E. Lattice Semiconductor Corporation - <u>LFE3-35EA-7LFN484I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	33000
Total RAM Bits	1358848
Number of I/O	295
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-7lfn484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The LatticeECP3[™] (EConomy Plus Third generation) family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES and high speed source synchronous interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 65 nm technology making the devices suitable for high-volume, high-speed, low-cost applications.

The LatticeECP3 device family expands look-up-table (LUT) capacity to 149K logic elements and supports up to 586 user I/Os. The LatticeECP3 device family also offers up to 320 18 x 18 multipliers and a wide range of parallel I/O standards.

The LatticeECP3 FPGA fabric is optimized with high performance and low cost in mind. The LatticeECP3 devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the LatticeECP3 device family supports a broad range of interface standards, including DDR3, XGMII and 7:1 LVDS.

The LatticeECP3 device family also features high speed SERDES with dedicated PCS functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit Pre-emphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The LatticeECP3 devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

The Lattice Diamond[™] and ispLEVER[®] design software allows large complex designs to be efficiently implemented using the LatticeECP3 FPGA family. Synthesis library support for LatticeECP3 is available for popular logic synthesis tools. Diamond and ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeECP3 device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the LatticeECP3 family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

LatticeECP3 Family Data Sheet Architecture

June 2013

Data Sheet DS1021

Architecture Overview

Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sys-DSP[™] Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES Quads on the bottom of the device.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The functionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by registers that are addressable during device operation. The registers in every quad can be programmed via the SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysl/O buffers. The sysl/O buffers of the LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3.

The LatticeECP3 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the end of the EBR/DSP rows.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family supports a sysCONFIG[™] port located in the corner between banks one and two, which allows for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM

	SPR 16X4	PDPR 16X4
Number of slices	3	3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

PLL/DLL Cascading

LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are:

- PLL to PLL supported
- PLL to DLL supported

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs.

For further information about the DLL, please see the list of technical documentation at the end of this data sheet.

PLL/DLL PIO Input Pin Connections

All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Note: Not every PLL has an associated DLL.

Clock Dividers

LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows the clock divider connections.

Secondary Clock/Control Sources

LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and SC4-SC7 are for the clock.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7.

Note: Clock inputs can be configured in differential or single-ended mode.

Secondary Clock/Control Routing

Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control signals.

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

ALU Flags

The sysDSP slice provides a number of flags from the ALU including:

- Equal to zero (EQZ)
- Equal to zero with mask (EQZM)
- Equal to one with mask (EQOM)
- Equal to pattern with mask (EQPAT)
- Equal to bit inverted pattern with mask (EQPATB)
- Accumulator Overflow (OVER)
- Accumulator Underflow (UNDER)
- Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and output register.

Resources Available in the LatticeECP3 Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Slices	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
ECP3-17	12	48	24	6
ECP3-35	32	128	64	16
ECP3-70	64	256	128	32
ECP3-95	64	256	128	32
ECP3-150	160	640	320	80

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
ECP3-17	38	700
ECP3-35	72	1327
ECP3-70	240	4420
ECP3-95	240	4420
ECP3-150	372	6850

Figure 2-34. Output and Tristate Block for Left and Right Edges

Tristate Register Block

The tristate register block registers tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The output of this register is used as a tristate control.

ISI Calibration

The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control logic block.

For more information about this topic, please see the list of technical documentation at the end of this data sheet.

LatticeECP3 Family Data Sheet DC and Switching Characteristics

April 2014

Data Sheet DS1021

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V_CC
Supply Voltage V_{CCAUX} $\ldots \ldots \ldots \ldots -0.5$ V to 3.75 V
Supply Voltage V_{CCJ}
Output Supply Voltage V_{CCIO} –0.5 V to 3.75 V
Input or I/O Tristate Voltage Applied $^4.$ –0.5 V to 3.75 V
Storage Temperature (Ambient)
Junction Temperature (T_J) +125 °C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ²	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage, Terminating Resistor Switching Power Supply (SERDES)	3.135	3.465	V
V _{CCPLL}	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
V_{REF1} and V_{REF2}	Input Reference Voltage	0.5	1.7	V
V _{TT} ⁵	Termination Voltage	0.5	1.3125	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
SERDES External Pow	er Supply ⁶			
V	Input Buffer Power Supply (1.2 V)	1.14	1.26	V
V CCIB	Input Buffer Power Supply (1.5 V)	1.425	1.575	V
V	Output Buffer Power Supply (1.2 V)	1.14	1.26	V
V CCOB	Output Buffer Power Supply (1.5 V)	1.425	1.575	V
V _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	1.14	1.26	V

1. For correct operation, all supplies except V_{REF} and V_{TT} must be held in their valid operation range. This is true independent of feature usage.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC.} If V_{CCIO} or V_{CCJ} is set to 3.3 V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3.3 V.

5. If not used, V_{TT} should be left floating.

6. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for information on board considerations for SERDES power supplies.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Units V

Ω

Ω

Ω

Ω

٧

٧

V

V

mΑ

BLVDS25

The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS25 DC Conditions¹

V_{CCIO}

ZOUT

R_S

R_{TL}

 R_{TR} V_{OH}

VOL

VOD

V_{CM}

	-	-		
		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	
CCIO	Output Driver Supply (+/– 5%)	2.50	2.50	

10.00

90.00

45.00

45.00

1.38

1.12

0.25

1.25

11.24

10.00

90.00

90.00

90.00

1.48

1.02

0.46

1.25

10.20

Over Recommended Operating Conditions

 I_{DC} 1. For input buffer, see LVDS table.

Driver Impedance

Output High Voltage

Output Low Voltage

DC Output Current

Output Differential Voltage

Output Common Mode Voltage

Driver Series Resistor (+/- 1%)

Driver Parallel Resistor (+/- 1%)

Receiver Termination (+/- 1%)

LatticeECP3 External Switching Characteristics ^{1, 2, 3, 13}

			_	.8	-7 -6				
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Clock ⁶									
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-150EA	—	500	—	420	—	375	MHz
t _{w_PRI}	Clock Pulse Width for Primary Clock	ECP3-150EA	0.8	—	0.9	—	1.0		ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-150EA	—	300	_	330	—	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-150EA	—	250		280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
tw_pri	Pulse Width for Primary Clock	ECP3-70EA/95EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-70EA/95EA	_	360	_	370	_	380	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-70EA/95EA	—	310	_	320	—	330	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-35EA	—	500	—	420	—	375	MHz
tw_pri	Pulse Width for Primary Clock	ECP3-35EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-35EA	_	300	_	330	—	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-35EA	—	250	_	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-17EA	—	500	_	420	—	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-17EA	0.8	—	0.9	—	1.0	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-17EA	_	310	_	340	—	370	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-17EA	—	220	_	230	—	240	ps
Edge Clock ⁶									
fMAX_EDGE	Frequency for Edge Clock	ECP3-150EA	—	500	—	420		375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-150EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-150EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-70EA/95EA	0.9	—	1.0	—	1.2	—	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-70EA/95EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-35EA	—	500	—	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-35EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-35EA	_	200	_	210	—	220	ps
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-17EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-17EA	0.9	—	1.0	—	1.2	_	ns
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-17EA	—	200	_	210	—	220	ps
Generic SDR									
General I/O Pin Par	ameters Using Dedicated Clock In	put Primary Clock W	Vithout Pl	LL ²					
t _{co}	Clock to Output - PIO Output Register	ECP3-150EA		3.9		4.3	_	4.7	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.0	_	0.0		0.0	_	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-150EA	1.5	_	1.7	_	2.0		ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.3	_	1.5	_	1.7	_	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Maximum I/O Buffer Speed (Continued)^{1, 2, 3, 4, 5, 6}

Over Recommended Operating Conditions

Buffer	Description	Max.	Units
PCI33	PCI, V _{CCIO} = 3.3 V	66	MHz

1. These maximum speeds are characterized but not tested on every device.

2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.

3. LVCMOS timing is measured with the load specified in the Switching Test Conditions table of this document.

4. All speeds are measured at fast slew.

5. Actual system operation may vary depending on user logic implementation.

6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

PCI Express Electrical and Timing Characteristics

AC and DC Characteristics

Symbol	Description	Test Conditions	Min	Тур	Max	Units
Transmit ¹						
UI	Unit interval		399.88	400	400.12	ps
V _{TX-DIFF_P-P}	Differential peak-to-peak output voltage		0.8	1.0	1.2	V
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio		-3	-3.5	-4	dB
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage		—	_	20	mV
V _{TX-RCV-DETECT}	Amount of voltage change allowed dur- ing receiver detection		—	_	600	mV
V _{TX-DC-CM}	Tx DC common mode voltage		0		$V_{CCOB} + 5\%$	V
ITX-SHORT	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	—	_	90	mA
Z _{TX-DIFF-DC}	Differential output impedance		80	100	120	Ohms
RL _{TX-DIFF}	Differential return loss		10		—	dB
RL _{TX-CM}	Common mode return loss		6.0		—	dB
T _{TX-RISE}	Tx output rise time	20 to 80%	0.125		—	UI
T _{TX-FALL}	Tx output fall time	20 to 80%	0.125		—	UI
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link		—	_	1.3	ns
T _{TX-EYE}	Transmitter eye width		0.75		—	UI
T _{TX-EYE-MEDIAN-TO-MAX-JITTER}	Maximum time between jitter median and maximum deviation from median		—	_	0.125	UI
Receive ^{1, 2}						
UI	Unit Interval		399.88	400	400.12	ps
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage		0.34 ³	_	1.2	V
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage		65	_	340 ³	mV
V _{RX-CM-AC_P}	Receiver common mode voltage for AC coupling		—	_	150	mV
Z _{RX-DIFF-DC}	DC differential input impedance		80	100	120	Ohms
Z _{RX-DC}	DC input impedance		40	50	60	Ohms
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance		200K	_	—	Ohms
RL _{RX-DIFF}	Differential return loss		10		_	dB
RL _{RX-CM}	Common mode return loss		6.0	_	—	dB
T _{RX-IDLE-DET-DIFF-ENTERTIME}	Maximum time required for receiver to recognize and signal an unexpected idle on link		_		_	ms

1. Values are measured at 2.5 Gbps.

2. Measured with external AC-coupling on the receiver.

3.Not in compliance with PCI Express 1.1 standard.

HDMI (High-Definition Multimedia Interface) Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-22. Transmit and Receive^{1, 2}

		Spec. Co		
Symbol	Description	Min. Spec.	Max. Spec.	Units
Transmit				
Intra-pair Skew		—	75	ps
Inter-pair Skew		—	800	ps
TMDS Differential Clock Jitter		—	0.25	UI
Receive				
R _T	Termination Resistance	40	60	Ohms
V _{ICM}	Input AC Common Mode Voltage (50-Ohm Set- ting)	—	50	mV
TMDS Clock Jitter	Clock Jitter Tolerance	—	0.25	UI

1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable equalizer before data/clock is forwarded to the LatticeECP3 device.

LatticeECP3 sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Max.	Units	
POR, Confi	guration Initialization, and Wakeup				1
	Time from the Application of V_{CC} , V_{CCAUX} or V_{CCIO8}^{*} (Whichever	Master mode		23	ms
t _{ICFG}	is the Last to Cross the POR Trip Point) to the Rising Edge of INITN	Slave mode	—	6	ms
t _{VMC}	Time from t _{ICFG} to the Valid Master MCLK	—	5	μs	
t _{PRGM}	PROGRAMN Low Time to Start Configuration	25	—	ns	
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection	_	10	ns	
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low		—	37	ns
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low		_	37	ns
t _{DINIT} 1	PROGRAMN High to INITN High Delay		—	1	ms
t _{MWC}	Additional Wake Master Clock Signals After DONE Pin is High		100	500	cycles
t _{CZ}	MCLK From Active To Low To High-Z		—	300	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low			100	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequer	ice		100	ns
All Configu	ration Modes				
t _{SUCDI}	Data Setup Time to CCLK/MCLK		5	—	ns
t _{HCDI}	Data Hold Time to CCLK/MCLK		1	—	ns
t _{CODO}	CCLK/MCLK to DOUT in Flowthrough Mode	-0.2	12	ns	
Slave Seria	l				1
t _{SSCH}	CCLK Minimum High Pulse	5	—	ns	
t _{SSCL}	CCLK Minimum Low Pulse	5	_	ns	
	001// 5	Without encryption	_	33	MHz
ICCLK	CCLK Frequency		20	MHz	
Master and	Slave Parallel	1			
t _{SUCS}	CSN[1:0] Setup Time to CCLK/MCLK		7	—	ns
t _{HCS}	CSN[1:0] Hold Time to CCLK/MCLK		1	—	ns
t _{SUWD}	WRITEN Setup Time to CCLK/MCLK		7	_	ns
t _{HWD}	WRITEN Hold Time to CCLK/MCLK		1	_	ns
t _{DCB}	CCLK/MCLK to BUSY Delay Time		_	12	ns
t _{CORD}	CCLK to Out for Read Data		_	12	ns
t _{BSCH}	CCLK Minimum High Pulse		6	_	ns
t _{BSCL}	CCLK Minimum Low Pulse		6	—	ns
t _{BSCYC}	Byte Slave Cycle Time		30	_	ns
		Without encryption	_	33	MHz
ICCLK	CCLK/MCLK Frequency	With encryption	—	20	MHz
Master and	Slave SPI	1			
t _{CFGX}	INITN High to MCLK Low		_	80	ns
t _{CSSPI}	INITN High to CSSPIN Low	0.2	2	μs	
t _{SOCDO}	MCLK Low to Output Valid		15	ns	
t _{CSPID}	CSSPIN[0:1] Low to First MCLK Edge Setup Time	0.3		μs	
	001// 5	Without encryption	—	33	MHz
ICCLK	CCLK Frequency	With encryption	—	20	MHz
t _{SSCH}	CCLK Minimum High Pulse	mum High Pulse			

Over Recommended Operating Conditions

LatticeECP3 sysCONFIG Port Timing Specifications (Continued)

Over Recommended Operating Conditions

Parameter	Description	Min.	Max.	Units	
t _{SSCL}	CCLK Minimum Low Pulse	5		ns	
t _{HLCH}	HOLDN Low Setup Time (Relative to CCLK)	5	_	ns	
t _{CHHH}	HOLDN Low Hold Time (Relative to CCLK)	5	_	ns	
Master and Slave SPI (Continued)					
t _{CHHL}	HOLDN High Hold Time (Relative to CCLK)	5	_	ns	
t _{HHCH}	HOLDN High Setup Time (Relative to CCLK)	5		ns	
t _{HLQZ}	HOLDN to Output High-Z	_	9	ns	
t _{HHQX}	HOLDN to Output Low-Z	_	9	ns	

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of the PROGRAMN.

Parameter	Min.	Max.	Units
Master Clock Frequency	Selected value - 15%	Selected value + 15%	MHz
Duty Cycle	40	60	%

Figure 3-20. sysCONFIG Parallel Port Read Cycle

Signal Descriptions (Cont.)

Signal Name	I/O	Description			
[LOC]DQS[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball function number.			
[LOC]DQ[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated DQS number.			
Test and Programming (Dedicated Pi	ns)				
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.			
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.			
ТОІ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.			
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.			
VCCJ	—	Power supply pin for JTAG Test Access Port.			
Configuration Pads (Used During sys	CONFIG	G)			
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.			
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.			
PROGRAMN	Ι	Initiates configuration sequence when asserted low. This pin always has an active pull-up. It is a dedicated pin.			
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. It is a dedicated pin.			
ССГК	Ι	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. It is a dedicated pin.			
MCLK	I/O	Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Master configuration modes.			
BUSY/SISPI	0	Parallel configuration mode busy indicator. SPI/SPIm mode data output.			
CSN/SN/OEN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. Parallel burst Flash output enable.			
CS1N/HOLDN/RDY	I	Parallel configuration mode active-low chip select. Slave SPI hold input.			
WRITEN	Ι	Write enable for parallel configuration modes.			
DOUT/CSON/CSSPI1N	0	Serial data output. Chip select output. SPI/SPIm mode chip select.			
		sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.			
D[0]/SPIFASTN	I/O	sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm mode, this pin should either be tied high or low, must not be left floating. Open drain during configuration.			
D1	I/O	Parallel configuration I/O. Open drain during configuration.			
D2	I/O	Parallel configuration I/O. Open drain during configuration.			
D3/SI	I/O	Parallel configuration I/O. Slave SPI data input. Open drain during configura- tion.			
D4/SO	I/O	Parallel configuration I/O. Slave SPI data output. Open drain during configura- tion.			
D5	I/O	Parallel configuration I/O. Open drain during configuration.			
D6/SPID1	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.			

LatticeECP3 Devices, Green and Lead-Free Packaging

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	17
LFE3-17EA-6MG328C	1.2 V	-6	STD	Green csBGA	328	COM	17
LFE3-17EA-7MG328C	1.2 V	-7	STD	Green csBGA	328	COM	17
LFE3-17EA-8MG328C	1.2 V	-8	STD	Green csBGA	328	COM	17
LFE3-17EA-6LMG328C	1.2 V	-6	LOW	Green csBGA	328	COM	17
LFE3-17EA-7LMG328C	1.2 V	-7	LOW	Green csBGA	328	COM	17
LFE3-17EA-8LMG328C	1.2 V	-8	LOW	Green csBGA	328	COM	17
LFE3-17EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	17
LFE3-17EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	17
LFE3-17EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	17

Commercial

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256C	1.2 V	-6	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7FTN256C	1.2 V	-7	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8FTN256C	1.2 V	-8	STD	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6LFTN256C	1.2 V	-6	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-7LFTN256C	1.2 V	-7	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-8LFTN256C	1.2 V	-8	LOW	Lead-Free ftBGA	256	COM	33
LFE3-35EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	33
LFE3-35EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	33
LFE3-35EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	33
LFE3-35EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Industrial

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

Part Number	Voltage	Grade	Power	Package ¹	Pins	Temp.	LUTs (K)
LFE3-17EA-6FTN256I	1.2 V	-6	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-7FTN256I	1.2 V	-7	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-8FTN256I	1.2 V	-8	STD	Lead-Free ftBGA	256	IND	17
LFE3-17EA-6LFTN256I	1.2 V	-6	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-7LFTN256I	1.2 V	-7	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-8LFTN256I	1.2 V	-8	LOW	Lead-Free ftBGA	256	IND	17
LFE3-17EA-6MG328I	1.2 V	-6	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-7MG328I	1.2 V	-7	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-8MG328I	1.2 V	-8	STD	Lead-Free csBGA	328	IND	17
LFE3-17EA-6LMG328I	1.2 V	-6	LOW	Green csBGA	328	IND	17
LFE3-17EA-7LMG328I	1.2 V	-7	LOW	Green csBGA	328	IND	17
LFE3-17EA-8LMG328I	1.2 V	-8	LOW	Green csBGA	328	IND	17
LFE3-17EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	17
LFE3-17EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	17
LFE3-17EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	17
LFE3-17EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	17

1. Green = Halogen free and lead free.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-35EA-6FTN256I	1.2 V	-6	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-7FTN256I	1.2 V	-7	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-8FTN256I	1.2 V	-8	STD	Lead-Free ftBGA	256	IND	33
LFE3-35EA-6LFTN256I	1.2 V	-6	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-7LFTN256I	1.2 V	-7	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-8LFTN256I	1.2 V	-8	LOW	Lead-Free ftBGA	256	IND	33
LFE3-35EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	33
LFE3-35EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	33
LFE3-35EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	33
LFE3-35EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	33
LFE3-35EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	33
LFE3-35EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	33

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.