E.J. Lattice Semiconductor Corporation - <u>LFE3-35EA-8FN484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	33000
Total RAM Bits	1358848
Number of I/O	295
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-8fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

as, overflow, underflow and convergent rounding, etc.

- Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the LatticeECP2[™] sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram

MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

ALU Flags

The sysDSP slice provides a number of flags from the ALU including:

- Equal to zero (EQZ)
- Equal to zero with mask (EQZM)
- Equal to one with mask (EQOM)
- Equal to pattern with mask (EQPAT)
- Equal to bit inverted pattern with mask (EQPATB)
- Accumulator Overflow (OVER)
- Accumulator Underflow (UNDER)
- Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and output register.

Resources Available in the LatticeECP3 Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Slices	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
ECP3-17	12	48	24	6
ECP3-35	32	128	64	16
ECP3-70	64	256	128	32
ECP3-95	64	256	128	32
ECP3-150	160	640	320	80

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
ECP3-17	38	700
ECP3-35	72	1327
ECP3-70	240	4420
ECP3-95	240	4420
ECP3-150	372	6850

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

Units V

Ω

Ω

Ω

Ω

٧

٧

V

V

mΑ

BLVDS25

The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS25 DC Conditions¹

V_{CCIO}

ZOUT

R_S

R_{TL}

 R_{TR} V_{OH}

VOL

VOD

V_{CM}

	-	-		
		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	
CCIO	Output Driver Supply (+/– 5%)	2.50	2.50	

10.00

90.00

45.00

45.00

1.38

1.12

0.25

1.25

11.24

10.00

90.00

90.00

90.00

1.48

1.02

0.46

1.25

10.20

Over Recommended Operating Conditions

 I_{DC} 1. For input buffer, see LVDS table.

Driver Impedance

Output High Voltage

Output Low Voltage

DC Output Current

Output Differential Voltage

Output Common Mode Voltage

Driver Series Resistor (+/- 1%)

Driver Parallel Resistor (+/- 1%)

Receiver Termination (+/- 1%)

Typical Building Block Function Performance

Pin-to-Pin Performance (LVCMOS25 12 mA Drive)^{1, 2, 3}

Function	–8 Timing	Units
Basic Functions		
16-bit Decoder	4.7	ns
32-bit Decoder	4.7	ns
64-bit Decoder	5.7	ns
4:1 MUX	4.1	ns
8:1 MUX	4.3	ns
16:1 MUX	4.7	ns
32:1 MUX	4.8	ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
Basic Functions		
16-bit Decoder	500	MHz
32-bit Decoder	500	MHz
64-bit Decoder	500	MHz
4:1 MUX	500	MHz
8:1 MUX	500	MHz
16:1 MUX	500	MHz
32:1 MUX	445	MHz
8-bit adder	500	MHz
16-bit adder	500	MHz
64-bit adder	305	MHz
16-bit counter	500	MHz
32-bit counter	460	MHz
64-bit counter	320	MHz
64-bit accumulator	315	MHz
Embedded Memory Functions		
512x36 Single Port RAM, EBR Output Registers	340	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	340	MHz
1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers	130	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	245	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (One PFU)	500	MHz
32x4 Pseudo-Dual Port RAM	500	MHz
64x8 Pseudo-Dual Port RAM	400	MHz
DSP Function		
18x18 Multiplier (All Registers)	400	MHz
9x9 Multiplier (All Registers)	400	MHz
36x36 Multiply (All Registers)	260	MHz

Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units
Input Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns
Output Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7} (Continued)

Over Recommended Commer	cial Operating Conditions
--------------------------------	---------------------------

Buffer Type	Description	-8	-7	-6	Units
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, fast slew rate	0.21	0.25	0.29	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, fast slew rate	0.05	0.07	0.09	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, fast slew rate	0.43	0.51	0.59	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, fast slew rate	0.23	0.28	0.33	ns
LVCMOS33_4mA	LVCMOS 3.3 4 mA drive, slow slew rate	1.44	1.58	1.72	ns
LVCMOS33_8mA	LVCMOS 3.3 8 mA drive, slow slew rate	0.98	1.10	1.22	ns
LVCMOS33_12mA	LVCMOS 3.3 12 mA drive, slow slew rate	0.67	0.77	0.86	ns
LVCMOS33_16mA	LVCMOS 3.3 16 mA drive, slow slew rate	0.97	1.09	1.21	ns
LVCMOS33_20mA	LVCMOS 3.3 20 mA drive, slow slew rate	0.67	0.76	0.85	ns
LVCMOS25_4mA	LVCMOS 2.5 4 mA drive, slow slew rate	1.48	1.63	1.78	ns
LVCMOS25_8mA	LVCMOS 2.5 8 mA drive, slow slew rate	1.02	1.14	1.27	ns
LVCMOS25_12mA	LVCMOS 2.5 12 mA drive, slow slew rate	0.74	0.84	0.94	ns
LVCMOS25_16mA	LVCMOS 2.5 16 mA drive, slow slew rate	1.02	1.14	1.26	ns
LVCMOS25_20mA	LVCMOS 2.5 20 mA drive, slow slew rate	0.74	0.83	0.93	ns
LVCMOS18_4mA	LVCMOS 1.8 4 mA drive, slow slew rate	1.60	1.77	1.93	ns
LVCMOS18_8mA	LVCMOS 1.8 8 mA drive, slow slew rate	1.11	1.25	1.38	ns
LVCMOS18_12mA	LVCMOS 1.8 12 mA drive, slow slew rate	0.87	0.98	1.09	ns
LVCMOS18_16mA	LVCMOS 1.8 16 mA drive, slow slew rate	0.86	0.97	1.07	ns
LVCMOS15_4mA	LVCMOS 1.5 4 mA drive, slow slew rate	1.71	1.89	2.08	ns
LVCMOS15_8mA	LVCMOS 1.5 8 mA drive, slow slew rate	1.20	1.34	1.48	ns
LVCMOS12_2mA	LVCMOS 1.2 2 mA drive, slow slew rate	1.37	1.56	1.74	ns
LVCMOS12_6mA	LVCMOS 1.2 6 mA drive, slow slew rate	1.11	1.27	1.43	ns
PCI33	PCI, VCCIO = 3.3 V	-0.12	-0.13	-0.14	ns

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.

5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

6. This data does not apply to the LatticeECP3-17EA device.

7. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Table 3-7. Channel Output Jitter

Description	Frequency	Min.	Тур.	Max.	Units
Deterministic	3.125 Gbps	—	—	0.17	UI, p-p
Random	3.125 Gbps	—	—	0.25	UI, p-p
Total	3.125 Gbps	—	—	0.35	UI, p-p
Deterministic	2.5 Gbps	—	—	0.17	UI, p-p
Random	2.5 Gbps	—	—	0.20	UI, p-p
Total	2.5 Gbps	—	—	0.35	UI, p-p
Deterministic	1.25 Gbps	—	—	0.10	UI, p-p
Random	1.25 Gbps	—	—	0.22	UI, p-p
Total	1.25 Gbps	—	—	0.24	UI, p-p
Deterministic	622 Mbps	—	—	0.10	UI, p-p
Random	622 Mbps	—	—	0.20	UI, p-p
Total	622 Mbps	—	—	0.24	UI, p-p
Deterministic	250 Mbps	—	—	0.10	UI, p-p
Random	250 Mbps	—	—	0.18	UI, p-p
Total	250 Mbps	—	—	0.24	UI, p-p
Deterministic	150 Mbps	—	—	0.10	UI, p-p
Random	150 Mbps	—	—	0.18	UI, p-p
Total	150 Mbps	—		0.24	UI, p-p

Note: Values are measured with PRBS 2⁷-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, reference clock @ 10X mode.

SERDES High Speed Data Receiver

Table 3-9. Serial Input Data Specifications

Symbol	Description	Min.	Тур.	Max.	Units	
		3.125 G	—	—	136	
		2.5 G	—	—	144	
	Stream of nontransitions ¹ (CID = Consecutive Identical Digits) @ 10 ⁻¹² BER	1.485 G	—	—	160	Dite
		622 M	—	—	204	DIIS
		270 M	—	—	228	
		150 M	—	—	296	
V _{RX-DIFF-S}	Differential input sensitivity		150	—	1760	mV, p-p
V _{RX-IN}	Input levels		0	—	V _{CCA} +0.5 ⁴	V
V _{RX-CM-DC}	Input common mode range (DC coupled)		0.6	—	V _{CCA}	V
V _{RX-CM-AC}	Input common mode range (AC coupled) ³		0.1	—	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ²		—	1000	—	Bits
Z _{RX-TERM}	Input termination 50/75 Ohm/High Z		-20%	50/75/HiZ	+20%	Ohms
RL _{RX-RL}	Return loss (without package)		10	—	—	dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.

2. This is the typical number of bit times to re-lock to a new phase or frequency within +/- 300 ppm, assuming 8b10b encoded data.

3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS interfaces are generally found in 622 Mbps SERDES devices.

4. Up to 1.76 V.

Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	3.125 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	2.5 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	1.25 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—	_	0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	622 Mbps	600 mV differential eye	—	_	0.18	UI, p-p
Total]	600 mV differential eye	—	—	0.65	UI, p-p

Table 3-10. Receiver Total Jitter Tolerance Specification

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-17. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	_	80		ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	—	0.10	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.24	UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 1.25 Gbps.

Table 3-18. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10			dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6			dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	_	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		-		0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		-		0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	_	0.71	UI
T _{RX_EYE}	Receiver eye opening		0.29	_	_	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 1.25 Gbps.

Figure 3-19. Test Loads

Test Loads

LatticeECP3 sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Max.	Units	
POR, Confi	guration Initialization, and Wakeup				1
	Time from the Application of V_{CC} , V_{CCAUX} or V_{CCIO8}^{*} (Whichever	Master mode		23	ms
t _{ICFG}	is the Last to Cross the POR Trip Point) to the Rising Edge of INITN	Slave mode	—	6	ms
t _{VMC}	Time from t _{ICFG} to the Valid Master MCLK		—	5	μs
t _{PRGM}	PROGRAMN Low Time to Start Configuration		25	—	ns
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection		_	10	ns
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low		—	37	ns
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low		_	37	ns
t _{DINIT} 1	PROGRAMN High to INITN High Delay		—	1	ms
t _{MWC}	Additional Wake Master Clock Signals After DONE Pin is High		100	500	cycles
t _{CZ}	MCLK From Active To Low To High-Z		—	300	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low			100	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequer	ice		100	ns
All Configu	ration Modes				
t _{SUCDI}	Data Setup Time to CCLK/MCLK		5	—	ns
t _{HCDI}	Data Hold Time to CCLK/MCLK		1	—	ns
t _{CODO}	CCLK/MCLK to DOUT in Flowthrough Mode	-0.2	12	ns	
Slave Seria	l				1
t _{SSCH}	CCLK Minimum High Pulse	5	—	ns	
t _{SSCL}	CCLK Minimum Low Pulse	5	_	ns	
	Without encryptic		_	33	MHz
ICCLK	CCLK Frequency	With encryption		20	MHz
Master and	Slave Parallel	1			
t _{SUCS}	CSN[1:0] Setup Time to CCLK/MCLK		7	—	ns
t _{HCS}	CSN[1:0] Hold Time to CCLK/MCLK		1	—	ns
t _{SUWD}	WRITEN Setup Time to CCLK/MCLK		7	_	ns
t _{HWD}	WRITEN Hold Time to CCLK/MCLK		1	_	ns
t _{DCB}	CCLK/MCLK to BUSY Delay Time		_	12	ns
t _{CORD}	CCLK to Out for Read Data		_	12	ns
t _{BSCH}	CCLK Minimum High Pulse		6	_	ns
t _{BSCL}	CCLK Minimum Low Pulse		6	—	ns
t _{BSCYC}	Byte Slave Cycle Time		30	_	ns
		Without encryption	_	33	MHz
ICCLK	CCLK/MCLK Frequency	With encryption	—	20	MHz
Master and	Slave SPI	1			
t _{CFGX}	INITN High to MCLK Low		_	80	ns
t _{CSSPI}	INITN High to CSSPIN Low	0.2	2	μs	
t _{SOCDO}	MCLK Low to Output Valid		15	ns	
t _{CSPID}	CSSPIN[0:1] Low to First MCLK Edge Setup Time	0.3		μs	
	001// 5	Without encryption	—	33	MHz
ICCLK	CCLK Frequency	With encryption	—	20	MHz
t _{SSCH}	CCLK Minimum High Pulse				ns

Over Recommended Operating Conditions

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-70EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-95EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149

1. Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250V.

LatticeECP3 Family Data Sheet Revision History

March 2015

Data Sheet DS1021

Date	Version	Section	Change Summary
March 2015	2.8EA	Pinout Information All	Updated Package Pinout Information section. Changed reference to http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.
			Minor style/formatting changes.
April 2014	02.7EA	DC and Switching	Updated LatticeECP3 Supply Current (Standby) table power numbers.
		Characteristics	Removed speed grade -9 timing numbers in the following sections: — Typical Building Block Function Performance — LatticeECP3 External Switching Characteristics — LatticeECP3 Internal Switching Characteristics — LatticeECP3 Family Timing Adders
		Ordering Information	Removed ordering information for -9 speed grade devices.
March 2014	02.6EA	DC and Switching Characteristics	Added information to the sysl/O Single-Ended DC Electrical Character- istics section footnote.
February 2014	02.5EA	DC and Switching Characteristics	Updated Hot Socketing Specifications table. Changed ${\rm I}_{Pw}$ to ${\rm I}_{PD}$ in footnote 3.
			Updated the following figures: — Figure 3-25, sysCONFIG Port Timing — Figure 3-27, Wake-Up Timing
		Supplemental Information	Added technical note references.
September 2013	02.4EA	DC and Switching	Updated the Wake-Up Timing Diagram
		Characteristics	Added the following figures: — Master SPI POR Waveforms — SPI Configuration Waveforms — Slave SPI HOLDN Waveforms
			Added tIODISS and tIOENSS parameters in LatticeECP3 sysCONFIG Port Timing Specifications table.
June 2013	02.3EA	Architecture	sysl/O Buffer Banks text section – Updated description of "Top (Bank 0 and Bank 1) and Bottom syslO Buffer Pairs (Single-Ended Outputs Only)" for hot socketing information.
			sysl/O Buffer Banks text section – Updated description of "Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)" for PCI clamp information.
			On-Chip Oscillator section – clarified the speed of the internal CMOS oscillator (130 MHz +/- 15%).
			Architecture Overview section – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	sysl/O Recommended Operating Conditions table – Removed reference to footnote 1 from RSDS standard.
			sysl/O Single-Ended DC Electrical Characteristics table – Modified foot- note 1.
			Added Oscillator Output Frequency table.
			LatticeECP3 sysCONFIG Port Timing Specifications table – Updated min. column for t _{CODO} parameter.
			LatticeECP3 Family Timing Adders table – Description column, references to VCCIO = 3.0V changed to 3.3V. For PPLVDS, description changed from emulated to True LVDS and VCCIO = 2.5V changed to VCCIO = 2.5V or 3.3V.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
March 2010	01.6	Architecture	Added Read-Before-Write information.
		DC and Switching	Added footnote #6 to Maximum I/O Buffer Speed table.
		Characteristics	Corrected minimum operating conditions for input and output differential voltages in the Point-to-Point LVDS table.
		Pinout Information	Added pin information for the LatticeECP3-70EA and LatticeECP3- 95EA devices.
		Ordering Information	Added ordering part numbers for the LatticeECP3-70EA and LatticeECP3-95EA devices.
			Removed dual mark information.
November 2009	01.5	Introduction	Updated Embedded SERDES features.
			Added SONET/SDH to Embedded SERDES protocols.
		Architecture	Updated Figure 2-4, General Purpose PLL Diagram.
			Updated SONET/SDH to SERDES and PCS protocols.
			Updated Table 2-13, SERDES Standard Support to include SONET/ SDH and updated footnote 2.
		DC and Switching Characterisitcs	Added footnote to ESD Performance table.
			Updated SERDES Power Supply Requirements table and footnotes.
			Updated Maximum I/O Buffer Speed table.
			Updated Pin-to-Pin Peformance table.
			Updated sysCLOCK PLL Timing table.
			Updated DLL timing table.
			Updated High-Speed Data Transmitter tables.
			Updated High-Speed Data Receiver table.
			Updated footnote for Receiver Total Jitter Tolerance Specification table.
			Updated Periodic Receiver Jitter Tolerance Specification table.
			Updated SERDES External Reference Clock Specification table.
			Updated PCI Express Electrical and Timing AC and DC Characteristics.
			Deleted Reference Clock table for PCI Express Electrical and Timing AC and DC Characteristics.
			Updated SMPTE AC/DC Characteristics Transmit table.
			Updated Mini LVDS table.
			Updated RSDS table.
			Added Supply Current (Standby) table for EA devices.
			Updated Internal Switching Characteristics table.
			Updated Register-to-Register Performance table.
			Added HDMI Electrical and Timing Characteristics data.
			Updated Family Timing Adders table.
			Updated sysCONFIG Port Timing Specifications table.
			Updated Recommended Operating Conditions table.
			Updated Hot Socket Specifications table.
			Updated Single-Ended DC table.
			Updated TRLVDS table and figure.
			Updated Serial Data Input Specifications table.
			Updated HDMI Transmit and Receive table.
		Ordering Information	Added LFE3-150EA "TW" devices and footnotes to the Commercial and Industrial tables.