# E. Lattice Semiconductor Corporation - <u>LFE3-35EA-6LFN484C Datasheet</u>



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                        |
|--------------------------------|-------------------------------------------------------------------------------|
| Number of LABs/CLBs            | 4125                                                                          |
| Number of Logic Elements/Cells | 33000                                                                         |
| Total RAM Bits                 | 1358848                                                                       |
| Number of I/O                  | 295                                                                           |
| Number of Gates                | -                                                                             |
| Voltage - Supply               | 1.14V ~ 1.26V                                                                 |
| Mounting Type                  | Surface Mount                                                                 |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                               |
| Package / Case                 | 484-BBGA                                                                      |
| Supplier Device Package        | 484-FPBGA (23x23)                                                             |
| Purchase URL                   | https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-6lfn484c |
|                                |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# LatticeECP3 Family Data Sheet Introduction

### February 2012

## **Features**

- Higher Logic Density for Increased System Integration
  - 17K to 149K LUTs
  - 116 to 586 I/Os
- Embedded SERDES
  - 150 Mbps to 3.2 Gbps for Generic 8b10b, 10-bit SERDES, and 8-bit SERDES modes
  - Data Rates 230 Mbps to 3.2 Gbps per channel for all other protocols
  - Up to 16 channels per device: PCI Express, SONET/SDH, Ethernet (1GbE, SGMII, XAUI), CPRI, SMPTE 3G and Serial RapidIO

### ■ sysDSP<sup>™</sup>

- Fully cascadable slice architecture
- 12 to 160 slices for high performance multiply and accumulate
- Powerful 54-bit ALU operations
- Time Division Multiplexing MAC Sharing
- Rounding and truncation
- Each slice supports
  - -Half 36x36, two 18x18 or four 9x9 multipliers
  - Advanced 18x36 MAC and 18x18 Multiply-
  - Multiply-Accumulate (MMAC) operations

### ■ Flexible Memory Resources

- Up to 6.85Mbits sysMEM<sup>™</sup> Embedded Block RAM (EBR)
- 36K to 303K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs
   Two DLLs and up to ten PLLs per device
- Pre-Engineered Source Synchronous I/O
  - DDR registers in I/O cells

### Table 1-1. LatticeECP3™ Family Selection Guide

• Dedicated read/write levelling functionality

Data Sheet DS1021

- Dedicated gearing logic
- Source synchronous standards support
   ADC/DAC, 7:1 LVDS, XGMII
   Link Speed ADC/DAC devices
  - -High Speed ADC/DAC devices
- Dedicated DDR/DDR2/DDR3 memory with DQS support
- Optional Inter-Symbol Interference (ISI) correction on outputs
- Programmable sysl/O<sup>™</sup> Buffer Supports Wide Range of Interfaces
  - On-chip termination
  - Optional equalization filter on inputs
  - LVTTL and LVCMOS 33/25/18/15/12
  - SSTL 33/25/18/15 I, II
  - HSTL15 I and HSTL18 I, II
  - PCI and Differential HSTL, SSTL
  - LVDS, Bus-LVDS, LVPECL, RSDS, MLVDS

### Flexible Device Configuration

- Dedicated bank for configuration I/Os
- SPI boot flash interface
- Dual-boot images supported
- Slave SPI
- TransFR™ I/O for simple field updates
- Soft Error Detect embedded macro

### System Level Support

- IEEE 1149.1 and IEEE 1532 compliant
- Reveal Logic Analyzer
- ORCAstra FPGA configuration utility
- · On-chip oscillator for initialization & general use
- 1.2 V core power supply

| Device                       | ECP3-17          | ECP3-35 | ECP3-70  | ECP3-95  | ECP3-150 |
|------------------------------|------------------|---------|----------|----------|----------|
| LUTs (K)                     | 17               | 33      | 67       | 92       | 149      |
| sysMEM Blocks (18 Kbits)     | 38               | 72      | 240      | 240      | 372      |
| Embedded Memory (Kbits)      | 700              | 1327    | 4420     | 4420     | 6850     |
| Distributed RAM Bits (Kbits) | 36               | 68      | 145      | 188      | 303      |
| 18 x 18 Multipliers          | 24               | 64      | 128      | 128      | 320      |
| SERDES (Quad)                | 1                | 1       | 3        | 3        | 4        |
| PLLs/DLLs                    | 2/2              | 4/2     | 10/2     | 10 / 2   | 10/2     |
| Packages and SERDES Channels | / I/O Combinatio | ns      |          | •        |          |
| 328 csBGA (10 x 10 mm)       | 2/116            |         |          |          |          |
| 256 ftBGA (17 x 17 mm)       | 4 / 133          | 4 / 133 |          |          |          |
| 484 fpBGA (23 x 23 mm)       | 4 / 222          | 4 / 295 | 4 / 295  | 4 / 295  |          |
| 672 fpBGA (27 x 27 mm)       |                  | 4 / 310 | 8 / 380  | 8 / 380  | 8 / 380  |
| 1156 fpBGA (35 x 35 mm)      |                  |         | 12 / 490 | 12 / 490 | 16 / 586 |

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.







Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.

# **PFU Blocks**

The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.



## Figure 2-2. PFU Diagram



## Slice

Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

| Table 2-1. | Resources ar    | nd Modes | Available | per Slice |
|------------|-----------------|----------|-----------|-----------|
|            | 11000 di 000 di |          | / 11 aa   |           |

|         | PFU E                   | BLock                   | PFF Block               |                    |  |  |
|---------|-------------------------|-------------------------|-------------------------|--------------------|--|--|
| Slice   | ce Resources Modes      |                         | Resources               | Modes              |  |  |
| Slice 0 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | 2 LUT4s and 2 Registers | Logic, Ripple, ROM |  |  |
| Slice 1 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | 2 LUT4s and 2 Registers | Logic, Ripple, ROM |  |  |
| Slice 2 | 2 LUT4s and 2 Registers | Logic, Ripple, RAM, ROM | 2 LUT4s and 2 Registers | Logic, Ripple, ROM |  |  |
| Slice 3 | 2 LUT4s                 | Logic, ROM              | 2 LUT4s                 | Logic, ROM         |  |  |

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.



# PLL/DLL Cascading

LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are:

- PLL to PLL supported
- PLL to DLL supported

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs.

For further information about the DLL, please see the list of technical documentation at the end of this data sheet.

# **PLL/DLL PIO Input Pin Connections**

All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next to each other, they share input pins as shown in the Figure 2-7.

### Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices



Note: Not every PLL has an associated DLL.

# **Clock Dividers**

LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows the clock divider connections.



### Figure 2-16. Per Region Secondary Clock Selection



### **Slice Clock Selection**

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

### Figure 2-17. Slice0 through Slice2 Clock Selection



Figure 2-18. Slice0 through Slice2 Control Selection





Input signals are fed from the sysl/O buffer to the input register block (as signal DI). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system clock by one of the registers in the single data rate sync register block.

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS (ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data streams. Before entering the core, these two data streams are synchronized to the system clock to generate two data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox function takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system clock before entering the core. Figure 2-30 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchronization registers to the clock transfer and gearbox registers.

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See Figure 2-37 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.







Note: Simplified diagram does not show CE/SET/REST details.

## Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysl/O buffers. The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is used in DDR3 memory interfaces. The PIO blocks on the bottom contain the SDR registers but do not support generic DDR.

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges.

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.



### Figure 2-38. LatticeECP3 Banks



LatticeECP3 devices contain two types of sysI/O buffer pairs.

### 1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals.

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side pads can be identified by the Lattice Diamond tool.



# 2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

# 3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

# Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when  $V_{CC}$ ,  $V_{CCIO8}$  and  $V_{CCAUX}$  have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other  $V_{CCIO}$  banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V<sub>CC</sub> and V<sub>CCAUX</sub> supply the power to the FPGA core fabric, whereas the V<sub>CCIO</sub> supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V<sub>CCIO</sub> supplies should be powered-up before or together with the V<sub>CC</sub> and V<sub>CCAUX</sub> supplies.

# Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.



## **On-Chip Programmable Termination**

The LatticeECP3 supports a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40, 50, or 60 Ohms. External termination to Vtt should be used for DDR2 and DDR3 memory controller implementation.
- Common mode termination of 80, 100, 120 Ohms for differential inputs

### Figure 2-39. On-Chip Termination



Programmable resistance (40, 50 and 60 Ohms)
Parallel Single-Ended Input

Differential Input

See Table 2-12 for termination options for input modes.

### Table 2-12. On-Chip Termination Options for Input Modes

| IO_TYPE    | TERMINATE to VTT <sup>1, 2</sup> | DIFFERENTIAL TERMINATION RESISTOR <sup>1</sup> |
|------------|----------------------------------|------------------------------------------------|
| LVDS25     | þ                                | 80, 100, 120                                   |
| BLVDS25    | þ                                | 80, 100, 120                                   |
| MLVDS      | þ                                | 80, 100, 120                                   |
| HSTL18_I   | 40, 50, 60                       | þ                                              |
| HSTL18_II  | 40, 50, 60                       | þ                                              |
| HSTL18D_I  | 40, 50, 60                       | þ                                              |
| HSTL18D_II | 40, 50, 60                       | þ                                              |
| HSTL15_I   | 40, 50, 60                       | þ                                              |
| HSTL15D_I  | 40, 50, 60                       | þ                                              |
| SSTL25_I   | 40, 50, 60                       | þ                                              |
| SSTL25_II  | 40, 50, 60                       | þ                                              |
| SSTL25D_I  | 40, 50, 60                       | þ                                              |
| SSTL25D_II | 40, 50, 60                       | þ                                              |
| SSTL18_I   | 40, 50, 60                       | þ                                              |
| SSTL18_II  | 40, 50, 60                       | þ                                              |
| SSTL18D_I  | 40, 50, 60                       | þ                                              |
| SSTL18D_II | 40, 50, 60                       | þ                                              |
| SSTL15     | 40, 50, 60                       | þ                                              |
| SSTL15D    | 40, 50, 60                       | þ                                              |

1. TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature. Use of TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in

an I/O bank.

On-chip termination tolerance +/- 20%

2. External termination to VTT should be used when implementing DDR2 and DDR3 memory controller.



Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

# **Equalization Filter**

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

## **Hot Socketing**

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

# SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel  $\div$ 1,  $\div$ 2 and  $\div$ 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.



| Package    | ECP3-17    | ECP3-35 | ECP3-70 | ECP3-95 | ECP3-150 |
|------------|------------|---------|---------|---------|----------|
| 256 ftBGA  | 1          | 1       | —       | —       | —        |
| 328 csBGA  | 2 channels | —       | —       | —       | —        |
| 484 fpBGA  | 1          | 1       | 1       | 1       |          |
| 672 fpBGA  | —          | 1       | 2       | 2       | 2        |
| 1156 fpBGA | —          | —       | 3       | 3       | 4        |

## SERDES Block

A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block



# PCS

As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, selects the polarity and passes the 8/10 bit data to the transmit SERDES channel.

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic.



# LatticeECP3 External Switching Characteristics (Continued)<sup>1, 2, 3, 13</sup>

|                           | -8 -7                                           |                          | -7       | -6       |          |           |          |           |          |
|---------------------------|-------------------------------------------------|--------------------------|----------|----------|----------|-----------|----------|-----------|----------|
| Parameter                 | Description                                     | Device                   | Min.     | Max.     | Min.     | Max.      | Min.     | Max.      | Units    |
| Generic DDRX2 In          | puts with Clock and Data (>10bits               | s wide) are Aligned at I | Pin (GDD | RX2_RX   | .ECLK.A  | ligned)   | 1        |           |          |
| (No CLKDIV)               |                                                 |                          |          |          |          |           |          |           |          |
| Left and Right Side       | es Using DLLCLKPIN for Clock Ir                 |                          |          | 0.005    | 1        | 0.005     | 1        | 0.005     |          |
| <sup>t</sup> DVACLKGDDR   | Data Setup Before CLK                           | ECP3-150EA               |          | 0.225    |          | 0.225     |          | 0.225     |          |
|                           | Data Hold After CLK                             | ECP3-150EA               | 0.775    | -        | 0.775    |           | 0.775    |           |          |
| <sup>T</sup> MAX_GDDR     | DDRX2 Clock Frequency                           | ECP3-150EA               | _        | 460      | _        | 385       | _        | 345       | MHZ      |
| <sup>t</sup> DVACLKGDDR   | Data Setup Before CLK                           | ECP3-70EA/95EA           |          | 0.225    |          | 0.225     |          | 0.225     | UI       |
| <sup>t</sup> DVECLKGDDR   | Data Hold After CLK                             | ECP3-70EA/95EA           | 0.775    | —        | 0.775    |           | 0.775    | —         | UI       |
| fMAX_GDDR                 | DDRX2 Clock Frequency                           | ECP3-70EA/95EA           |          | 460      |          | 385       |          | 311       | MHZ      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | ECP3-35EA                | _        | 0.210    | —        | 0.210     | —        | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-35EA                | 0.790    |          | 0.790    | —         | 0.790    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-35EA                | _        | 460      | _        | 385       | _        | 311       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK<br>(Left and Right Sides) | ECP3-17EA                | _        | 0.210    | _        | 0.210     |          | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-17EA                | 0.790    | —        | 0.790    | —         | 0.790    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-17EA                |          | 460      |          | 385       |          | 311       | MHz      |
| Top Side Using PC         | LK Pin for Clock Input                          |                          |          |          |          |           |          |           |          |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | ECP3-150EA               |          | 0.225    |          | 0.225     |          | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-150EA               | 0.775    | —        | 0.775    | —         | 0.775    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-150EA               | _        | 235      | —        | 170       |          | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | ECP3-70EA/95EA           | _        | 0.225    | _        | 0.225     | _        | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-70EA/95EA           | 0.775    | —        | 0.775    | —         | 0.775    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-70EA/95EA           | _        | 235      |          | 170       | —        | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | ECP3-35EA                | _        | 0.210    |          | 0.210     |          | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-35EA                | 0.790    | —        | 0.790    | —         | 0.790    |           | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-35EA                |          | 235      |          | 170       |          | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | ECP3-17EA                |          | 0.210    |          | 0.210     |          | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | ECP3-17EA                | 0.790    | —        | 0.790    |           | 0.790    |           | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency                           | ECP3-17EA                | _        | 235      |          | 170       |          | 130       | MHz      |
| Generic DDRX2 In<br>Input | puts with Clock and Data (<10 Bit               | ts Wide) Centered at P   | in (GDDF | RX2_RX.I | DQS.Cen  | tered) U  | sing DQ  | S Pin for | Clock    |
| Left and Right Side       | es                                              |                          |          |          |          |           |          |           |          |
| t <sub>SUGDDR</sub>       | Data Setup Before CLK                           | All ECP3EA Devices       | 330      | _        | 330      |           | 352      |           | ps       |
| t <sub>HOGDDR</sub>       | Data Hold After CLK                             | All ECP3EA Devices       | 330      | —        | 330      | —         | 352      | _         | ps       |
| f <sub>MAX GDDR</sub>     | DDRX2 Clock Frequency                           | All ECP3EA Devices       | _        | 400      | _        | 400       | _        | 375       | MHz      |
| Generic DDRX2 In          | puts with Clock and Data (<10 Bit               | ts Wide) Aligned at Pin  | (GDDR)   | (2_RX.D0 | QS.Align | ed) Using | g DQS Pi | n for Clo | ck Input |
| Left and Right Side       | es                                              |                          |          |          |          |           |          |           |          |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK                           | All ECP3EA Devices       | —        | 0.225    | _        | 0.225     | —        | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK                             | All ECP3EA Devices       | 0.775    | —        | 0.775    | —         | 0.775    | _         | UI       |
| f <sub>MAX GDDR</sub>     | DDRX2 Clock Frequency                           | All ECP3EA Devices       | _        | 400      | _        | 400       | —        | 375       | MHz      |
| Generic DDRX1 O           | utput with Clock and Data (>10 B                | its Wide) Centered at P  | in (GDD  | RX1_TX.  | SCLK.Ce  | ntered)10 | )        |           |          |
| t <sub>DVBGDDR</sub>      | Data Valid Before CLK                           | ECP3-150EA               | 670      | —        | 670      |           | 670      |           | ps       |
| t <sub>DVAGDDR</sub>      | Data Valid After CLK                            | ECP3-150EA               | 670      | <b>—</b> | 670      | <b>—</b>  | 670      | <b>—</b>  | ps       |
| f <sub>MAX</sub> GDDR     | DDRX1 Clock Frequency                           | ECP3-150EA               | —        | 250      | —        | 250       | —        | 250       | MHz      |
|                           | Data Valid Before CLK                           | ECP3-70EA/95EA           | 666      | —        | 665      |           | 664      | —         | ps       |
|                           | Data Valid After CLK                            | ECP3-70EA/95EA           | 666      |          | 665      |           | 664      |           | ps       |
| BIAGDDIT                  | 1                                               | 1                        |          | I        |          | l         |          |           | · ·      |

# Over Recommended Commercial Operating Conditions



# LatticeECP3 External Switching Characteristics (Continued)<sup>1, 2, 3, 13</sup>

|                       |                                                                                |                         |          |                     |         |                      | 6      |          |       |  |
|-----------------------|--------------------------------------------------------------------------------|-------------------------|----------|---------------------|---------|----------------------|--------|----------|-------|--|
| Parameter             | Description                                                                    | Device                  | Min.     | Max.                | Min.    | Max.                 | Min.   | Max.     | Units |  |
| fMAX GDDB             | DDRX1 Clock Frequency                                                          | ECP3-70EA/95EA          |          | 250                 |         | 250                  | _      | 250      | MHz   |  |
|                       | Data Valid Before CLK                                                          | ECP3-35EA               | 683      | —                   | 688     | _                    | 690    | _        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-35EA               | 683      | _                   | 688     | _                    | 690    | _        | ps    |  |
| f <sub>MAX GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-35EA               | _        | 250                 | _       | 250                  | _      | 250      | MHz   |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | ECP3-17EA               | 683      | —                   | 688     | _                    | 690    | _        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-17EA               | 683      | —                   | 688     | —                    | 690    | —        | ps    |  |
| f <sub>MAX</sub> GDDR | DDRX1 Clock Frequency                                                          | ECP3-17EA               | _        | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| Generic DDRX1 Ou      | itput with Clock and Data Aligned                                              | at Pin (GDDRX1_TX.      | SCLK.Ali | gned) <sup>10</sup> |         |                      |        |          |       |  |
| t <sub>DIBGDDR</sub>  | t <sub>DIBGDDB</sub> Data Invalid Before Clock ECP3-150EA — 335 — 338 — 341 ps |                         |          |                     |         |                      |        |          |       |  |
| t <sub>DIAGDDR</sub>  | Data Invalid After Clock                                                       | ECP3-150EA              |          | 335                 | _       | 338                  | —      | 341      | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-150EA              |          | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| t <sub>DIBGDDR</sub>  | Data Invalid Before Clock                                                      | ECP3-70EA/95EA          | _        | 339                 | _       | 343                  | —      | 347      | ps    |  |
| t <sub>DIAGDDR</sub>  | Data Invalid After Clock                                                       | ECP3-70EA/95EA          | _        | 339                 | _       | 343                  | _      | 347      | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-70EA/95EA          | _        | 250                 | _       | 250                  | _      | 250      | MHz   |  |
| t <sub>DIBGDDR</sub>  | Data Invalid Before Clock                                                      | ECP3-35EA               | _        | 322                 | _       | 320                  | _      | 321      | ps    |  |
| t <sub>DIAGDDR</sub>  | Data Invalid After Clock                                                       | ECP3-35EA               | _        | 322                 | _       | 320                  | _      | 321      | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-35EA               | _        | 250                 | _       | 250                  | _      | 250      | MHz   |  |
| t <sub>DIBGDDR</sub>  | Data Invalid Before Clock                                                      | ECP3-17EA               | _        | 322                 | _       | 320                  | _      | 321      | ps    |  |
| t <sub>DIAGDDR</sub>  | Data Invalid After Clock                                                       | ECP3-17EA               | _        | 322                 | _       | 320                  | _      | 321      | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-17EA               |          | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| Generic DDRX1 Ou      | itput with Clock and Data (<10 Bi                                              | ts Wide) Centered at P  | in (GDD  | RX1_TX.             | DQS.Cen | tered) <sup>10</sup> |        |          |       |  |
| Left and Right Side   | es                                                                             |                         |          |                     |         |                      |        |          |       |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | ECP3-150EA              | 670      | _                   | 670     | —                    | 670    | —        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-150EA              | 670      | —                   | 670     | —                    | 670    | —        | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-150EA              | _        | 250                 |         | 250                  | —      | 250      | MHz   |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | ECP3-70EA/95EA          | 657      | —                   | 652     | —                    | 650    | —        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-70EA/95EA          | 657      | —                   | 652     | _                    | 650    | _        | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-70EA/95EA          | _        | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | ECP3-35EA               | 670      | —                   | 675     | —                    | 676    | —        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-35EA               | 670      | —                   | 675     | _                    | 676    | _        | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-35EA               | _        | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | ECP3-17EA               | 670      | —                   | 670     | —                    | 670    | —        | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | ECP3-17EA               | 670      | —                   | 670     | —                    | 670    | —        | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX1 Clock Frequency                                                          | ECP3-17EA               | _        | 250                 | _       | 250                  | —      | 250      | MHz   |  |
| Generic DDRX2 Ou      | itput with Clock and Data (>10 Bi                                              | ts Wide) Aligned at Pir | n (GDDR  | X2_TX.A             | igned)  |                      |        |          |       |  |
| Left and Right Side   | 25                                                                             |                         |          |                     |         |                      |        |          |       |  |
| t <sub>DIBGDDR</sub>  | Data Invalid Before Clock                                                      | All ECP3EA Devices      |          | 200                 |         | 210                  |        | 220      | ps    |  |
| t <sub>DIAGDDR</sub>  | Data Invalid After Clock                                                       | All ECP3EA Devices      | _        | 200                 | _       | 210                  | _      | 220      | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX2 Clock Frequency                                                          | All ECP3EA Devices      | _        | 500                 | _       | 420                  | —      | 375      | MHz   |  |
| Generic DDRX2 Ou      | Itput with Clock and Data (>10 Bi                                              | ts Wide) Centered at P  | in Using |                     | L (GDDF | X2_TX.D              | QSDLL. | Centered | )11   |  |
| Left and Right Side   | es                                                                             |                         |          |                     |         |                      |        |          |       |  |
| t <sub>DVBGDDR</sub>  | Data Valid Before CLK                                                          | All ECP3EA Devices      | 400      |                     | 400     |                      | 431    |          | ps    |  |
| t <sub>DVAGDDR</sub>  | Data Valid After CLK                                                           | All ECP3EA Devices      | 400      |                     | 400     | —                    | 432    |          | ps    |  |
| f <sub>MAX_GDDR</sub> | DDRX2 Clock Frequency                                                          | All ECP3EA Devices      | _        | 400                 | _       | 400                  | —      | 375      | MHz   |  |

# **Over Recommended Commercial Operating Conditions**



# LatticeECP3 Family Timing Adders<sup>1, 2, 3, 4, 5, 7</sup> (Continued)

| <b>Over Recommended Commercial</b> | Operating | Conditions |
|------------------------------------|-----------|------------|
|------------------------------------|-----------|------------|

| Buffer Type   | Description                            | -8    | -7    | -6    | Units |
|---------------|----------------------------------------|-------|-------|-------|-------|
| LVCMOS15_4mA  | LVCMOS 1.5 4 mA drive, fast slew rate  | 0.21  | 0.25  | 0.29  | ns    |
| LVCMOS15_8mA  | LVCMOS 1.5 8 mA drive, fast slew rate  | 0.05  | 0.07  | 0.09  | ns    |
| LVCMOS12_2mA  | LVCMOS 1.2 2 mA drive, fast slew rate  | 0.43  | 0.51  | 0.59  | ns    |
| LVCMOS12_6mA  | LVCMOS 1.2 6 mA drive, fast slew rate  | 0.23  | 0.28  | 0.33  | ns    |
| LVCMOS33_4mA  | LVCMOS 3.3 4 mA drive, slow slew rate  | 1.44  | 1.58  | 1.72  | ns    |
| LVCMOS33_8mA  | LVCMOS 3.3 8 mA drive, slow slew rate  | 0.98  | 1.10  | 1.22  | ns    |
| LVCMOS33_12mA | LVCMOS 3.3 12 mA drive, slow slew rate | 0.67  | 0.77  | 0.86  | ns    |
| LVCMOS33_16mA | LVCMOS 3.3 16 mA drive, slow slew rate | 0.97  | 1.09  | 1.21  | ns    |
| LVCMOS33_20mA | LVCMOS 3.3 20 mA drive, slow slew rate | 0.67  | 0.76  | 0.85  | ns    |
| LVCMOS25_4mA  | LVCMOS 2.5 4 mA drive, slow slew rate  | 1.48  | 1.63  | 1.78  | ns    |
| LVCMOS25_8mA  | LVCMOS 2.5 8 mA drive, slow slew rate  | 1.02  | 1.14  | 1.27  | ns    |
| LVCMOS25_12mA | LVCMOS 2.5 12 mA drive, slow slew rate | 0.74  | 0.84  | 0.94  | ns    |
| LVCMOS25_16mA | LVCMOS 2.5 16 mA drive, slow slew rate | 1.02  | 1.14  | 1.26  | ns    |
| LVCMOS25_20mA | LVCMOS 2.5 20 mA drive, slow slew rate | 0.74  | 0.83  | 0.93  | ns    |
| LVCMOS18_4mA  | LVCMOS 1.8 4 mA drive, slow slew rate  | 1.60  | 1.77  | 1.93  | ns    |
| LVCMOS18_8mA  | LVCMOS 1.8 8 mA drive, slow slew rate  | 1.11  | 1.25  | 1.38  | ns    |
| LVCMOS18_12mA | LVCMOS 1.8 12 mA drive, slow slew rate | 0.87  | 0.98  | 1.09  | ns    |
| LVCMOS18_16mA | LVCMOS 1.8 16 mA drive, slow slew rate | 0.86  | 0.97  | 1.07  | ns    |
| LVCMOS15_4mA  | LVCMOS 1.5 4 mA drive, slow slew rate  | 1.71  | 1.89  | 2.08  | ns    |
| LVCMOS15_8mA  | LVCMOS 1.5 8 mA drive, slow slew rate  | 1.20  | 1.34  | 1.48  | ns    |
| LVCMOS12_2mA  | LVCMOS 1.2 2 mA drive, slow slew rate  | 1.37  | 1.56  | 1.74  | ns    |
| LVCMOS12_6mA  | LVCMOS 1.2 6 mA drive, slow slew rate  | 1.11  | 1.27  | 1.43  | ns    |
| PCI33         | PCI, VCCIO = 3.3 V                     | -0.12 | -0.13 | -0.14 | ns    |

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.

5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

6. This data does not apply to the LatticeECP3-17EA device.

7. For details on -9 speed grade devices, please contact your Lattice Sales Representative.



### Table 3-11. Periodic Receiver Jitter Tolerance Specification

| Description | Frequency  | Condition               | Min. | Тур. | Max. | Units   |
|-------------|------------|-------------------------|------|------|------|---------|
| Periodic    | 2.97 Gbps  | 600 mV differential eye | _    | _    | 0.24 | UI, p-p |
| Periodic    | 2.5 Gbps   | 600 mV differential eye | _    | —    | 0.22 | UI, p-p |
| Periodic    | 1.485 Gbps | 600 mV differential eye | —    | —    | 0.24 | UI, p-p |
| Periodic    | 622 Mbps   | 600 mV differential eye | _    | _    | 0.15 | UI, p-p |
| Periodic    | 150 Mbps   | 600 mV differential eye | _    |      | 0.5  | UI, p-p |

Note: Values are measured with PRBS 2<sup>7</sup>–1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.



## SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

| Symbol                        | Description                                  | Min. Typ. |        | Max.                   | Units                   |
|-------------------------------|----------------------------------------------|-----------|--------|------------------------|-------------------------|
| F <sub>REF</sub>              | Frequency range                              | 15        | _      | 320                    | MHz                     |
| F <sub>REF-PPM</sub>          | Frequency tolerance <sup>1</sup>             | -1000     | _      | 1000                   | ppm                     |
| V <sub>REF-IN-SE</sub>        | Input swing, single-ended clock <sup>2</sup> | 200       | _      | V <sub>CCA</sub>       | mV, p-p                 |
| V <sub>REF-IN-DIFF</sub>      | Input swing, differential clock              | 200       | _      | 2*V <sub>CCA</sub>     | mV, p-p<br>differential |
| V <sub>REF-IN</sub>           | Input levels                                 | 0         | _      | V <sub>CCA</sub> + 0.3 | V                       |
| D <sub>REF</sub>              | Duty cycle <sup>3</sup>                      | 40        | _      | 60                     | %                       |
| T <sub>REF-R</sub>            | Rise time (20% to 80%)                       | 200       | 500    | 1000                   | ps                      |
| T <sub>REF-F</sub>            | Fall time (80% to 20%)                       | 200       | 500    | 1000                   | ps                      |
| Z <sub>REF-IN-TERM-DIFF</sub> | Differential input termination               | -20%      | 100/2K | +20%                   | Ohms                    |
| C <sub>REF-IN-CAP</sub>       | Input capacitance                            | _         | —      | 7                      | pF                      |

Table 3-12. External Reference Clock Specification (refclkp/refclkn)

1. Depending on the application, the PLL\_LOL\_SET and CDR\_LOL\_SET control registers may be adjusted for other tolerance values as described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

### Figure 3-13. SERDES External Reference Clock Waveforms





# **Pin Information Summary**

| Pin Information Summary     |        | ECP3-17EA    |              |              | ECP3-35EA    |              |              | ECP3-70EA    |              |               |
|-----------------------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Pin Type                    |        | 256<br>ftBGA | 328<br>csBGA | 484<br>fpBGA | 256<br>ftBGA | 484<br>fpBGA | 672<br>fpBGA | 484<br>fpBGA | 672<br>fpBGA | 1156<br>fpBGA |
|                             | Bank 0 | 26           | 20           | 36           | 26           | 42           | 48           | 42           | 60           | 86            |
|                             | Bank 1 | 14           | 10           | 24           | 14           | 36           | 36           | 36           | 48           | 78            |
|                             | Bank 2 | 6            | 7            | 12           | 6            | 24           | 24           | 24           | 34           | 36            |
| General Purpose             | Bank 3 | 18           | 12           | 44           | 16           | 54           | 59           | 54           | 59           | 86            |
|                             | Bank 6 | 20           | 11           | 44           | 18           | 63           | 61           | 63           | 67           | 86            |
|                             | Bank 7 | 19           | 26           | 32           | 19           | 36           | 42           | 36           | 48           | 54            |
|                             | Bank 8 | 24           | 24           | 24           | 24           | 24           | 24           | 24           | 24           | 24            |
|                             | Bank 0 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 1 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 2 | 2            | 2            | 2            | 2            | 4            | 4            | 4            | 8            | 8             |
| General Purpose Inputs      | Bank 3 | 0            | 0            | 0            | 2            | 4            | 4            | 4            | 12           | 12            |
| per bank                    | Bank 6 | 0            | 0            | 0            | 2            | 4            | 4            | 4            | 12           | 12            |
|                             | Bank 7 | 4            | 4            | 4            | 4            | 4            | 4            | 4            | 8            | 8             |
|                             | Bank 8 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 0 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 1 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 2 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
| General Purpose Out-        | Bank 3 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 6 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 7 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
|                             | Bank 8 | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0             |
| Total Single-Ended User I/O |        | 133          | 116          | 222          | 133          | 295          | 310          | 295          | 380          | 490           |
| VCC                         |        | 6            | 16           | 16           | 6            | 16           | 32           | 16           | 32           | 32            |
| VCCAUX                      |        | 4            | 5            | 8            | 4            | 8            | 12           | 8            | 12           | 16            |
| VTT                         |        | 4            | 7            | 4            | 4            | 4            | 4            | 4            | 4            | 8             |
| VCCA                        |        | 4            | 6            | 4            | 4            | 4            | 8            | 4            | 8            | 16            |
| VCCPLL                      |        | 2            | 2            | 4            | 2            | 4            | 4            | 4            | 4            | 4             |
|                             | Bank 0 | 2            | 3            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
|                             | Bank 1 | 2            | 3            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
|                             | Bank 2 | 2            | 2            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
| VCCIO                       | Bank 3 | 2            | 3            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
|                             | Bank 6 | 2            | 3            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
|                             | Bank 7 | 2            | 3            | 2            | 2            | 2            | 4            | 2            | 4            | 4             |
|                             | Bank 8 | 1            | 2            | 2            | 1            | 2            | 2            | 2            | 2            | 2             |
| VCCJ                        |        | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1            | 1             |
| ТАР                         |        | 4            | 4            | 4            | 4            | 4            | 4            | 4            | 4            | 4             |
| GND, GNDIO                  |        | 51           | 126          | 98           | 51           | 98           | 139          | 98           | 139          | 233           |
| NC                          |        | 0            | 0            | 73           | 0            | 0            | 96           | 0            | 0            | 238           |
| Reserved <sup>1</sup>       |        | 0            | 0            | 2            | 0            | 2            | 2            | 2            | 2            | 2             |
| SERDES                      |        | 26           | 18           | 26           | 26           | 26           | 26           | 26           | 52           | 78            |
| Miscellaneous Pins          |        | 8            | 8            | 8            | 8            | 8            | 8            | 8            | 8            | 8             |
| Total Bonded Pins           |        | 256          | 328          | 484          | 256          | 484          | 672          | 484          | 672          | 1156          |



# Pin Information Summary (Cont.)

| Pin Information Summary Pin Type          |                        |           | ECP3-95EA | ECP3-150EA |              |               |
|-------------------------------------------|------------------------|-----------|-----------|------------|--------------|---------------|
|                                           |                        | 484 fpBGA | 672 fpBGA | 1156 fpBGA | 672<br>fpBGA | 1156<br>fpBGA |
| Emulated<br>Differential I/O<br>per Bank  | Bank 0                 | 21        | 30        | 43         | 30           | 47            |
|                                           | Bank 1                 | 18        | 24        | 39         | 24           | 43            |
|                                           | Bank 2                 | 8         | 12        | 13         | 12           | 18            |
|                                           | Bank 3                 | 20        | 23        | 33         | 23           | 37            |
|                                           | Bank 6                 | 22        | 25        | 33         | 25           | 37            |
|                                           | Bank 7                 | 11        | 16        | 18         | 16           | 24            |
|                                           | Bank 8                 | 12        | 12        | 12         | 12           | 12            |
|                                           | Bank 0                 | 0         | 0         | 0          | 0            | 0             |
|                                           | Bank 1                 | 0         | 0         | 0          | 0            | 0             |
| Highspeed<br>Differential I/O<br>per Bank | Bank 2                 | 6         | 9         | 9          | 9            | 15            |
|                                           | Bank 3                 | 9         | 12        | 16         | 12           | 21            |
|                                           | Bank 6                 | 11        | 14        | 16         | 14           | 21            |
|                                           | Bank 7                 | 9         | 12        | 13         | 12           | 18            |
|                                           | Bank 8                 | 0         | 0         | 0          | 0            | 0             |
|                                           | Bank 0                 | 42/21     | 60/30     | 86/43      | 60/30        | 94/47         |
|                                           | Bank 1                 | 36/18     | 48/24     | 78/39      | 48/24        | 86/43         |
| Total Single Ended/                       | Bank 2                 | 28/14     | 42/21     | 44/22      | 42/21        | 66/33         |
| Total Differential<br>I/O per Bank        | Bank 3                 | 58/29     | 71/35     | 98/49      | 71/35        | 116/58        |
|                                           | Bank 6                 | 67/33     | 78/39     | 98/49      | 78/39        | 116/58        |
|                                           | Bank 7                 | 40/20     | 56/28     | 62/31      | 56/28        | 84/42         |
|                                           | Bank 8                 | 24/12     | 24/12     | 24/12      | 24/12        | 24/12         |
| DDR Groups<br>Bonded<br>per Bank          | Bank 0                 | 3         | 5         | 7          | 5            | 7             |
|                                           | Bank 1                 | 3         | 4         | 7          | 4            | 7             |
|                                           | Bank 2                 | 2         | 3         | 3          | 3            | 4             |
|                                           | Bank 3                 | 3         | 4         | 5          | 4            | 7             |
|                                           | Bank 6                 | 4         | 4         | 5          | 4            | 7             |
|                                           | Bank 7                 | 3         | 4         | 4          | 4            | 6             |
|                                           | Configuration<br>Bank8 | 0         | 0         | 0          | 0            | 0             |
| SERDES Quads                              |                        | 1         | 2         | 3          | 2            | 4             |

1. These pins must remain floating on the board.



| Date          | Version | Section                             | Change Summary                                                                                                                                                                                                                                                                            |
|---------------|---------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |         |                                     | LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.                                                                                                                                                                              |
|               |         |                                     | Updated SERDES External Reference Clock Waveforms.                                                                                                                                                                                                                                        |
|               |         |                                     | Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break-<br>down table.                                                                                                                                    |
|               |         | Pinout Information                  | "Logic Signal Connections" section heading renamed "Package Pinout<br>Information". Software menu selections within this section have been<br>updated.                                                                                                                                    |
|               |         |                                     | Signal Descriptions table – Updated description for V <sub>CCA</sub> signal.                                                                                                                                                                                                              |
| April 2012    | 02.2EA  | Architecture                        | Updated first paragraph of Output Register Block section.                                                                                                                                                                                                                                 |
|               |         |                                     | Updated the information about sysIO buffer pairs below Figure 2-38.                                                                                                                                                                                                                       |
|               |         |                                     | Updated the information relating to migration between devices in the Density Shifting section.                                                                                                                                                                                            |
|               |         | DC and Switching<br>Characteristics | Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$                                                                                                                                                                                                     |
|               |         | Ordering Information                | Updated topside marks with new logos in the Ordering Information sec-<br>tion.                                                                                                                                                                                                            |
| February 2012 | 02.1EA  | All                                 | Updated document with new corporate logo.                                                                                                                                                                                                                                                 |
| November 2011 | 02.0EA  | Introduction                        | Added information for LatticeECP3-17EA, 328-ball csBGA package.                                                                                                                                                                                                                           |
|               |         | Architecture                        | Added information for LatticeECP3-17EA, 328-ball csBGA package.                                                                                                                                                                                                                           |
|               |         | DC and Switching<br>Characteristics | Updated LatticeECP3 Supply Current table power numbers.                                                                                                                                                                                                                                   |
|               |         |                                     | Typical Building Block Function Performance table, LatticeECP3 Exter-<br>nal Switching Characteristics table, LatticeECP3 Internal Switching<br>Characteristics table and LatticeECP3 Family Timing Adders: Added<br>speed grade -9 and updated speed grade -8, -7 and -6 timing numbers. |
|               |         | Pinout Information                  | Added information for LatticeECP3-17EA, 328-ball csBGA package.                                                                                                                                                                                                                           |
|               |         | Ordering Information                | Added information for LatticeECP3-17EA, 328-ball csBGA package.                                                                                                                                                                                                                           |
|               |         |                                     | Added ordering information for low power devices and -9 speed grade devices.                                                                                                                                                                                                              |
| July 2011     | 01.9EA  | DC and Switching<br>Characteristics | Removed ESD Performance table and added reference to LatticeECP3<br>Product Family Qualification Summary document.                                                                                                                                                                        |
|               |         |                                     | sysCLOCK PLL TIming table, added footnote 4.                                                                                                                                                                                                                                              |
|               |         |                                     | External Reference Clock Specification table – removed reference to<br>VREF-CM-AC and removed footnote for VREF-CM-AC.                                                                                                                                                                    |
|               |         | Pinout Information                  | Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.                                                                                                                                         |
| April 2011    | 01.8EA  | Architecture                        | Updated Secondary Clock/Control Sources text section.                                                                                                                                                                                                                                     |
|               |         | DC and Switching<br>Characteristics | Added data for 150 Mbps to SERDES Power Supply Requirements table.                                                                                                                                                                                                                        |
|               |         |                                     | Updated Frequencies in Table 3-6 Serial Output Timing and Levels                                                                                                                                                                                                                          |
|               |         |                                     | Added Data for 150 Mbps to Table 3-7 Channel Output Jitter                                                                                                                                                                                                                                |
|               |         |                                     | Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, $t_{J T}\!.$                                                                                                                                                                                       |
|               |         |                                     | Corrected Internal Switching Characteristics table, Description for EBR Timing, t <sub>SUWBEN EBB</sub> and t <sub>HWBEN EBB</sub> .                                                                                                                                                      |
|               |         |                                     | Added footnote 1 to sysConfig Port Timing Specifications table.                                                                                                                                                                                                                           |
|               |         |                                     | Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications                                                                                                                                                                                                     |
|               |         |                                     |                                                                                                                                                                                                                                                                                           |