

Welcome to E-XFL.COM

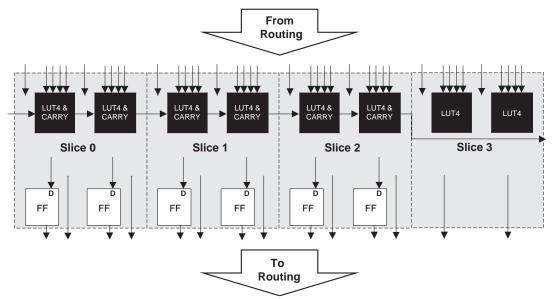
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	116
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	328-LFBGA, CSBGA
Supplier Device Package	328-CSBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-17ea-8mg328c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. PFU Diagram

Slice

Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

PFU BLock			PFF Block			
Slice	Resources Modes		Resources	Modes		
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 3	2 LUT4s	Logic, ROM	2 LUT4s	Logic, ROM		

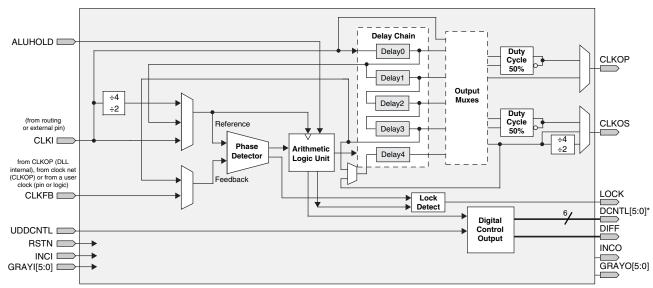
Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

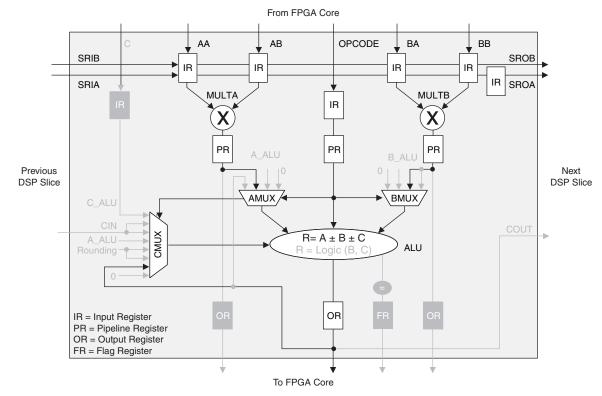
Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmitted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the current value on the DCNTL bus.

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of the DLL inputs and outputs.

The user can configure the DLL for many common functions such as time reference delay mode and clock injection removal mode. Lattice provides primitives in its design tools for these functions.




Figure 2-5. Delay Locked Loop Diagram (DLL)

* This signal is not user accessible. This can only be used to feed the slave delay line.

MMAC DSP Element

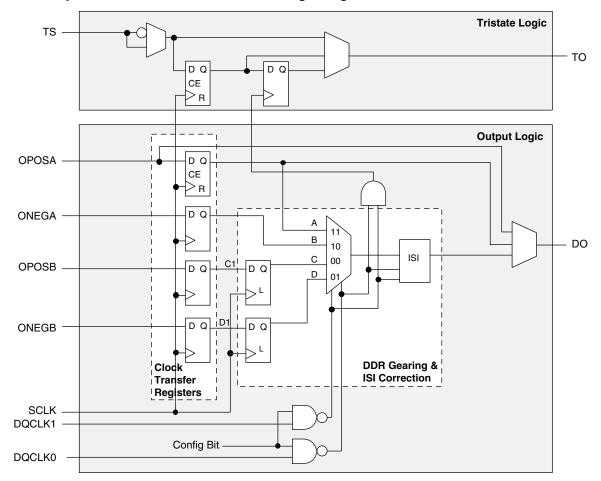

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

Figure 2-34. Output and Tristate Block for Left and Right Edges

Tristate Register Block

The tristate register block registers tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The output of this register is used as a tristate control.

ISI Calibration

The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control logic block.

For more information about this topic, please see the list of technical documentation at the end of this data sheet.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges

The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory interfaces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-35 shows the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS control logic block.

Bottom Edge

PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces.

Top Edge

PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR memories that support 10 bits of data.

PIO A	→	PADA "T" LVDS Pair
PIO B	·	PADB "C"
PIO A		PADA "T"
PIO B	· · ·	
PIO A		PADA "T"
PIO B	·	PADB "C"
PIO A	syslO Buffer Delay ◀	PADA "T" LVDS Pair
PIO B	 +	PADB "C"
PIO A		PADA "T" LVDS Pair
 PIO B	·	PADB "C"
PIO A		PADA "T" LVDS Pair
PIO B		PADB "C"

Figure 2-35. DQS Grouping on the Left, Right and Top Edges

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

sysl/O Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL}	V _{OH}		
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} ¹ (mA)	I _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
EV ONICO 15	-0.5	0.00 4 5 5 10	0.03 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS12	-0.3	0.35 V _{CC}	0.65 V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
	-0.0	0.00 VCC	0.00 4.00	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
SSTL18_II	-0.3	V 0.125	V _{REF} + 0.125	3.6	0.28	V _{CCIO} - 0.28	8	-8
(DDR2 Memory)	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.0	0.20	V CCIO - 0.20	11	-11
SSTL2_I	-0.3	V _{REF} - 0.18	V _{BFF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	7.6	-7.6
551L2_1	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.54	VCCIO - 0.02	12	-12
SSTL2_II	-0.3	V _{BEE} - 0.18	V _{BFF} + 0.18	3.6	0.35	V _{CCIO} - 0.43	15.2	-15.2
(DDR Memory)	-0.5	V _{REF} - 0.10		5.0	0.55	VCCIO - 0.43	20	-20
SSTL3_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL3_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTL15	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.3	V _{CCIO} - 0.3	7.5	-7.5
(DDR3 Memory)	-0.5	VREF - 0.1	VREF + 0.1	0.0	0.0	V _{CCIO} * 0.8	9	-9
HSTL15_I	-0.3	V _{BEE} - 0.1	V _{REF} + 0.1	3.6	0.4		4	-4
	0.0	VREF 0.1	VREF 1 0.1	0.0	0.4	VCCID 0.4	8	-8
HSTL18_I	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.3	8	-8
	-0.5	VREF - 0.1	* REF + 0.1	0.0	0.4	*CCIO - 0.4	12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

1. For electromigration, the average DC current drawn by I/O pads between two consecutive V_{CCIO} or GND pad connections, or between the last V_{CCIO} or GND in an I/O bank and the end of an I/O bank, as shown in the Logic Signal Connections table (also shown as I/O grouping) shall not exceed n * 8 mA, where n is the number of I/O pads between the two consecutive bank V_{CCIO} or GND connections or between the last V_{CCIO} and GND in a bank and the end of a bank. IO Grouping can be found in the Data Sheet Pin Tables, which can also be generated from the Lattice Diamond software.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-	-8	-	-7		-6	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDRX2 (Output with Clock and Data (>10 Bits	Wide) Centered at Pir	N Using	PLL (GDI	DRX2_TX	.PLL.Cer	ntered)10	•	•
Left and Right Si	des								
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	285		370		431	_	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	285		370		432		ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	_	375	MHz
Memory Interface	9								
DDR/DDR2 I/O Pi	n Parameters (Input Data are Strobe	Edge Aligned, Output	ut Strobe	e Edge is	Data Ce	ntered)4			
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	_	0.225	—	0.225	—	0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	_	0.64	_	UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	—	0.25	—	UI
f _{MAX_DDR}	DDR Clock Frequency	All ECP3 Devices	95	200	95	200	95	166	MHz
f _{MAX_DDR2}	DDR2 clock frequency	All ECP3 Devices	125	266	125	200	125	166	MHz
DDR3 (Using PLI	for SCLK) I/O Pin Parameters								•
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices		0.225		0.225		0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64		0.64		0.64		UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25		0.25		0.25		UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25		0.25		0.25		UI
f _{MAX_DDR3}	DDR3 clock frequency	All ECP3 Devices	300	400	266	333	266	300	MHz
DDR3 Clock Timi	ing			•		•		•	•
t _{CH} (avg) ⁹	Average High Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{CL} (avg) ⁹	Average Low Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{JIT} (per, lck) ⁹	Output Clock Period Jitter During DLL Locking Period	All ECP3 Devices	-90	90	-90	90	-90	90	ps
t _{JIT} (cc, lck) ⁹	Output Cycle-to-Cycle Period Jit- ter During DLL Locking Period	All ECP3 Devices	_	180	_	180	_	180	ps

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

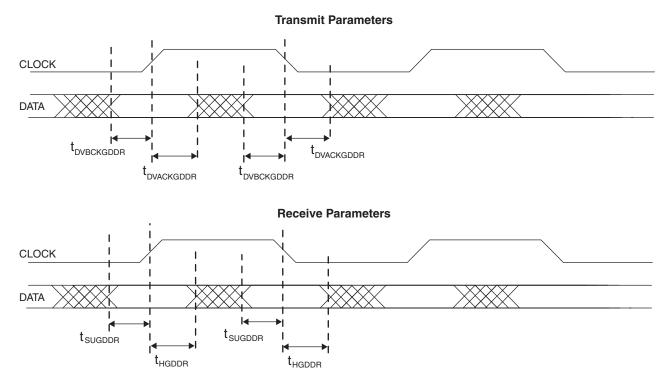
6. Uses LVDS I/O standard.

7. The current version of software does not support per bank skew numbers; this will be supported in a future release.

8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

9. Using settings generated by IPexpress.

10. These numbers are generated using best case PLL located in the center of the device.


11. Uses SSTL25 Class II Differential I/O Standard.

12. All numbers are generated with ispLEVER 8.1 software.

13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)

LatticeECP3 Internal Switching Characteristics^{1, 2, 5} (Continued)

		-	8	-	7	-	-6	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.141		0.145		0.149		ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.087	_	0.096	_	0.104	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.066	_	-0.080	_	-0.094	_	ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.071	_	-0.070	_	-0.068	_	ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register	0.118	_	0.098	_	0.077	_	ns
DSP Block Tin	ning ³							
t _{SUI_DSP}	Input Register Setup Time	0.32		0.36		0.39		ns
t _{HI_DSP}	Input Register Hold Time	-0.17	_	-0.19	_	-0.21		ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.23	_	2.30	_	2.37	_	ns
t _{HP_DSP}	Pipeline Register Hold Time	-1.02	_	-1.09	_	-1.15		ns
t _{SUO_DSP}	Output Register Setup Time	3.09		3.22		3.34		ns
t _{HO_DSP}	Output Register Hold Time	-1.67	_	-1.76	_	-1.84		ns
t _{COI_DSP}	Input Register Clock to Output Time	_	3.05		3.35		3.73	ns
t _{COP_DSP}	Pipeline Register Clock to Output Time	_	1.30	—	1.47	—	1.64	ns
t _{COO_DSP}	Output Register Clock to Output Time	_	0.58		0.60		0.62	ns
t _{SUOPT_DSP}	Opcode Register Setup Time	0.31		0.35		0.39		ns
t _{HOPT_DSP}	Opcode Register Hold Time	-0.20		-0.24		-0.27		ns
t _{SUDATA_DSP}	Cascade_data through ALU to Output Register Setup Time	1.69	_	1.94	_	2.14	_	ns
t _{HPDATA_DSP}	Cascade_data through ALU to Output Register Hold Time	-0.58	_	-0.80	_	-0.97	_	ns

Over Recommended Commercial Operating Conditions

1. Internal parameters are characterized but not tested on every device.

2. Commercial timing numbers are shown. Industrial timing numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. DSP slice is configured in Multiply Add/Sub 18 x 18 mode.

4. The output register is in Flip-flop mode.

5. For details on –9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units
Input Adjusters					1
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns
Output Adjusters			•	•	
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7} (Continued)

Buffer Type	Description	-8	-7	6	Units
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, fast slew rate	0.21	0.25	0.29	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, fast slew rate	0.05	0.07	0.09	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, fast slew rate	0.43	0.51	0.59	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, fast slew rate	0.23	0.28	0.33	ns
LVCMOS33_4mA	LVCMOS 3.3 4 mA drive, slow slew rate	1.44	1.58	1.72	ns
LVCMOS33_8mA	LVCMOS 3.3 8 mA drive, slow slew rate	0.98	1.10	1.22	ns
LVCMOS33_12mA	LVCMOS 3.3 12 mA drive, slow slew rate	0.67	0.77	0.86	ns
LVCMOS33_16mA	LVCMOS 3.3 16 mA drive, slow slew rate	0.97	1.09	1.21	ns
LVCMOS33_20mA	LVCMOS 3.3 20 mA drive, slow slew rate	0.67	0.76	0.85	ns
LVCMOS25_4mA	LVCMOS 2.5 4 mA drive, slow slew rate	1.48	1.63	1.78	ns
LVCMOS25_8mA	LVCMOS 2.5 8 mA drive, slow slew rate	1.02	1.14	1.27	ns
LVCMOS25_12mA	LVCMOS 2.5 12 mA drive, slow slew rate	0.74	0.84	0.94	ns
LVCMOS25_16mA	LVCMOS 2.5 16 mA drive, slow slew rate	1.02	1.14	1.26	ns
LVCMOS25_20mA	LVCMOS 2.5 20 mA drive, slow slew rate	0.74	0.83	0.93	ns
LVCMOS18_4mA	LVCMOS 1.8 4 mA drive, slow slew rate	1.60	1.77	1.93	ns
LVCMOS18_8mA	LVCMOS 1.8 8 mA drive, slow slew rate	1.11	1.25	1.38	ns
LVCMOS18_12mA	LVCMOS 1.8 12 mA drive, slow slew rate	0.87	0.98	1.09	ns
LVCMOS18_16mA	LVCMOS 1.8 16 mA drive, slow slew rate	0.86	0.97	1.07	ns
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, slow slew rate	1.71	1.89	2.08	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, slow slew rate	1.20	1.34	1.48	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, slow slew rate	1.37	1.56	1.74	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, slow slew rate	1.11	1.27	1.43	ns
PCI33	PCI, VCCIO = 3.3 V	-0.12	-0.13	-0.14	ns

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.

5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

6. This data does not apply to the LatticeECP3-17EA device.

7. For details on –9 speed grade devices, please contact your Lattice Sales Representative.

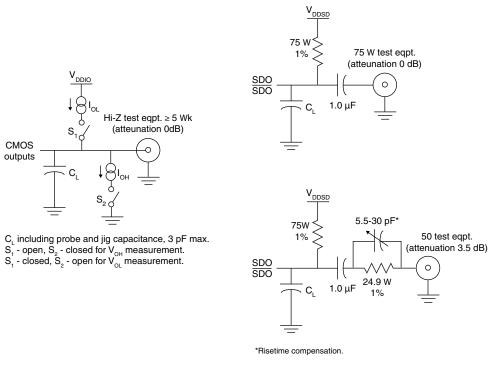
sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
4	Input clock frequency (CLKI,		Edge clock	2	_	500	MHz
f _{IN}	CLKFB)		Primary clock ⁴	2	_	420	MHz
4	Output clock frequency (CLKOP,		Edge clock	4	_	500	MHz
fout	CLKOS)		Primary clock ⁴	4	_	420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125	_	250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667	-	166	MHz
f _{VCO}	PLL VCO frequency			500	_	1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2	-	500	MHz
			Primary clock ⁴	2	_	420	MHz
AC Charac	teristics					1	
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	Output clock duty cycle (CLKOS, at 50% setting)	f _{OUT} ≤ 250 MHz	Primary clock	45	50	55	%
	(OEROO, at 50 % setting)	f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8		_	ns
		f _{OUT} ≥ 420 MHz		_		200	ps
t _{OPJIT} 1	Output clock period jitter	420 MHz > f _{OUT} ≥ 100 MHz		_	_	250	ps
		f _{OUT} < 100 MHz		_		0.025	UIPP
t _{SK}	Input clock to output clock skew when N/M = integer			_		500	ps
. 2		2 to 25 MHz			_	200	us
t _{LOCK} ²	Lock time	25 to 500 MHz		_	_	50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_	_	50	ns
t _{HI}	Input clock high time	90% to 90%		0.5	_	_	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	-	ns
t _{IPJIT}	Input clock period jitter			—	_	400	ps
	Reset signal pulse width high, RSTK			10		_	ns
t _{RST}	Reset signal pulse width high, RST			500	_	-	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.


3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

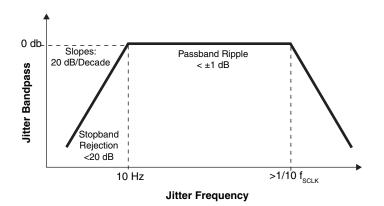


Figure 3-19. Test Loads

Test Loads

Pin Information Summary

Pin Information Summary		ECP3-17EA			ECP3-35EA			ECP3-70EA		
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	26	20	36	26	42	48	42	60	86
	Bank 1	14	10	24	14	36	36	36	48	78
	Bank 2	6	7	12	6	24	24	24	34	36
General Purpose Inputs/Outputs per Bank	Bank 3	18	12	44	16	54	59	54	59	86
	Bank 6	20	11	44	18	63	61	63	67	86
	Bank 7	19	26	32	19	36	42	36	48	54
	Bank 8	24	24	24	24	24	24	24	24	24
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	2	2	2	2	4	4	4	8	8
General Purpose Inputs per Bank	Bank 3	0	0	0	2	4	4	4	12	12
per Dalik	Bank 6	0	0	0	2	4	4	4	12	12
	Bank 7	4	4	4	4	4	4	4	8	8
	Bank 8	0	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0	0
General Purpose Out-	Bank 3	0	0	0	0	0	0	0	0	0
puts per Bank	Bank 6	0	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0	0
Total Single-Ended User I/O		133	116	222	133	295	310	295	380	490
VCC		6	16	16	6	16	32	16	32	32
VCCAUX		4	5	8	4	8	12	8	12	16
VTT		4	7	4	4	4	4	4	4	8
VCCA		4	6	4	4	4	8	4	8	16
VCCPLL		2	2	4	2	4	4	4	4	4
	Bank 0	2	3	2	2	2	4	2	4	4
	Bank 1	2	3	2	2	2	4	2	4	4
	Bank 2	2	2	2	2	2	4	2	4	4
VCCIO	Bank 3	2	3	2	2	2	4	2	4	4
	Bank 6	2	3	2	2	2	4	2	4	4
	Bank 7	2	3	2	2	2	4	2	4	4
	Bank 8	1	2	2	1	2	2	2	2	2
VCCJ	1	1	1	1	1	1	1	1	1	1
TAP		4	4	4	4	4	4	4	4	4
GND, GNDIO		51	126	98	51	98	139	98	139	233
NC		0	0	73	0	0	96	0	0	238
Reserved ¹		0	0	2	0	2	2	2	2	2
SERDES		26	18	26	26	26	26	26	52	- 78
Miscellaneous Pins		8	8	8	8	8	8	8	8	8
Total Bonded Pins				-	-		-			-

Pin Information Summary (Cont.)

Pin Information Summary Pin Type			ECP3-95EA	ECP3-150EA		
		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	42	60	86	60	94
	Bank 1	36	48	78	48	86
	Bank 2	24	34	36	34	58
General Purpose Inputs/Outputs per bank	Bank 3	54	59	86	59	104
	Bank 6	63	67	86	67	104
	Bank 7	36	48	54	48	76
	Bank 8	24	24	24	24	24
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	4	8	8	8	8
General Purpose Inputs per Bank	Bank 3	4	12	12	12	12
Dalik	Bank 6	4	12	12	12	12
	Bank 7	4	8	8	8	8
	Bank 8	0	0	0	0	0
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	0	0	0	0	0
General Purpose Outputs per Bank	Bank 3	0	0	0	0	0
Dalik	Bank 6	0	0	0	0	0
	Bank 7	0	0	0	0	0
	Bank 8	0	0	0	0	0
Total Single-Ended User I/O		295	380	490	380	586
VCC		16	32	32	32	32
VCCAUX		8	12	16	12	16
VTT		4	4	8	4	8
VCCA		4	8	16	8	16
VCCPLL		4	4	4	4	4
	Bank 0	2	4	4	4	4
	Bank 1	2	4	4	4	4
	Bank 2	2	4	4	4	4
VCCIO	Bank 3	2	4	4	4	4
	Bank 6	2	4	4	4	4
	Bank 7	2	4	4	4	4
	Bank 8	2	2	2	2	2
VCCJ		1	1	1	1	1
TAP		4	4	4	4	4
GND, GNDIO		98	139	233	139	233
NC		0	0	238	0	116
Reserved ¹		2	2	2	2	2
SERDES		26	52	78	52	104
Miscellaneous Pins		8	8	8	8	8
Total Bonded Pins		484	672	1156	672	1156

LatticeECP3 Devices, Green and Lead-Free Packaging

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	СОМ	17
LFE3-17EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	СОМ	17
LFE3-17EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6MG328C	1.2 V	-6	STD	Green csBGA	328	COM	17
LFE3-17EA-7MG328C	1.2 V	-7	STD	Green csBGA	328	COM	17
LFE3-17EA-8MG328C	1.2 V	-8	STD	Green csBGA	328	COM	17
LFE3-17EA-6LMG328C	1.2 V	-6	LOW	Green csBGA	328	COM	17
LFE3-17EA-7LMG328C	1.2 V	-7	LOW	Green csBGA	328	COM	17
LFE3-17EA-8LMG328C	1.2 V	-8	LOW	Green csBGA	328	COM	17
LFE3-17EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	17

Commercial

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Data Sheet Revision History

March 2015

Data Sheet DS1021

Date	Version	Section	Change Summary
March 2015	2.8EA	Pinout Information All	Updated Package Pinout Information section. Changed reference to http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.
			Minor style/formatting changes.
April 2014	02.7EA	DC and Switching	Updated LatticeECP3 Supply Current (Standby) table power numbers.
		Characteristics	Removed speed grade -9 timing numbers in the following sections: — Typical Building Block Function Performance — LatticeECP3 External Switching Characteristics — LatticeECP3 Internal Switching Characteristics — LatticeECP3 Family Timing Adders
		Ordering Information	Removed ordering information for -9 speed grade devices.
March 2014	02.6EA	DC and Switching Characteristics	Added information to the sysl/O Single-Ended DC Electrical Character- istics section footnote.
February 2014	02.5EA	DC and Switching Characteristics	Updated Hot Socketing Specifications table. Changed I_{Pw} to I_{PD} in footnote 3.
			Updated the following figures: — Figure 3-25, sysCONFIG Port Timing — Figure 3-27, Wake-Up Timing
		Supplemental Information	Added technical note references.
September 2013	02.4EA	DC and Switching	Updated the Wake-Up Timing Diagram
		Characteristics	Added the following figures: — Master SPI POR Waveforms — SPI Configuration Waveforms — Slave SPI HOLDN Waveforms
			Added tIODISS and tIOENSS parameters in LatticeECP3 sysCONFIG Port Timing Specifications table.
June 2013	02.3EA	Architecture	sysl/O Buffer Banks text section – Updated description of "Top (Bank 0 and Bank 1) and Bottom syslO Buffer Pairs (Single-Ended Outputs Only)" for hot socketing information.
			sysl/O Buffer Banks text section – Updated description of "Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)" for PCI clamp information.
			On-Chip Oscillator section – clarified the speed of the internal CMOS oscillator (130 MHz +/- 15%).
			Architecture Overview section – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	sysl/O Recommended Operating Conditions table – Removed reference to footnote 1 from RSDS standard.
			sysl/O Single-Ended DC Electrical Characteristics table – Modified foot- note 1.
			Added Oscillator Output Frequency table.
			LatticeECP3 sysCONFIG Port Timing Specifications table – Updated min. column for t _{CODO} parameter.
			LatticeECP3 Family Timing Adders table – Description column, references to VCCIO = $3.0V$ changed to $3.3V$. For PPLVDS, description changed from emulated to True LVDS and VCCIO = $2.5V$ changed to VCCIO = $2.5V$ or $3.3V$.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			Updated Frequency to 150 Mbps in Table 3-11 Periodic Receiver Jitter Tolerance Specification
December 2010	01.7EA	Multiple	Data sheet made final. Removed "preliminary" headings.
			Removed data for 70E and 95E devices. A separate data sheet is available for these specific devices.
			Updated for Lattice Diamond design software.
		Introduction	Corrected number of user I/Os
		Architecture	Corrected the package type in Table 2-14 Available SERDES Quad per LatticeECP3 Devices.
			Updated description of General Purpose PLL
			Added additional information in the Flexible Quad SERDES Architecture section.
			Added footnotes and corrected the information in Table 2-16 Selectable master Clock (MCCLK) Frequencies During Configuration (Nominal).
			Updated Figure 2-16, Per Region Secondary Clock Selection.
			Updated description for On-Chip Programmable Termination.
			Added information about number of rows of DSP slices.
			Updated footnote 2 for Table 2-12, On-Chip Termination Options for Input Modes.
			Updated information for sysIO buffer pairs.
			Corrected minimum number of General Purpose PLLs (was 4, now 2).
	DC and Switching Characteristics	DC and Switching Characteristics	Regenerated sysCONFIG Port Timing figure.
			Added t_W (clock pulse width) in External Switching Characteristics table.
			Corrected units, revised and added data, and corrected footnote 1 in External Switching Characteristics table.
			Added Jitter Transfer figures in SERDES External Reference Clock section.
			Corrected capacitance information in the DC Electrical Characteristics table.
			Corrected data in the Register-to-Register Performance table.
			Corrected GDDR Parameter name HOGDDR.
			Corrected RSDS25 -7 data in Family Timing Adders table.
			Added footnotes 10-12 to DDR data information in the External Switching Characteristics table.
			Corrected titles for Figures 3-7 (DDR/DDR2/DDR3 Parameters) and 3-8 (Generic DDR/DDRX2 Parameters).
			Updated titles for Figures 3-5 (MLVDS25 (Multipoint Low Voltage Differential Signaling)) and 3-6 (Generic DDRX1/DDRX2 (With Clock and Data Edges Aligned)).
			Updated Supply Current table.
			Added GDDR interface information to the External Switching and Characteristics table.
			Added footnote to sysIO Recommended Operating Conditions table.
			Added footnote to LVDS25 table.
			Corrected DDR section footnotes and references.
			Corrected Hot Socketing support from "top and bottom banks" to "top and bottom I/O pins".
	·	Pinout Information	Updated description for VTTx.