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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Introduction
The LatticeECP3™ (EConomy Plus Third generation) family of FPGA devices is optimized to deliver high perfor-
mance features such as an enhanced DSP architecture, high speed SERDES and high speed source synchronous 
interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture 
and the use of 65 nm technology making the devices suitable for high-volume, high-speed, low-cost applications.

The LatticeECP3 device family expands look-up-table (LUT) capacity to 149K logic elements and supports up to 
586 user I/Os. The LatticeECP3 device family also offers up to 320 18 x 18 multipliers and a wide range of parallel 
I/O standards.

The LatticeECP3 FPGA fabric is optimized with high performance and low cost in mind. The LatticeECP3 devices 
utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distrib-
uted and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), pre-engineered source 
synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and 
dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the LatticeECP3 device family supports a broad 
range of interface standards, including DDR3, XGMII and 7:1 LVDS.

The LatticeECP3 device family also features high speed SERDES with dedicated PCS functions. High jitter toler-
ance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular 
data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit Pre-empha-
sis and Receive Equalization settings make the SERDES suitable for transmission and reception over various 
forms of media.

The LatticeECP3 devices also provide flexible, reliable and secure configuration options, such as dual-boot capa-
bility, bit-stream encryption, and TransFR field upgrade features.

The Lattice Diamond™ and ispLEVER® design software allows large complex designs to be efficiently imple-
mented using the LatticeECP3 FPGA family. Synthesis library support for LatticeECP3 is available for popular logic 
synthesis tools. Diamond and ispLEVER tools use the synthesis tool output along with the constraints from its floor 
planning tools to place and route the design in the LatticeECP3 device. The tools extract the timing from the routing 
and back-annotate it into the design for timing verification. 

Lattice provides many pre-engineered IP (Intellectual Property) modules for the LatticeECP3 family. By using these 
configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their 
design, increasing their productivity.
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
—  A greater-than-or-equal-to B
—  A not-equal-to B
—  A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-32. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only 
allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals. 

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot 
socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these 
banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side 
pads can be identified by the Lattice Diamond tool.
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Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter
Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential 
inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of 
sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input 
DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with 
settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 
1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set 
uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a 
DQS-12 group.

Hot Socketing
LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is 
high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. 
Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)
LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the 
devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-
150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

• PCI Express 1.1

• Ethernet (XAUI, GbE - 1000 Base CS/SX/LX and SGMII)

• Serial RapidIO

• SMPTE SDI (3G, HD, SD)

• CPRI

• SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a 
PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the stan-
dards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated pro-
tocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad 
with the use of dedicated, per channel 1, 2 and 11 rate dividers. Additionally, multiple quads can be arranged 
together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine 
multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage 
Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dual-
boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 
system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data dur-
ing download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to 
the original backup golden configuration and try again. This all can be done without power cycling the system. 
For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support
LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configura-
tion, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device 
can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration 
SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LatticeECP3 devices require a single external, 10 kOhm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for 
configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is 
completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available 
MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence 
takes place: 

1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK 
frequency of 2.5 MHz.

This internal 130 MHz +/– 15% CMOS oscillator is available to the user by routing it as an input clock to the clock 
tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, 
LatticeECP3 sysCONFIG Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and 
Diamond software for specific restrictions and limitations.

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=32&sloc=01-01-00-10
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LatticeECP3 Supply Current (Standby)1, 2, 3, 4, 5, 6

Over Recommended Operating Conditions

Symbol Parameter Device

Typical

Units–6L, –7L, –8L –6, –7, –8

ICC Core Power Supply Current

ECP-17EA 29.8 49.4 mA

ECP3-35EA 53.7 89.4 mA

ECP3-70EA 137.3 230.7 mA

ECP3-95EA 137.3 230.7 mA

ECP3-150EA 219.5 370.9 mA

ICCAUX Auxiliary Power Supply Current

ECP-17EA 18.3 19.4 mA

ECP3-35EA 19.6 23.1 mA

ECP3-70EA 26.5 32.4 mA

ECP3-95EA 26.5 32.4 mA

ECP3-150EA 37.0 45.7 mA

ICCPLL PLL Power Supply Current (Per PLL)

ECP-17EA 0.0 0.0 mA

ECP3-35EA 0.1 0.1 mA

ECP3-70EA 0.1 0.1 mA

ECP3-95EA 0.1 0.1 mA

ECP3-150EA 0.1 0.1 mA

ICCIO Bank Power Supply Current (Per Bank)

ECP-17EA 1.3 1.4 mA

ECP3-35EA 1.3 1.4 mA

ECP3-70EA 1.4 1.5 mA

ECP3-95EA 1.4 1.5 mA

ECP3-150EA 1.4 1.5 mA

ICCJ JTAG Power Supply Current All Devices 2.5 2.5 mA

ICCA
Transmit, Receive, PLL and 
Reference Clock Buffer Power Supply

ECP-17EA 6.1 6.1 mA

ECP3-35EA 6.1 6.1 mA

ECP3-70EA 18.3 18.3 mA

ECP3-95EA 18.3 18.3 mA

ECP3-150EA 24.4 24.4 mA

1. For further information on supply current, please see the list of technical documentation at the end of this data sheet.
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.
3. Frequency 0 MHz.
4. Pattern represents a “blank” configuration data file.
5. TJ = 85 °C, power supplies at nominal voltage.
6. To determine the LatticeECP3 peak start-up current data, use the Power Calculator tool.
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BLVDS25
The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS 
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when 
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one 
possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS25 Multi-point Output Example

Table 3-2. BLVDS25 DC Conditions1

Over Recommended Operating Conditions

Parameter Description

Typical

UnitsZo = 45 Zo = 90

VCCIO Output Driver Supply (+/– 5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/– 1%) 90.00 90.00 

RTL Driver Parallel Resistor (+/– 1%) 45.00 90.00 

RTR Receiver Termination (+/– 1%) 45.00 90.00 

VOH Output High Voltage 1.38 1.48 V

VOL Output Low Voltage 1.12 1.02 V

VOD Output Differential Voltage 0.25 0.46 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 11.24 10.20 mA

1. For input buffer, see LVDS table.

Heavily loaded backplane, effective Zo ~ 45 to 90 Ohms differential

2.5 V

RTL RTR

RS = 90 Ohms
RS = 90 Ohms RS = 

90 Ohms

RS = 
90 Ohms RS = 

90 Ohms

RS = 
90 Ohms

RS = 
90 Ohms

RS = 
90 Ohms

45-90 
Ohms

45-90 
Ohms

2.5 V

2.5 V

2.5 V 2.5 V 2.5 V 2.5 V

2.5 V

+
–

. . .
+ –

. . .
+
–

+ –

16 mA

16 mA

16 mA 16 mA 16 mA 16 mA

16 mA

16 mA
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12 mA Drive)1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 4.7 ns

32-bit Decoder 4.7 ns

64-bit Decoder 5.7 ns

4:1 MUX 4.1 ns

8:1 MUX 4.3 ns

16:1 MUX 4.7 ns

32:1 MUX 4.8 ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses 
internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

Register-to-Register Performance1, 2, 3

 Function –8 Timing Units

Basic Functions

16-bit Decoder 500 MHz

32-bit Decoder 500 MHz

64-bit Decoder 500 MHz

4:1 MUX 500 MHz

8:1 MUX 500 MHz

16:1 MUX 500 MHz

32:1 MUX 445 MHz

8-bit adder 500 MHz

16-bit adder 500 MHz

64-bit adder 305 MHz

16-bit counter 500 MHz

32-bit counter 460 MHz

64-bit counter 320 MHz

64-bit accumulator 315 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 340 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 340 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers 130 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 245 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 500 MHz

32x4 Pseudo-Dual Port RAM 500 MHz

64x8 Pseudo-Dual Port RAM 400 MHz

DSP Function

18x18 Multiplier (All Registers) 400 MHz

9x9 Multiplier (All Registers) 400 MHz

36x36 Multiply (All Registers) 260 MHz
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, 2Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are 
worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case pro-
cess, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide 
logic timing numbers at a particular temperature and voltage.

18x18 Multiply/Accumulate (Input & Output Registers) 200 MHz

18x18 Multiply-Add/Sub (All Registers) 400 MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses inter-
nal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Register-to-Register Performance1, 2, 3

 Function –8 Timing Units
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fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-35EA 683 — 688 — 690 — ps

tDVAGDDR Data Valid After CLK ECP3-35EA 683 — 688 — 690 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-17EA 683 — 688 — 690 — ps

tDVAGDDR Data Valid After CLK ECP3-17EA 683 — 688 — 690 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data Aligned at Pin (GDDRX1_TX.SCLK.Aligned)10 

tDIBGDDR Data Invalid Before Clock ECP3-150EA — 335 — 338 — 341 ps

tDIAGDDR Data Invalid After Clock ECP3-150EA — 335 — 338 — 341 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-70EA/95EA — 339 — 343 — 347 ps

tDIAGDDR Data Invalid After Clock ECP3-70EA/95EA — 339 — 343 — 347 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-35EA — 322 — 320 — 321 ps

tDIAGDDR Data Invalid After Clock ECP3-35EA — 322 — 320 — 321 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-17EA — 322 — 320 — 321 ps

tDIAGDDR Data Invalid After Clock ECP3-17EA — 322 — 320 — 321 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)10 

Left and Right Sides

tDVBGDDR Data Valid Before CLK ECP3-150EA 670 — 670 — 670 — ps

tDVAGDDR Data Valid After CLK ECP3-150EA 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-70EA/95EA 657 — 652 — 650 — ps

tDVAGDDR Data Valid After CLK ECP3-70EA/95EA 657 — 652 — 650 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-35EA 670 — 675 — 676 — ps

tDVAGDDR Data Valid After CLK ECP3-35EA 670 — 675 — 676 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-17EA 670 — 670 — 670 — ps

tDVAGDDR Data Valid After CLK ECP3-17EA 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX2_TX.Aligned)

Left and Right Sides

tDIBGDDR Data Invalid Before Clock All ECP3EA Devices — 200 — 210 — 220 ps

tDIAGDDR Data Invalid After Clock All ECP3EA Devices — 200 — 210 — 220 ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 500 — 420 — 375 MHz

Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin  Using DQSDLL (GDDRX2_TX.DQSDLL.Centered)11

Left and Right Sides 

tDVBGDDR Data Valid Before CLK All ECP3EA Devices 400 — 400 — 431 — ps

tDVAGDDR Data Valid After CLK All ECP3EA Devices 400 — 400 — 432 — ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 400 — 400 — 375 MHz

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
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Figure 3-19. Test Loads
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT
1 PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

tIODISS User I/O Disable from PROGRAMN Low — 100 ns

tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence — 100 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode -0.2 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns
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Figure 3-30. SPI Configuration Waveforms

Figure 3-31. Slave SPI HOLDN Waveforms
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals3

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. These pins are dedicated inputs or can be used as general purpose I/O.
3. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 


