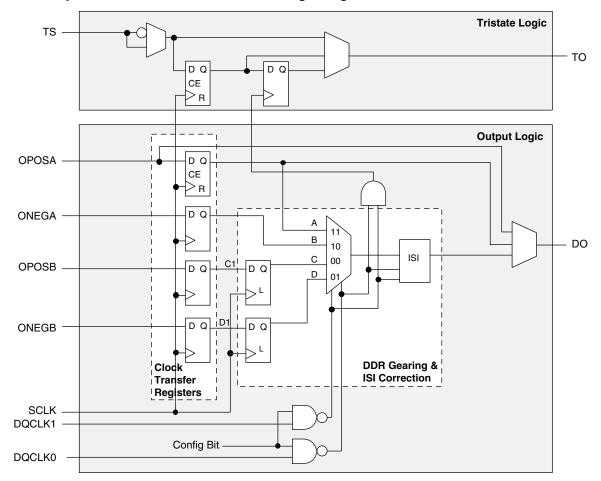
Table 2-11. PIO Signal List

Name	Туре	Description
INDD	Input Data	Register bypassed input. This is not the same port as INCK.
IPA, INA, IPB, INB	Input Data	Ports to core for input data
OPOSA, ONEGA ¹ , OPOSB, ONEGB ¹	Output Data	Output signals from core. An exception is the ONEGB port, used for tristate logic at the DQS pad.
CE	PIO Control	Clock enables for input and output block flip-flops.
SCLK	PIO Control	System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.
LSR	PIO Control	Local Set/Reset
ECLK1, ECLK2	PIO Control	Edge clock sources. Entire PIO selects one of two sources using mux.
ECLKDQSR ¹	Read Control	From DQS_STROBE, shifted strobe for memory interfaces only.
DDRCLKPOL ¹	Read Control	Ensures transfer from DQS domain to SCLK domain.
DDRLAT ¹	Read Control	Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat- apath.
DEL[3:0]	Read Control	Dynamic input delay control bits.
INCK	To Clock Distribution and PLL	PIO treated as clock PIO, path to distribute to primary clocks and PLL.
TS	Tristate Data	Tristate signal from core (SDR)
DQCLK0 ¹ , DQCLK1 ¹	Write Control	Two clocks edges, 90 degrees out of phase, used in output gearing.
DQSW ²	Write Control	Used for output and tristate logic at DQS only.
DYNDEL[7:0]	Write Control	Shifting of write clocks for specific DQS group, using 6:0 each step is approxi- mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). There is also a static control for this 8-bit setting, enabled with a memory cell.
DCNTL[6:0]	PIO Control	Original delay code from DDR DLL
DATAVALID ¹	Output Data	Status flag from DATAVALID logic, used to indicate when input data is captured in IOLOGIC and valid to core.
READ	For DQS_Strobe	Read signal for DDR memory interface
DQSI	For DQS_Strobe	Unshifted DQS strobe from input pad
PRMBDET	For DQS_Strobe	DQSI biased to go high when DQSI is tristate, goes to input logic block as well as core logic.
GSRN	Control from routing	Global Set/Reset

1. Signals available on left/right/top edges only.

2. Selected PIO.

PIO


The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Input Register Block

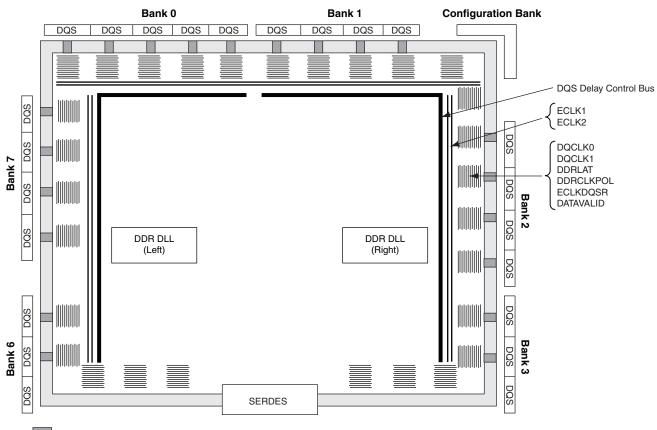
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and top edges. The input register block for the bottom edge contains one element to register the input signal and no DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges only.

Figure 2-34. Output and Tristate Block for Left and Right Edges

Tristate Register Block

The tristate register block registers tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The output of this register is used as a tristate control.

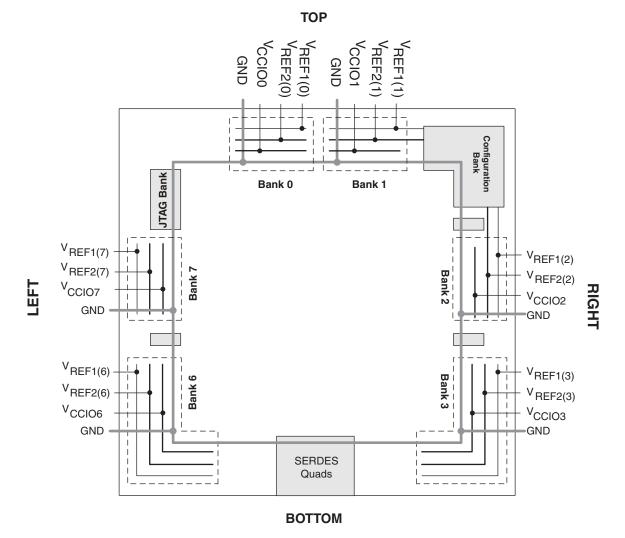

ISI Calibration

The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control logic block.

For more information about this topic, please see the list of technical documentation at the end of this data sheet.

Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution


DQS Strobe and Transition Detect Logic

I/O Ring

*Includes shared configuration I/Os and dedicated configuration I/Os.

Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs.

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals.

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side pads can be identified by the Lattice Diamond tool.

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

There are some restrictions to be aware of when using spread spectrum. When a quad shares a PCI Express x1 channel with a non-PCI Express channel, ensure that the reference clock for the quad is compatible with all protocols within the quad. For example, a PCI Express spread spectrum reference clock is not compatible with most Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LatticeECP3 architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, Serial RapidIO or SGMII channel within the same quad, using a PCI Express spread spectrum clocking as the transmit reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter specifications.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration

All LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with the remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more information about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LatticeECP3 device:

- 1. JTAG
- 2. Standard Serial Peripheral Interface (SPI and SPIm modes) interface to boot PROM memory
- 3. System microprocessor to drive a x8 CPU port (PCM mode)
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Generic byte wide flash with a MachXO[™] device, providing control and addressing

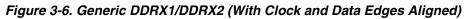
On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port.

LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device (slave mode) with the SPI port of the FPGA to perform read-write operations.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.


2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

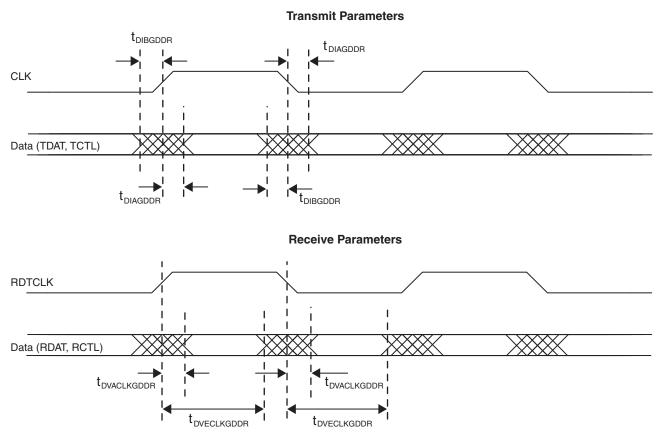
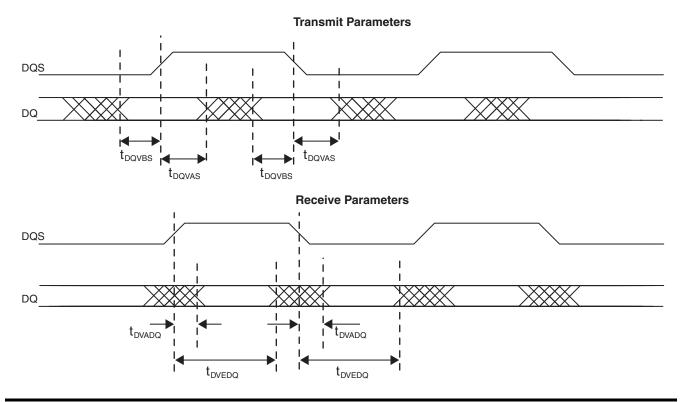



Figure 3-7. DDR/DDR2/DDR3 Parameters

LatticeECP3 Maximum I/O Buffer Speed ^{1, 2, 3, 4, 5, 6}

Over Recommended Operating Conditions

Buffer	Description	Max.	Units
Maximum Input Frequency		·	
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	400	MHz
MLVDS25	MLVDS, Emulated, V _{CCIO} = 2.5 V	400	MHz
BLVDS25	BLVDS, Emulated, V _{CCIO} = 2.5 V	400	MHz
PPLVDS	Point-to-Point LVDS	400	MHz
TRLVDS	Transition-Reduced LVDS	612	MHz
Mini LVDS	Mini LVDS	400	MHz
LVPECL33	LVPECL, Emulated, V _{CCIO} = 3.3 V	400	MHz
HSTL18 (all supported classes)	HSTL_18 class I, II, V _{CCIO} = 1.8 V	400	MHz
HSTL15	HSTL_15 class I, V _{CCIO} = 1.5 V	400	MHz
SSTL33 (all supported classes)	SSTL_3 class I, II, V _{CCIO} = 3.3 V	400	MHz
SSTL25 (all supported classes)	SSTL_2 class I, II, V _{CCIO} = 2.5 V	400	MHz
SSTL18 (all supported classes)	SSTL_18 class I, II, V _{CCIO} = 1.8 V	400	MHz
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	166	MHz
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	166	MHz
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	166	MHz
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	166	MHz
LVCMOS15	LVCMOS 1.5, V _{CCIO} = 1.5 V	166	MHz
LVCMOS12	LVCMOS 1.2, V _{CCIO} = 1.2 V	166	MHz
PCI33	PCI, V _{CCIO} = 3.3 V	66	MHz
Maximum Output Frequency			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	300	MHz
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	612	MHz
MLVDS25	MLVDS, Emulated, V _{CCIO} = 2.5 V	300	MHz
RSDS25	RSDS, Emulated, V _{CCIO} = 2.5 V	612	MHz
BLVDS25	BLVDS, Emulated, V _{CCIO} = 2.5 V	300	MHz
PPLVDS	Point-to-point LVDS	612	MHz
LVPECL33	LVPECL, Emulated, V _{CCIO} = 3.3 V	612	MHz
Mini-LVDS	Mini LVDS	612	MHz
HSTL18 (all supported classes)	HSTL_18 class I, II, V _{CCIO} = 1.8 V	200	MHz
HSTL15 (all supported classes)	HSTL_15 class I, V _{CCIO} = 1.5 V	200	MHz
SSTL33 (all supported classes)	SSTL_3 class I, II, V _{CCIO} = 3.3 V	233	MHz
SSTL25 (all supported classes)	SSTL_2 class I, II, V _{CCIO} = 2.5 V	233	MHz
SSTL18 (all supported classes)	SSTL_18 class I, II, V _{CCIO} = 1.8 V	266	MHz
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	166	MHz
LVCMOS33 (For all drives)	LVCMOS, 3.3 V	166	MHz
LVCMOS25 (For all drives)	LVCMOS, 2.5 V	166	MHz
LVCMOS18 (For all drives)	LVCMOS, 1.8 V	166	MHz
LVCMOS15 (For all drives)	LVCMOS, 1.5 V	166	MHz
LVCMOS12 (For all drives except 2 mA)	LVCMOS, V _{CCIO} = 1.2 V	166	MHz
LVCMOS12 (2 mA drive)	LVCMOS, V _{CCIO} = 1.2 V	100	MHz

Figure 3-16. Jitter Transfer – 1.25 Gbps

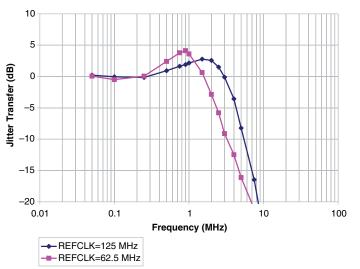
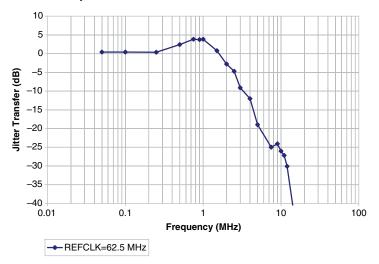



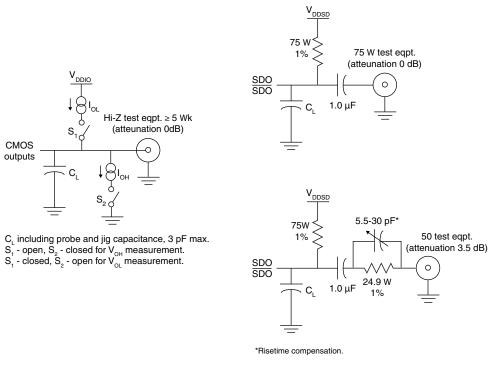
Figure 3-17. Jitter Transfer – 622 Mbps

HDMI (High-Definition Multimedia Interface) Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-22. Transmit and Receive^{1, 2}

		Spec. Co		
Symbol	Description	Min. Spec.	Max. Spec.	Units
Transmit		•	1	
Intra-pair Skew		—	75	ps
Inter-pair Skew		—	800	ps
TMDS Differential Clock Jitter		—	0.25	UI
Receive			•	
R _T	Termination Resistance	40	60	Ohms
V _{ICM}	Input AC Common Mode Voltage (50-Ohm Set- ting)	-	50	mV
TMDS Clock Jitter	Clock Jitter Tolerance	—	0.25	UI


1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable equalizer before data/clock is forwarded to the LatticeECP3 device.

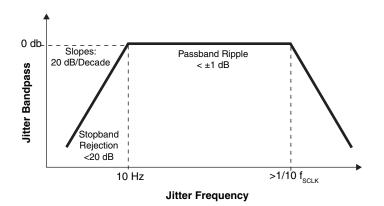
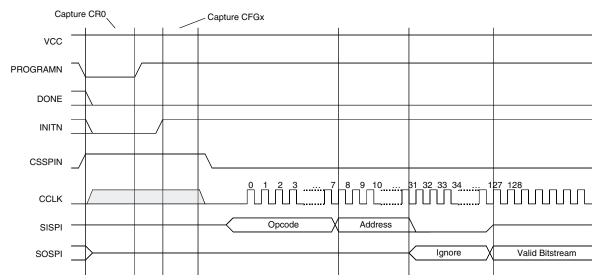


Figure 3-19. Test Loads

Test Loads



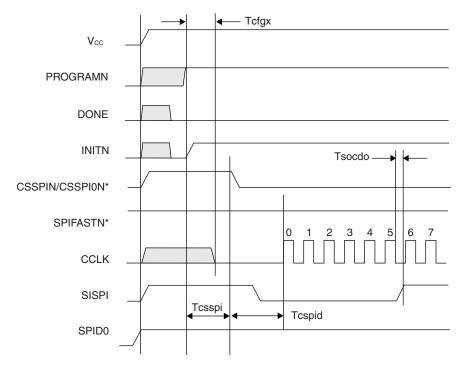


Figure 3-30. SPI Configuration Waveforms

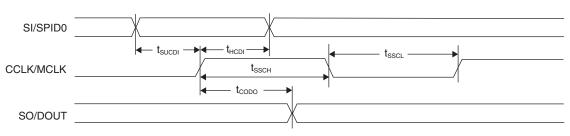
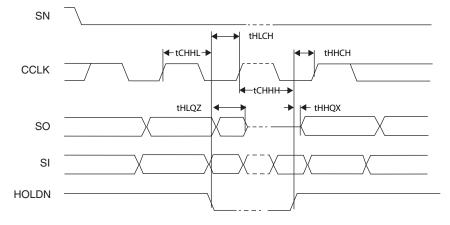
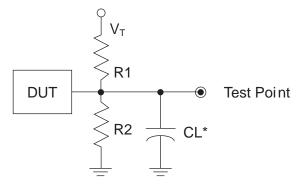



Figure 3-31. Slave SPI HOLDN Waveforms



Switching Test Conditions

Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-23.

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞	∞	0 pF	LVCMOS 1.8 = V _{CCIO} /2	—
				LVCMOS 1.5 = V _{CCIO} /2	—
				LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)	x	1MΩ	0 pF	V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> L)	1 MΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	0 pF	V _{OH} - 0.10	—
LVCMOS 2.5 I/O (L -> Z)	100	∞	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Signal Descriptions (Cont.)

Signal Name	I/O	Description			
[LOC]DQS[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball function number.			
[LOC]DQ[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated DQS number.			
Test and Programming (Dedicated	Pins)				
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.			
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.			
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.			
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.			
VCCJ	_	Power supply pin for JTAG Test Access Port.			
Configuration Pads (Used During	sysCONFI	Ġ)			
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.			
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During con uration, a pull-up is enabled. It is a dedicated pin.			
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. It is a dedicated pin.			
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. It is a dedicated pin.			
CCLK	I	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. It is a dedicated pin.			
MCLK	I/O	Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Master configuration modes.			
BUSY/SISPI	0	Parallel configuration mode busy indicator. SPI/SPIm mode data output.			
CSN/SN/OEN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. Parallel burst Flash output enable.			
CS1N/HOLDN/RDY	I	Parallel configuration mode active-low chip select. Slave SPI hold input.			
WRITEN	I	Write enable for parallel configuration modes.			
DOUT/CSON/CSSPI1N	0	Serial data output. Chip select output. SPI/SPIm mode chip select.			
		sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.			
D[0]/SPIFASTN	I/O	sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm mode, this pin should either be tied high or low, must not be left floating. Open drain during configuration.			
D1	I/O	Parallel configuration I/O. Open drain during configuration.			
D2	I/O	Parallel configuration I/O. Open drain during configuration.			
D3/SI	I/O	Parallel configuration I/O. Slave SPI data input. Open drain during configura- tion.			
D4/SO	I/O	Parallel configuration I/O. Slave SPI data output. Open drain during configura- tion.			
D5	I/O	Parallel configuration I/O. Open drain during configuration.			
D6/SPID1	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.			

Pin Information Summary (Cont.)

Pin Information Summary			ECP3-95EA	ECP3-150EA		
Pin Typ	e	484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	42	60	86	60	94
	Bank 1	36	48	78	48	86
	Bank 2	24	34	36	34	58
General Purpose Inputs/Outputs per bank	Bank 3	54	59	86	59	104
	Bank 6	63	67	86	67	104
	Bank 7	36	48	54	48	76
	Bank 8	24	24	24	24	24
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	4	8	8	8	8
General Purpose Inputs per Bank	Bank 3	4	12	12	12	12
Jank	Bank 6	4	12	12	12	12
	Bank 7	4	8	8	8	8
	Bank 8	0	0	0	0	0
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	0	0	0	0	0
General Purpose Outputs per Bank	Bank 3	0	0	0	0	0
Dalik	Bank 6	0	0	0	0	0
	Bank 7	0	0	0	0	0
	Bank 8	0	0	0	0	0
Total Single-Ended User I/O		295	380	490	380	586
VCC		16	32	32	32	32
VCCAUX		8	12	16	12	16
VTT		4	4	8	4	8
VCCA		4	8	16	8	16
VCCPLL		4	4	4	4	4
	Bank 0	2	4	4	4	4
	Bank 1	2	4	4	4	4
	Bank 2	2	4	4	4	4
VCCIO	Bank 3	2	4	4	4	4
	Bank 6	2	4	4	4	4
	Bank 7	2	4	4	4	4
	Bank 8	2	2	2	2	2
VCCJ		1	1	1	1	1
TAP		4	4	4	4	4
GND, GNDIO		98	139	233	139	233
NC		0	0	238	0	116
Reserved ¹		2	2	2	2	2
SERDES		26	52	78	52	104
Miscellaneous Pins		8	8	8	8	8
Total Bonded Pins		484	672	1156	672	1156

LatticeECP3 Family Data Sheet Supplemental Information

February 2014

Data Sheet DS1021

For Further Information

A variety of technical notes for the LatticeECP3 family are available on the Lattice website at <u>www.latticesemi.com</u>.

- TN1169, LatticeECP3 sysCONFIG Usage Guide
- TN1176, LatticeECP3 SERDES/PCS Usage Guide
- TN1177, LatticeECP3 sysIO Usage Guide
- TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide
- TN1179, LatticeECP3 Memory Usage Guide
- TN1180, LatticeECP3 High-Speed I/O Interface
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- TN1182, LatticeECP3 sysDSP Usage Guide
- TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide
- TN1189, LatticeECP3 Hardware Checklist
- TN1215, LatticeECP2MS and LatticeECP2S Devices
- TN1216, LatticeECP2/M and LatticeECP3 Dual Boot Feature Advanced Security Encryption Key Programming Guide for LatticeECP3
- TN1222, LatticeECP3 Slave SPI Port User's Guide

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.