E. Lattice Semiconductor Corporation - <u>LFE3-35EA-8LFN484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	33000
Total RAM Bits	1358848
Number of I/O	295
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-35ea-8lfn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Introduction

February 2012

Features

- Higher Logic Density for Increased System Integration
 - 17K to 149K LUTs
 - 116 to 586 I/Os
- Embedded SERDES
 - 150 Mbps to 3.2 Gbps for Generic 8b10b, 10-bit SERDES, and 8-bit SERDES modes
 - Data Rates 230 Mbps to 3.2 Gbps per channel for all other protocols
 - Up to 16 channels per device: PCI Express, SONET/SDH, Ethernet (1GbE, SGMII, XAUI), CPRI, SMPTE 3G and Serial RapidIO

■ sysDSP[™]

- Fully cascadable slice architecture
- 12 to 160 slices for high performance multiply and accumulate
- Powerful 54-bit ALU operations
- Time Division Multiplexing MAC Sharing
- Rounding and truncation
- Each slice supports
 - -Half 36x36, two 18x18 or four 9x9 multipliers
 - Advanced 18x36 MAC and 18x18 Multiply-
 - Multiply-Accumulate (MMAC) operations

■ Flexible Memory Resources

- Up to 6.85Mbits sysMEM[™] Embedded Block RAM (EBR)
- 36K to 303K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs
 Two DLLs and up to ten PLLs per device
- Pre-Engineered Source Synchronous I/O
 - DDR registers in I/O cells

Table 1-1. LatticeECP3™ Family Selection Guide

• Dedicated read/write levelling functionality

Data Sheet DS1021

- Dedicated gearing logic
- Source synchronous standards support
 ADC/DAC, 7:1 LVDS, XGMII
 Link Speed ADC/DAC devices
 - -High Speed ADC/DAC devices
- Dedicated DDR/DDR2/DDR3 memory with DQS support
- Optional Inter-Symbol Interference (ISI) correction on outputs
- Programmable sysl/O[™] Buffer Supports Wide Range of Interfaces
 - On-chip termination
 - Optional equalization filter on inputs
 - LVTTL and LVCMOS 33/25/18/15/12
 - SSTL 33/25/18/15 I, II
 - HSTL15 I and HSTL18 I, II
 - PCI and Differential HSTL, SSTL
 - LVDS, Bus-LVDS, LVPECL, RSDS, MLVDS

Flexible Device Configuration

- Dedicated bank for configuration I/Os
- SPI boot flash interface
- Dual-boot images supported
- Slave SPI
- TransFR™ I/O for simple field updates
- Soft Error Detect embedded macro

System Level Support

- IEEE 1149.1 and IEEE 1532 compliant
- Reveal Logic Analyzer
- ORCAstra FPGA configuration utility
- · On-chip oscillator for initialization & general use
- 1.2 V core power supply

Device	ECP3-17	ECP3-35	ECP3-70	ECP3-95	ECP3-150
LUTs (K)	17	33	67	92	149
sysMEM Blocks (18 Kbits)	38	72	240	240	372
Embedded Memory (Kbits)	700	1327	4420	4420	6850
Distributed RAM Bits (Kbits)	36	68	145	188	303
18 x 18 Multipliers	24	64	128	128	320
SERDES (Quad)	1	1	3	3	4
PLLs/DLLs	2/2	4/2	10/2	10 / 2	10/2
Packages and SERDES Channels	/ I/O Combinatio	ns		•	
328 csBGA (10 x 10 mm)	2/116				
256 ftBGA (17 x 17 mm)	4 / 133	4 / 133			
484 fpBGA (23 x 23 mm)	4 / 222	4 / 295	4 / 295	4 / 295	
672 fpBGA (27 x 27 mm)		4 / 310	8 / 380	8 / 380	8 / 380
1156 fpBGA (35 x 35 mm)			12 / 490	12 / 490	16 / 586

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

MMAC DSP Element

The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the MMAC sysDSP element.

Figure 2-28. MMAC sysDSP Element

MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

SERDES Power Supply Requirements^{1, 2, 3}

Symbol	Description	Тур.	Max.	Units
Standby (Power Do	own)	•		1
I _{CCA-SB}	V _{CCA} current (per channel)	3	5	mA
I _{CCIB-SB}	Input buffer current (per channel)		—	mA
I _{CCOB-SB}	Output buffer current (per channel)	—	_	mA
Operating (Data Ra	ite = 3.2 Gbps)			•
I _{CCA-OP} V _{CCA} current (per channel)		68	77	mA
I _{CCIB-OP}	Input buffer current (per channel)	5	7	mA
I _{CCOB-OP}	Output buffer current (per channel)	19	25	mA
Operating (Data Ra	ite = 2.5 Gbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	66	76	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA
Operating (Data Ra	te = 1.25 Gbps)			·
I _{CCA-OP}	V _{CCA} current (per channel)	62	72	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA
Operating (Data Ra	ite = 250 Mbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA
Operating (Data Ra	ite = 150 Mbps)	·		·
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA

1. Equalization enabled, pre-emphasis disabled.

2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, pre-emphasis disabled, equalization enabled).

3. Pre-emphasis adds 20 mA to ICCA-OP data.

LVDS25E

The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	158	Ω
R _P	Driver Parallel Resistor (+/-1%)	140	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V V_{CCIO}. The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 4 mA, 8 mA, 16 mA or 20 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

RSDS25E

The LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-4. RSDS25E DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/–5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/–1%)	294	Ω
R _P	Driver Parallel Resistor (+/-1%)	121	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	1.35	V
V _{OL}	Output Low Voltage	1.15	V
V _{OD}	Output Differential Voltage	0.20	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	101.5	Ω
I _{DC}	DC Output Current	3.66	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8 -		-7 —6				
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-70EA/95EA	0.7	—	0.7	_	0.8	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-70EA/95EA	1.6	—	1.8	_	2.0	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-70EA/95EA	0.0	—	0.0	—	0.0	—	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-35EA	_	3.2	—	3.4	—	3.6	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-35EA	0.6	_	0.7	—	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-35EA	0.3	—	0.3	—	0.4	-	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-35EA	1.6	_	1.7	_	1.8	_	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-35EA	0.0	_	0.0	_	0.0	_	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-17EA	_	3.0	—	3.3	—	3.5	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-17EA	0.6	_	0.7	_	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-17EA	0.3	_	0.3	_	0.4	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-17EA	1.6	—	1.7	—	1.8	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-17EA	0.0	_	0.0	_	0.0	—	ns
Generic DDR ¹²									
Generic DDRX1 In Input	puts with Clock and Data (>10 Bits	Wide) Centered at Pi	n (GDDF	RX1_RX.S	SCLK.Ce	ntered) L	Ising PC	LK Pin fo	or Clock
t _{SUGDDR}	Data Setup Before CLK	All ECP3EA Devices	480	—	480	_	480		ps
t _{HOGDDR}	Data Hold After CLK	All ECP3EA Devices	480	—	480	—	480		ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	—	250	—	250	—	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.SC	CLK.PLL	Aligned)	Using P	LLCLKIN	Pin for
Data Left, Right, a	nd Top Sides and Clock Left and F	Right Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775	_	UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.S0	CLK.Alig	ned) Usiı	ng DLL -	CLKIN P	in for
Data Left, Right ar	d Top Sides and Clock Left and R	ight Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225	—	0.225	—	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775		UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In Input	puts with Clock and Data (<10 Bits	Wide) Centered at Pi	n (GDDF	X1_RX.	DQS.Cen	tered) U	sing DQ	S Pin for	Clock
t _{SUGDDB}	Data Setup After CLK	All ECP3EA Devices	535	_	535		535		ps
tHOGDDR	Data Hold After CLK	All ECP3EA Devices	535	—	535		535	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In	puts with Clock and Data (<10bits	wide) Aligned at Pin (GDDRX	1_RX.DQ	S.Aligne	d) Using	DQS Pin	for Cloc	k Input
Data and Clock Le	ft and Right Sides	`			-				-
t _{DVACI KGDDB}	Data Setup Before CLK	All ECP3EA Devices	—	0.225	_	0.225		0.225	UI
STROLIGED									

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8		-7		-6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDRX2 Ou	tput with Clock and Data (>10 Bits	Wide) Centered at Pir	n Using I	PLL (GDI	DRX2_TX	.PLL.Cer	ntered) ¹⁰		
Left and Right Side	es								
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	285	—	370	_	431	—	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	285	—	370	_	432	_	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	—	420	—	375	MHz
Memory Interface		•							
DDR/DDR2 I/O Pin	Parameters (Input Data are Strobe	Edge Aligned, Output	ut Strobe	e Edge is	Data Ce	ntered)4			
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	—	0.225		0.225		0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	—	0.64	—	UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI
f _{MAX_DDR}	DDR Clock Frequency	All ECP3 Devices	95	200	95	200	95	166	MHz
f _{MAX_DDR2}	DDR2 clock frequency	All ECP3 Devices	125	266	125	200	125	166	MHz
DDR3 (Using PLL f	or SCLK) I/O Pin Parameters	•							
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	_	0.225		0.225		0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	_	0.64	—	UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI
f _{MAX_DDR3}	DDR3 clock frequency	All ECP3 Devices	300	400	266	333	266	300	MHz
DDR3 Clock Timing	9								
t _{CH} (avg) ⁹	Average High Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{CL} (avg) ⁹	Average Low Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{JIT} (per, lck) ⁹	Output Clock Period Jitter During DLL Locking Period	All ECP3 Devices	-90	90	-90	90	-90	90	ps
t _{JIT} (cc, lck) ⁹	Output Cycle-to-Cycle Period Jit- ter During DLL Locking Period	All ECP3 Devices	_	180	—	180	—	180	ps

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

6. Uses LVDS I/O standard.

7. The current version of software does not support per bank skew numbers; this will be supported in a future release.

8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

9. Using settings generated by IPexpress.

10. These numbers are generated using best case PLL located in the center of the device.

11. Uses SSTL25 Class II Differential I/O Standard.

12. All numbers are generated with ispLEVER 8.1 software.

13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units
Input Adjusters				•	
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns
Output Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns

Over Recommended Commercial Operating Conditions

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
4	Input clock frequency (CLKI,		Edge clock	2		500	MHz
'IN	CLKFB)		Primary clock ⁴	2		420	MHz
f	Output clock frequency (CLKOP,		Edge clock	4	_	500	MHz
OUT	CLKOS)		Primary clock ⁴	4	_	420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125	_	250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667	_	166	MHz
f _{VCO}	PLL VCO frequency			500	_	1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2		500	MHz
			Primary clock ⁴	2	_	420	MHz
AC Charac	teristics					-	
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	CLKOS at 50% setting)	$f_{OUT} \le 250 \text{ MHz}$	Primary clock	45	50	55	%
		f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8	_	_	ns
		$f_{OUT} \ge 420 \text{ MHz}$		—	_	200	ps
t _{OPJIT} 1	Output clock period jitter	420 MHz > $f_{OUT} \ge 100$ MHz		_	_	250	ps
		f _{OUT} < 100 MHz		—	_	0.025	UIPP
t _{SK}	Input clock to output clock skew when N/M = integer			_		500	ps
+ 2	Look time	2 to 25 MHz		—	_	200	us
LOCK		25 to 500 MHz		—		50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_		50	ns
t _{HI}	Input clock high time	90% to 90%		0.5	_	—	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	—	ns
t _{IPJIT}	Input clock period jitter			—	_	400	ps
+	Reset signal pulse width high, RSTK			10	_	_	ns
'RST	Reset signal pulse width high, RST			500	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

SERDES/PCS Block Latency

Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

ltem	Description	Min.	Avg.	Max.	Fixed	Bypass	Units
Transmi	t Data Latency ¹				•	•	
	FPGA Bridge - Gearing disabled with different clocks		3	5	—	1	word clk
T1	FPGA Bridge - Gearing disabled with same clocks	—	—	_	3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk
T2	8b10b Encoder		—		2	1	word clk
Т3	SERDES Bridge transmit		_		2	1	word clk
тл	Serializer: 8-bit mode		_		15 + Δ1	—	UI + ps
14	Serializer: 10-bit mode	—	_		18 + Δ1	—	UI + ps
TE	Pre-emphasis ON		_		1 + ∆2	—	UI + ps
15	Pre-emphasis OFF	—	—	—	0 + ∆3	—	UI + ps
Receive	Data Latency ²				•		
D1	Equalization ON			_	Δ1	_	UI + ps
	Equalization OFF		_		Δ2	—	UI + ps
D 2	Deserializer: 8-bit mode	—	_	_	10 + ∆3	—	UI + ps
Π <u>Ζ</u>	Deserializer: 10-bit mode	—	—	_	12 + ∆3	—	UI + ps
R3	SERDES Bridge receive	—	—	_	2	—	word clk
R4	Word alignment	3.1	—	4	—	—	word clk
R5	8b10b decoder	—	—	_	1	—	word clk
R6	Clock Tolerance Compensation	7	15	23	1	1	word clk
	FPGA Bridge - Gearing disabled with different clocks	1	3	5	—	1	word clk
R7	FPGA Bridge - Gearing disabled with same clocks	—	_	_	3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118$ ps, $\Delta 2 = +132$ ps, $\Delta 3 = +700$ ps.

SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min.	Тур.	Max.	Units
F _{REF}	Frequency range	15	_	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	_	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ²	200	_	V _{CCA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	_	2*V _{CCA}	mV, p-p differential
V _{REF-IN}	Input levels	0	_	V _{CCA} + 0.3	V
D _{REF}	Duty cycle ³	40	_	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-20%	100/2K	+20%	Ohms
C _{REF-IN-CAP}	Input capacitance	_	—	7	pF

Table 3-12. External Reference Clock Specification (refclkp/refclkn)

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

Figure 3-13. SERDES External Reference Clock Waveforms

Figure 3-19. Test Loads

Test Loads

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40		ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20		ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10		ns
t _{BTH}	TCK [BSCAN] hold time	8		ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25		ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable		25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable		25	ns

Figure 3-32. JTAG Port Timing Waveforms

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins							
For Left and Right Edges of the Device									
D[Edgo] [n 2]	А	DQ							
	В	DQ							
P[Edge] [n-2]	А	DQ							
	В	DQ							
D[Edgo] [n 1]	A	DQ							
	В	DQ							
P[Edge] [n]	А	[Edge]DQSn							
	В	DQ							
P[Edge] [n 1]	А	DQ							
	В	DQ							
D[Edgo] [n 2]	A	DQ							
r[Euge][II+2]	В	DQ							
For Top Edge of the Devi	ce								
P[Edge] [n-3]	А	DQ							
	В	DQ							
P[Edge] [n-2]	А	DQ							
	В	DQ							
P[Edge] [n-1]	А	DQ							
	В	DQ							
P[Edge] [n]	А	[Edge]DQSn							
i [⊏uge] [ii]	В	DQ							
P[Edge] [n+1]	А	DQ							
i [Euge] [iit i]	В	DQ							
P[Edge] [n 2]	А	DQ							
י נבטשכן נוידבן	В	DQ							

Note: "n" is a row PIC number.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-70EA				
Pin T	уре	484 fpBGA	672 fpBGA	1156 fpBGA		
	Bank 0	21	30	43		
	Bank 1	18	24	39		
	Bank 2	8	12	13		
Emulated Differential	Bank 3	20	23	33		
	Bank 6	22	25	33		
	Bank 7	11	16	18		
	Bank 8	12	12	12		
	Bank 0	0	0	0		
	Bank 1	0	0	0		
	Bank 2	6	9	9		
High-Speed Differential I/	Bank 3	9	12	16		
	Bank 6	11	14	16		
	Bank 7	9	12	13		
	Bank 8	0	0	0		
	Bank 0	42/21	60/30	86/43		
	Bank 1	36/18	48/24	78/39		
Total Single-Ended/	Bank 2	28/14	42/21	44/22		
Total Differential I/O	Bank 3	58/29	71/35	98/49		
per Bank	Bank 6	67/33	78/39	98/49		
	Bank 7	40/20	56/28	62/31		
	Bank 8	24/12	24/12	24/12		
	Bank 0	3	5	7		
	Bank 1	3	4	7		
	Bank 2	2	3	3		
DDR Groups Bonded	Bank 3	3	4	5		
por Dank	Bank 6	4	4	5		
	Bank 7	3	4	4		
	Configuration Bank 8	0	0	0		
SERDES Quads		1	2	3		

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149

1. Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250V.