E. Attice Semiconductor Corporation - <u>LFE3-35EA-7LFTN256C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	33000
Total RAM Bits	1358848
Number of I/O	133
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-7lftn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-2. PFU Diagram

Slice

Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Table 2-1.	Resources ar	nd Modes	Available	per Slice
	11000 di 000 di		/ 11 aa	

	PFU E	BLock	PFF Block		
Slice	Resources	Modes	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 3	2 LUT4s	Logic, ROM	2 LUT4s	Logic, ROM	

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Table 2-5. DLL Signals

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	DLL feed input from DLL output, clock net, routing or external pin
RSTN	I	Active low synchronous reset
ALUHOLD	I	Active high freezes the ALU
UDDCNTL	I	Synchronous enable signal (hold high for two cycles) from routing
CLKOP	0	The primary clock output
CLKOS	0	The secondary clock output with fine delay shift and/or division by 2 or by 4
LOCK	0	Active high phase lock indicator
INCI	I	Incremental indicator from another DLL via CIB.
GRAYI[5:0]	I	Gray-coded digital control bus from another DLL in time reference mode.
DIFF	0	Difference indicator when DCNTL is difference than the internal setting and update is needed.
INCO	0	Incremental indicator to other DLLs via CIB.
GRAYO[5:0]	0	Gray-coded digital control bus to other DLLs via CIB

LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between Banks 6 and 7 and Banks 2 and 3.

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

* This signal is not user accessible. It can only be used to feed the slave delay line.

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

MAC DSP Element

In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element

MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

Note: Simplified diagram does not show CE/SET/REST details.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysl/O buffers. The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is used in DDR3 memory interfaces. The PIO blocks on the bottom contain the SDR registers but do not support generic DDR.

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges.

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data sheet.

To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the most significant bit will invert the clock for a 180-degree shift of the incoming clock.

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high speed DDR data from and to the DDR3 Memory.

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, refer to the sysIO section of this data sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface implementation in LatticeECP3.

sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, LVPECL, PCI.

sysl/O Buffer Banks

LatticeECP3 devices have six sysl/O buffer banks: six banks for user I/Os arranged two per side. The banks on the bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysl/O buffer bank (Configuration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. Each sysl/O bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank, except the Configuration Bank, has voltage references, V_{REF1} and V_{REF2} , which allow it to be completely independent from the others. Figure 2-38 shows the seven banks and their associated supplies.

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

On-Chip Programmable Termination

The LatticeECP3 supports a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 40, 50, or 60 Ohms. External termination to Vtt should be used for DDR2 and DDR3 memory controller implementation.
- Common mode termination of 80, 100, 120 Ohms for differential inputs

Figure 2-39. On-Chip Termination

Programmable resistance (40, 50 and 60 Ohms)
Parallel Single-Ended Input

Differential Input

See Table 2-12 for termination options for input modes.

Table 2-12. On-Chip Termination Options for Input Modes

IO_TYPE	TERMINATE to VTT ^{1, 2}	DIFFERENTIAL TERMINATION RESISTOR ¹
LVDS25	þ	80, 100, 120
BLVDS25	þ	80, 100, 120
MLVDS	þ	80, 100, 120
HSTL18_I	40, 50, 60	þ
HSTL18_II	40, 50, 60	þ
HSTL18D_I	40, 50, 60	þ
HSTL18D_II	40, 50, 60	þ
HSTL15_I	40, 50, 60	þ
HSTL15D_I	40, 50, 60	þ
SSTL25_I	40, 50, 60	þ
SSTL25_II	40, 50, 60	þ
SSTL25D_I	40, 50, 60	þ
SSTL25D_II	40, 50, 60	þ
SSTL18_I	40, 50, 60	þ
SSTL18_II	40, 50, 60	þ
SSTL18D_I	40, 50, 60	þ
SSTL18D_II	40, 50, 60	þ
SSTL15	40, 50, 60	þ
SSTL15D	40, 50, 60	þ

1. TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature. Use of TERMINATE to VTT and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in

an I/O bank.

On-chip termination tolerance +/- 20%

2. External termination to VTT should be used when implementing DDR2 and DDR3 memory controller.

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dualboot image support.

1. TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

2. Dual-Boot Image Support

Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide.

External Resistor

LatticeECP3 devices require a single external, 10 kOhm \pm 1% value between the XRES pin and ground. Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the external resistor pad.

On-Chip Oscillator

Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK frequency of 2.5 MHz.

This internal 130 MHz +/- 15% CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

MCCLK (MHz)	MCCLK (MHz)
	10
2.5 ¹	13
4.3	15 ²
5.4	20
6.9	26
8.1	33 ³
9.2	

 Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.

2. Maximum MCCLK with encryption enabled.

3. Maximum MCCLK without encryption.

Density Shifting

The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and Diamond software for specific restrictions and limitations.

sysl/O Recommended Operating Conditions

	V _{CCIO}			V _{REF} (V)			
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.	
LVCMOS33 ²	3.135	3.3	3.465	—	—	—	
LVCMOS33D	3.135	3.3	3.465	—	—	—	
LVCMOS25 ²	2.375	2.5	2.625	—	—	—	
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—	—	—	
LVCMOS12 ²	1.14	1.2	1.26	—	—	—	
LVTTL33 ²	3.135	3.3	3.465	—	—	—	
PCI33	3.135	3.3	3.465	—	—	—	
SSTL15 ³	1.43	1.5	1.57	0.68	0.75	0.9	
SSTL18_I, II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL25_I, II ²	2.375	2.5	2.625	1.15	1.25	1.35	
SSTL33_I, II ²	3.135	3.3	3.465	1.3	1.5	1.7	
HSTL15_I ²	1.425	1.5	1.575	0.68	0.75	0.9	
HSTL18_I, II ²	1.71	1.8	1.89	0.816	0.9	1.08	
LVDS25 ²	2.375	2.5	2.625	—	—	—	
LVDS25E	2.375	2.5	2.625	—	—	—	
MLVDS ¹	2.375	2.5	2.625	—	—	—	
LVPECL33 ^{1, 2}	3.135	3.3	3.465	—	—	—	
Mini LVDS	2.375	2.5	2.625	—	—	—	
BLVDS25 ^{1, 2}	2.375	2.5	2.625	—	—	—	
RSDS ²	2.375	2.5	2.625	—	—	—	
RSDSE ^{1, 2}	2.375	2.5	2.625	—	—	—	
TRLVDS	3.14	3.3	3.47	—	—	—	
PPLVDS	3.14/2.25	3.3/2.5	3.47/2.75	—	—	—	
SSTL15D ³	1.43	1.5	1.57	—	—	—	
SSTL18D_I ^{2, 3} , II ^{2, 3}	1.71	1.8	1.89	—	—	—	
SSTL25D_ I ² , II ²	2.375	2.5	2.625	—	—	—	
SSTL33D_ I ² , II ²	3.135	3.3	3.465	—	—	—	
HSTL15D_ I ²	1.425	1.5	1.575		—	—	
HSTL18D_ I ² , II ²	1.71	1.8	1.89	—	—	—	

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. For input voltage compatibility, see TN1177, LatticeECP3 sysIO Usage Guide.

3. VREF is required when using Differential SSTL to interface to DDR memory.

BLVDS25

The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS25 DC Conditions¹

Over Recommended Operating Conditions					
		Typical			
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	Units	
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V	
Z _{OUT}	Driver Impedance	10.00	10.00	Ω	
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω	
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω	
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω	
V _{OH}	Output High Voltage	1.38	1.48	V	
V _{OL}	Output Low Voltage	1.12	1.02	V	
V _{OD}	Output Differential Voltage	0.25	0.46	V	
V _{CM}	Output Common Mode Voltage	1.25	1.25	V	
I _{DC}	DC Output Current	11.24	10.20	mA	

nmonded Operating Conditions

1. For input buffer, see LVDS table.

SERDES High Speed Data Receiver

Table 3-9. Serial Input Data Specifications

Symbol	Description	Min.	Тур.	Max.	Units	
		3.125 G	—	—	136	Bits
	Stream of nontransitions ¹ (CID = Consecutive Identical Digits) @ 10 ⁻¹² BER	2.5 G	—	—	144	
		1.485 G	—	—	160	
		622 M	—	—	204	
		270 M	—	—	228	
		150 M	—	—	296	
V _{RX-DIFF-S}	Differential input sensitivity	150	—	1760	mV, p-p	
V _{RX-IN}	Input levels	0	—	V _{CCA} +0.5 ⁴	V	
V _{RX-CM-DC}	Input common mode range (DC coupled)		0.6	—	V _{CCA}	V
V _{RX-CM-AC}	Input common mode range (AC coupled) ³	0.1	—	V _{CCA} +0.2	V	
T _{RX-RELOCK}	SCDR re-lock time ²		—	1000	—	Bits
Z _{RX-TERM}	Input termination 50/75 Ohm/High Z	-20%	50/75/HiZ	+20%	Ohms	
RL _{RX-RL}	Return loss (without package)	10	—	—	dB	

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.

2. This is the typical number of bit times to re-lock to a new phase or frequency within +/- 300 ppm, assuming 8b10b encoded data.

3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS interfaces are generally found in 622 Mbps SERDES devices.

4. Up to 1.76 V.

Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	3.125 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	2.5 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	1.25 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—	_	0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	622 Mbps	600 mV differential eye	—	_	0.18	UI, p-p
Total]	600 mV differential eye	—	—	0.65	UI, p-p

Table 3-10. Receiver Total Jitter Tolerance Specification

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min.	Тур.	Max.	Units
F _{REF}	Frequency range	15	_	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	_	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ²	200	_	V _{CCA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	_	2*V _{CCA}	mV, p-p differential
V _{REF-IN}	Input levels	0	_	V _{CCA} + 0.3	V
D _{REF}	Duty cycle ³	40	_	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-20%	100/2K	+20%	Ohms
C _{REF-IN-CAP}	AP Input capacitance		—	7	pF

Table 3-12. External Reference Clock Specification (refclkp/refclkn)

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

Figure 3-13. SERDES External Reference Clock Waveforms

Figure 3-26. Configuration from PROGRAMN Timing

1. The CFG pins are normally static (hard wired)

Figure 3-27. Wake-Up Timing

Figure 3-30. SPI Configuration Waveforms

Figure 3-31. Slave SPI HOLDN Waveforms

Switching Test Conditions

Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-23.

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Table 3-23. Te	est Fixture Required	Components,	Non-Terminated Interfaces
----------------	----------------------	-------------	---------------------------

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
LVTTL and other LVCMOS settings (L -> H, H -> L)	8	8	0 pF	LVCMOS 3.3 = 1.5V	
				LVCMOS 2.5 = $V_{CCIO}/2$	
				LVCMOS 1.8 = V _{CCIO} /2	
				LVCMOS 1.5 = $V_{CCIO}/2$	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> H)	8	1MΩ	0 pF	V _{CCIO} /2	
LVCMOS 2.5 I/O (Z -> L)	1 MΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	8	100	0 pF	V _{OH} - 0.10	
LVCMOS 2.5 I/O (L -> Z)	100	x	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

LatticeECP3 Family Data Sheet Pinout Information

March 2015

Data Sheet DS1021

Signal Descriptions

Signal Name	I/O	Description							
General Purpose									
P[Edge] [Row/Column Number]_[A/B]	I/O	[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).							
		[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Column Number. When Edge is L (Left) or R (Right), only need to specify Row Number.							
		[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.							
P[Edge][Row Number]E_[A/B/C/D]	I	These general purpose signals are input-only pins and are located near the PLLs.							
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.							
NC	—	No connect.							
RESERVED	—	This pin is reserved and should not be connected to anything on the board.							
GND	—	Ground. Dedicated pins.							
V _{CC}	—	Power supply pins for core logic. Dedicated pins.							
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.							
V _{CCIOx}	—	Dedicated power supply pins for I/O bank x.							
V _{CCA}	_	SERDES, transmit, receive, PLL and reference clock buffer power supply. All V_{CCA} supply pins must always be powered to the recommended operating voltage range. If no SERDES channels are used, connect V_{CCA} to V_{CC} .							
V _{CCPLL_[LOC]}	—	General purpose PLL supply pins where LOC=L (left) or R (right).							
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.							
VTTx	—	Power supply for on-chip termination of I/Os.							
XRES ¹	—	10 kOhm +/-1% resistor must be connected between this pad and ground.							
PLL, DLL and Clock Functions									
[LOC][num]_GPLL[T, C]_IN_[index]	I	General Purpose PLL (GPLL) input pads: LUM, LLM, RUM, RLM, num = row from center, T = true and C = complement, index A,B,Cat each side.							
[LOC][num]_GPLL[T, C]_FB_[index]	I	Optional feedback GPLL input pads: LUM, LLM, RUM, RLM, num = row from center, T = true and C = complement, index A,B,Cat each side.							
[LOC]0_GDLLT_IN_[index] ²	I/O	General Purpose DLL (GDLL) input pads where LOC=RUM or LUM, T is True Complement, index is A or B.							
[LOC]0_GDLLT_FB_[index] ²	I/O	Optional feedback GDLL input pads where LOC=RUM or LUM, T is True Complement, index is A or B.							
PCLK[T, C][n:0]_[3:0] ²	I/O	Primary Clock pads, $T =$ true and $C =$ complement, n per side, indexed by bank and 0, 1, 2, 3 within bank.							

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary (Cont.)

Pin Information Summary			ECP3-95EA	ECP3-150EA		
Pin Ty	ре	484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
Emulated Differential I/O per Bank	Bank 0	21	30	43	30	47
	Bank 1	18	24	39	24	43
	Bank 2	8	12	13	12	18
	Bank 3	20	23	33	23	37
	Bank 6	22	25	33	25	37
	Bank 7	11	16	18	16	24
	Bank 8	12	12	12	12	12
Highspeed Differential I/O per Bank	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	6	9	9	9	15
	Bank 3	9	12	16	12	21
	Bank 6	11	14	16	14	21
	Bank 7	9	12	13	12	18
	Bank 8	0	0	0	0	0
Total Single Ended/ Total Differential I/O per Bank	Bank 0	42/21	60/30	86/43	60/30	94/47
	Bank 1	36/18	48/24	78/39	48/24	86/43
	Bank 2	28/14	42/21	44/22	42/21	66/33
	Bank 3	58/29	71/35	98/49	71/35	116/58
	Bank 6	67/33	78/39	98/49	78/39	116/58
	Bank 7	40/20	56/28	62/31	56/28	84/42
	Bank 8	24/12	24/12	24/12	24/12	24/12
DDR Groups Bonded per Bank	Bank 0	3	5	7	5	7
	Bank 1	3	4	7	4	7
	Bank 2	2	3	3	3	4
	Bank 3	3	4	5	4	7
	Bank 6	4	4	5	4	7
	Bank 7	3	4	4	4	6
	Configuration Bank8	0	0	0	0	0
SERDES Quads		1	2	3	2	4

1. These pins must remain floating on the board.