E. Lattice Semiconductor Corporation - LFE3-35EA-6LFTN256I Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	33000
Total RAM Bits	1358848
Number of I/O	133
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-6lftn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. Slice Diagram

For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK WRE is from LSR

DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 WAD [A:D] is a 4-bit address from slice 2 LUT input

Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FC	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6 and LUT7
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6 and LUT7
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Slice 2 of each PFU is the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- 1. **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- 3. **Read-Before-Write (EA devices only)** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2-22.

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this data sheet.

sysDSP[™] Slice

The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths.

This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation to the mixed parallel and serial implementation.

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features

The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

- Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)
- Multiply (36 x 36 by cascading across two sysDSP slices)
- Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Multiplies feed into an accumulator that can accumulate up to 52 bits)
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such

MMAC DSP Element

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

MULTADDSUB DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-29 shows the MULTADDSUB sysDSP element.

Figure 2-29. MULTADDSUB

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysl/O buffers as shown in Figure 2-32. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysl/O buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-32. PIC Diagram

* Signals are available on left/right/top edges only.

** Signals are available on the left and right sides only

*** Selected PIO.

Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution

DQS Strobe and Transition Detect Logic

I/O Ring

*Includes shared configuration I/Os and dedicated configuration I/Os.

On-Chip Programmable Termination

The LatticeECP3 supports a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40, 50, or 60 Ohms. External termination to Vtt should be used for DDR2 and DDR3 memory controller implementation.
- Common mode termination of 80, 100, 120 Ohms for differential inputs

Figure 2-39. On-Chip Termination

Programmable resistance (40, 50 and 60 Ohms)
Parallel Single-Ended Input

Differential Input

See Table 2-12 for termination options for input modes.

Table 2-12. On-Chip Termination Options for Input Modes

IO_TYPE	TERMINATE to VTT ^{1, 2}	DIFFERENTIAL TERMINATION RESISTOR ¹
LVDS25	þ	80, 100, 120
BLVDS25	þ	80, 100, 120
MLVDS	þ	80, 100, 120
HSTL18_I	40, 50, 60	þ
HSTL18_II	40, 50, 60	þ
HSTL18D_I	40, 50, 60	þ
HSTL18D_II	40, 50, 60	þ
HSTL15_I	40, 50, 60	þ
HSTL15D_I	40, 50, 60	þ
SSTL25_I	40, 50, 60	þ
SSTL25_II	40, 50, 60	þ
SSTL25D_I	40, 50, 60	þ
SSTL25D_II	40, 50, 60	þ
SSTL18_I	40, 50, 60	þ
SSTL18_II	40, 50, 60	þ
SSTL18D_I	40, 50, 60	þ
SSTL18D_II	40, 50, 60	þ
SSTL15	40, 50, 60	þ
SSTL15D	40, 50, 60	þ

1. TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature. Use of TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in

an I/O bank.

On-chip termination tolerance +/- 20%

2. External termination to VTT should be used when implementing DDR2 and DDR3 memory controller.

Figure 3-7. DDR/DDR2/DDR3 Parameters

LatticeECP3 Internal Switching Characteristics^{1, 2, 5}

	-8		-7		-6			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
PFU/PFF Logi	c Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	—	0.147	_	0.163	_	0.179	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.281		0.335	_	0.379	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asynchronous)	—	0.593	—	0.674	—	0.756	ns
t _{LSRREC_PFU}	C_PFU Asynchronous Set/Reset recovery time for PFU Logic		0.298		0.345		0.391	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.134	_	0.144	_	0.153		ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.097	_	-0.103	_	-0.109	_	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	_	0.068	_	0.075		ns
t _{HD_PFU}	Clock to D input hold time	0.019	_	0.013	_	0.015		ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	_	0.243	_	0.273	_	0.303	ns
PFU Dual Port	Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	0.710	—	0.803	—	0.897	ns
t _{SUDATA_PFU}	Data Setup Time	-0.137	_	-0.155	_	-0.174		ns
t _{HDATA_PFU}	Data Hold Time	0.188	_	0.217	_	0.246	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.227	_	-0.257	_	-0.286		ns
t _{HADDR_PFU}	-U Address Hold Time		—	0.275	_	0.310	_	ns
t _{SUWREN_PFU}	FU Write/Read Enable Setup Time			-0.055	_	-0.063	_	ns
t _{HWREN_} PFU	Write/Read Enable Hold Time	0.059	_	0.059	_	0.071	_	ns
PIC Timing								
PIO Input/Out	out Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)		0.423		0.466		0.508	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	—	1.241	_	1.301	_	1.361	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.956		1.124		1.293		ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.225		0.184		0.240		ns
t _{COO_PIO}	Output Register Clock to Output Delay ⁴	-	1.09	-	1.16	-	1.23	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.220	_	0.185	_	0.150	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.085		-0.072		-0.058		ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.117	_	0.103	_	0.088	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.107	_	-0.094	_	-0.081	_	ns
EBR Timing								
t _{CO_EBR}	Clock (Read) to output from Address or Data	—	2.78	—	2.89	—	2.99	ns
t _{COO_EBR}	Clock (Write) to output from EBR output Register	—	0.31	—	0.32	—	0.33	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.218	_	-0.227	_	-0.237	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.249		0.257		0.265	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.071		-0.070		-0.068		ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.118		0.098		0.077		ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.107	_	-0.106	_	-0.106	—	ns

Over Recommended Commercial Operating Conditions

Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps

PCI Express Electrical and Timing Characteristics

AC and DC Characteristics

Symbol	Symbol Description Test Conditions		Min	Тур	Max	Units
Transmit ¹						
UI	Unit interval		399.88	400	400.12	ps
V _{TX-DIFF_P-P}	Differential peak-to-peak output voltage		0.8	1.0	1.2	V
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio		-3	-3.5	-4	dB
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage		—	_	20	mV
V _{TX-RCV-DETECT}	Amount of voltage change allowed dur- ing receiver detection		—	_	600	mV
V _{TX-DC-CM}	Tx DC common mode voltage		0		$V_{CCOB} + 5\%$	V
ITX-SHORT	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	—	_	90	mA
Z _{TX-DIFF-DC}	Differential output impedance		80	100	120	Ohms
RL _{TX-DIFF}	Differential return loss		10		—	dB
RL _{TX-CM}	Common mode return loss		6.0		—	dB
T _{TX-RISE}	Tx output rise time	20 to 80%	0.125		—	UI
T _{TX-FALL}	Tx output fall time	20 to 80%	0.125		—	UI
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link		—	_	1.3	ns
T _{TX-EYE}	Transmitter eye width		0.75		—	UI
T _{TX-EYE-MEDIAN-TO-MAX-JITTER}	Maximum time between jitter median and maximum deviation from median		—	_	0.125	UI
Receive ^{1, 2}						
UI	Unit Interval		399.88	400	400.12	ps
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage		0.34 ³	_	1.2	V
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage		65	_	340 ³	mV
V _{RX-CM-AC_P}	Receiver common mode voltage for AC coupling		—	_	150	mV
Z _{RX-DIFF-DC}	DC differential input impedance		80	100	120	Ohms
Z _{RX-DC}	DC input impedance		40	50	60	Ohms
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance		200K	_	—	Ohms
RL _{RX-DIFF}	Differential return loss		10		_	dB
RL _{RX-CM}	Common mode return loss		6.0	_	—	dB
T _{RX-IDLE-DET-DIFF-ENTERTIME}	Maximum time required for receiver to recognize and signal an unexpected idle on link		—		_	ms

1. Values are measured at 2.5 Gbps.

2. Measured with external AC-coupling on the receiver.

3.Not in compliance with PCI Express 1.1 standard.

XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-13. Transmit

Over Recommended Operating Conditions

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	_	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{2, 3, 4}	Output data deterministic jitter		_	—	0.17	UI
J _{TX_TJ} ^{1, 2, 3, 4}	Total output data jitter		_	—	0.35	UI

1. Total jitter includes both deterministic jitter and random jitter.

2. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Values are measured at 2.5 Gbps.

Table 3-14. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 3.125 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 3.125 GHz	6	_	_	dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3}	Deterministic jitter tolerance (peak-to-peak)		—		0.37	UI
J _{RX_RJ} ^{1, 2, 3}	Random jitter tolerance (peak-to-peak)		—		0.18	UI
J _{RX_SJ} ^{1, 2, 3}	Sinusoidal jitter tolerance (peak-to-peak)		—	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3}	Total jitter tolerance (peak-to-peak)		—	_	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35			UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

Figure 3-24. Power-On-Reset (POR) Timing

Time taken from V_{CC}, V_{CCAUX} or V_{CCIO8}, whichever is the last to cross the POR trip point.
 Device is in a Master Mode (SPI, SPIm).
 The CFG pins are normally static (hard wired).

Figure 3-25. sysCONFIG Port Timing

sysl/O Differential Electrical Characteristics

Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Symbol	Description	Min.	Nom.	Max.	Units
V _{CCO}	Driver supply voltage (+/- 5%)	3.14	3.3	3.47	V
V _{ID}	Input differential voltage	150	_	1200	mV
V _{ICM}	Input common mode voltage	3	_	3.265	V
V _{CCO}	Termination supply voltage	3.14	3.3	3.47	V
R _T	Termination resistance (off-chip)	45	50	55	Ohms

Note: LatticeECP3 only supports the TRLVDS receiver.

Mini LVDS

Over Recommended Operating Conditions

Parameter Symbol	Description	Min.	Тур.	Max.	Units
Z _O	Single-ended PCB trace impedance	30	50	75	Ohms
R _T	Differential termination resistance	50	100	150	Ohms
V _{OD}	Output voltage, differential, V _{OP} - V _{OM}	300	_	600	mV
V _{OS}	Output voltage, common mode, $ V_{OP} + V_{OM} /2$	1	1.2	1.4	V
ΔV_{OD}	Change in V _{OD} , between H and L	—	_	50	mV
ΔV_{ID}	Change in V _{OS} , between H and L	—	_	50	mV
V _{THD}	Input voltage, differential, V _{INP} - V _{INM}	200	_	600	mV
V _{CM}	Input voltage, common mode, $ V_{INP} + V_{INM} /2$	0.3+(V _{THD} /2)	_	2.1-(V _{THD} /2)	
T _R , T _F	Output rise and fall times, 20% to 80%	—	_	550	ps
T _{ODUTY}	Output clock duty cycle	40	—	60	%

Note: Data is for 6 mA differential current drive. Other differential driver current options are available.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-70EA				
Pin T	уре	484 fpBGA	672 fpBGA	1156 fpBGA		
	Bank 0	21	30	43		
Emulated Differential I/O per Bank	Bank 1	18	24	39		
	Bank 2	8	12	13		
	Bank 3	20	23	33		
	Bank 6	22	25	33		
	Bank 7	11	16	18		
	Bank 8	12	12	12		
	Bank 0	0	0	0		
High-Speed Differential I/ O per Bank	Bank 1	0	0	0		
	Bank 2	6	9	9		
	Bank 3	9	12	16		
	Bank 6	11	14	16		
	Bank 7	9	12	13		
	Bank 8	0	0	0		
	Bank 0	42/21	60/30	86/43		
	Bank 1	36/18	48/24	78/39		
Total Single-Ended/	Bank 2	28/14	42/21	44/22		
Total Differential I/O	Bank 3	58/29	71/35	98/49		
per Bank	Bank 6	67/33	78/39	98/49		
	Bank 7	40/20	56/28	62/31		
	Bank 8	24/12	24/12	24/12		
	Bank 0	3	5	7		
	Bank 1	3	4	7		
	Bank 2	2	3	3		
DDR Groups Bonded	Bank 3	3	4	5		
	Bank 6	4	4	5		
	Bank 7	3	4	4		
	Configuration Bank 8	0	0	0		
SERDES Quads		1	2	3		

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-95EA			ECP3-150EA	
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
Emulated Differential I/O per Bank	Bank 0	21	30	43	30	47
	Bank 1	18	24	39	24	43
	Bank 2	8	12	13	12	18
	Bank 3	20	23	33	23	37
	Bank 6	22	25	33	25	37
	Bank 7	11	16	18	16	24
	Bank 8	12	12	12	12	12
Highspeed Differential I/O per Bank	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	6	9	9	9	15
	Bank 3	9	12	16	12	21
	Bank 6	11	14	16	14	21
	Bank 7	9	12	13	12	18
	Bank 8	0	0	0	0	0
Total Single Ended/ Total Differential I/O per Bank	Bank 0	42/21	60/30	86/43	60/30	94/47
	Bank 1	36/18	48/24	78/39	48/24	86/43
	Bank 2	28/14	42/21	44/22	42/21	66/33
	Bank 3	58/29	71/35	98/49	71/35	116/58
	Bank 6	67/33	78/39	98/49	78/39	116/58
	Bank 7	40/20	56/28	62/31	56/28	84/42
	Bank 8	24/12	24/12	24/12	24/12	24/12
DDR Groups Bonded per Bank	Bank 0	3	5	7	5	7
	Bank 1	3	4	7	4	7
	Bank 2	2	3	3	3	4
	Bank 3	3	4	5	4	7
	Bank 6	4	4	5	4	7
	Bank 7	3	4	4	4	6
	Configuration Bank8	0	0	0	0	0
SERDES Quads		1	2	3	2	4

1. These pins must remain floating on the board.

LatticeECP3 Family Data Sheet Ordering Information

April 2014

Data Sheet DS1021

LatticeECP3 Part Number Description

1. Green = Halogen free and lead free.

Ordering Information

LatticeECP3 devices have top-side markings, for commercial and industrial grades, as shown below:

Note: See PCN 05A-12 for information regarding a change to the top-side mark logo.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.