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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-2. PFU Diagram

Slice 
Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For 
PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. 
Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they 
enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as 
LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/
asynchronous), clock select, chip-select and wider RAM/ROM functions. 

Table 2-1. Resources and Modes Available per Slice

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for posi-
tive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent 
slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 
input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Slice

PFU BLock PFF Block

Resources Modes Resources Modes

Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 1 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 3 2 LUT4s Logic, ROM 2 LUT4s Logic, ROM
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LUT4 &
CARRY

LUT4 &
CARRY

D D

Slice 1

LUT4 &
CARRY

LUT4 &
CARRY

Slice 2

LUT4 &
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 Routing
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D D D D
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 

CLKFB
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 
1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer to 
support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dual-
boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 
system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data dur-
ing download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to 
the original backup golden configuration and try again. This all can be done without power cycling the system. 
For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support
LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configura-
tion, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device 
can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration 
SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LatticeECP3 devices require a single external, 10 kOhm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for 
configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is 
completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available 
MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence 
takes place: 

1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK 
frequency of 2.5 MHz.

This internal 130 MHz +/– 15% CMOS oscillator is available to the user by routing it as an input clock to the clock 
tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, 
LatticeECP3 sysCONFIG Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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MLVDS25
The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-5. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/–5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/–1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/–1%) 50.00 70.00 

RTR Receiver Termination (+/–1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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LatticeECP3 External Switching Characteristics 1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.

Clocks

Primary Clock6 

fMAX_PRI Frequency for Primary Clock Tree ECP3-150EA — 500 — 420 — 375 MHz

tW_PRI
Clock Pulse Width for Primary 
Clock ECP3-150EA 0.8 — 0.9 — 1.0 — ns

tSKEW_PRI
Primary Clock Skew Within a 
Device ECP3-150EA — 300 — 330 — 360 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-150EA — 250 — 280 — 300 ps

fMAX_PRI Frequency for Primary Clock Tree ECP3-70EA/95EA — 500 — 420 — 375 MHz

tW_PRI Pulse Width for Primary Clock ECP3-70EA/95EA 0.8 — 0.9 — 1.0 — ns

tSKEW_PRI
Primary Clock Skew Within a 
Device ECP3-70EA/95EA — 360 — 370 — 380 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-70EA/95EA — 310 — 320 — 330 ps

fMAX_PRI Frequency for Primary Clock Tree ECP3-35EA — 500 — 420 — 375 MHz

tW_PRI Pulse Width for Primary Clock ECP3-35EA 0. 8 — 0.9  — 1.0 — ns

tSKEW_PRI 
Primary Clock Skew Within a 
Device ECP3-35EA — 300 — 330 — 360 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-35EA — 250 — 280 — 300 ps

fMAX_PRI Frequency for Primary Clock Tree ECP3-17EA — 500 — 420 — 375 MHz

tW_PRI Pulse Width for Primary Clock ECP3-17EA 0. 8 — 0.9  — 1.0 — ns

tSKEW_PRI
Primary Clock Skew Within a 
Device ECP3-17EA — 310 — 340 — 370 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-17EA — 220 — 230 — 240 ps

Edge Clock6

fMAX_EDGE Frequency for Edge Clock ECP3-150EA — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-150EA 0.9 — 1.0 — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge 
of the Device ECP3-150EA — 200 — 210 — 220 ps

fMAX_EDGE Frequency for Edge Clock ECP3-70EA/95EA — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-70EA/95EA 0. 9 — 1.0  — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge 
of the Device ECP3-70EA/95EA — 200 — 210 — 220 ps

fMAX_EDGE Frequency for Edge Clock ECP3-35EA — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-35EA 0. 9 — 1.0  — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge 
of the Device ECP3-35EA — 200 — 210 — 220 ps

fMAX_EDGE Frequency for Edge Clock ECP3-17EA — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-17EA 0. 9 — 1.0  — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge 
of the Device ECP3-17EA — 200 — 210 — 220 ps

Generic SDR

General I/O Pin Parameters Using Dedicated Clock Input Primary Clock Without PLL2

tCO
Clock to Output - PIO Output 
Register ECP3-150EA — 3.9 — 4.3 — 4.7 ns

tSU
Clock to Data Setup - PIO Input 
Register ECP3-150EA 0.0 — 0.0 — 0.0 — ns

tH
Clock to Data Hold - PIO Input 
Register ECP3-150EA 1.5 — 1.7 — 2.0 — ns

tSU_DEL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-150EA 1.3 — 1.5 — 1.7 — ns
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Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin  Using PLL (GDDRX2_TX.PLL.Centered)10

Left and Right Sides

tDVBGDDR Data Valid Before CLK All ECP3EA Devices 285 — 370 — 431 — ps

tDVAGDDR Data Valid After CLK All ECP3EA Devices 285 — 370 — 432 — ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 500 — 420 — 375 MHz

Memory Interface

DDR/DDR2 I/O Pin Parameters (Input Data are Strobe Edge Aligned, Output Strobe Edge is Data Centered)4 

tDVADQ Data Valid After DQS (DDR Read) All ECP3 Devices — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) All ECP3 Devices 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

fMAX_DDR DDR Clock Frequency All ECP3 Devices 95 200 95 200 95 166 MHz

fMAX_DDR2 DDR2 clock frequency All ECP3 Devices 125 266 125 200 125 166 MHz

DDR3 (Using PLL for SCLK) I/O Pin Parameters

tDVADQ Data Valid After DQS (DDR Read) All ECP3 Devices — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) All ECP3 Devices 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

fMAX_DDR3 DDR3 clock frequency All ECP3 Devices 300 400 266 333 266 300 MHz

DDR3 Clock Timing

tCH (avg)9 Average High Pulse Width All ECP3 Devices 0.47 0.53 0.47 0.53 0.47 0.53 UI

tCL (avg)9 Average Low Pulse Width All ECP3 Devices 0.47 0.53 0.47 0.53 0.47 0.53 UI

tJIT (per, lck)9 Output Clock Period Jitter During 
DLL Locking Period All ECP3 Devices –90 90 –90 90 –90 90 ps

tJIT (cc, lck)9 Output Cycle-to-Cycle Period Jit-
ter During DLL Locking Period All ECP3 Devices — 180 — 180 — 180 ps

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.
3. Generic DDR timing numbers based on LVDS I/O.
4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.
5. DDR3 timing numbers based on SSTL15.
6. Uses LVDS I/O standard.
7. The current version of software does not support per bank skew numbers; this will be supported in a future release.
8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
9. Using settings generated by IPexpress.
10. These numbers are generated using best case PLL located in the center of the device.
11. Uses SSTL25 Class II Differential I/O Standard.
12. All numbers are generated with ispLEVER 8.1 software.
13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)
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tHWREN_EBR Hold Write/Read Enable to EBR Memory 0.141 — 0.145 — 0.149 — ns

tSUCE_EBR
Clock Enable Setup Time to EBR Output 
Register 0.087 — 0.096 — 0.104 — ns

tHCE_EBR
Clock Enable Hold Time to EBR Output 
Register –0.066 — –0.080 — –0.094 — ns

tSUBE_EBR
Byte Enable Set-Up Time to EBR Output 
Register –0.071 — –0.070 — –0.068 — ns

tHBE_EBR
Byte Enable Hold Time to EBR Output 
Register 0.118 — 0.098 — 0.077 — ns

DSP Block Timing3

tSUI_DSP Input Register Setup Time 0.32 — 0.36 — 0.39 — ns

tHI_DSP Input Register Hold Time  –0.17 — –0.19 — –0.21 — ns

tSUP_DSP Pipeline Register Setup Time 2.23 — 2.30 — 2.37 — ns

tHP_DSP Pipeline Register Hold Time –1.02 — –1.09 — –1.15 — ns

tSUO_DSP Output Register Setup Time 3.09 — 3.22 — 3.34 — ns

tHO_DSP Output Register Hold Time –1.67 — –1.76 — –1.84 — ns

tCOI_DSP Input Register Clock to Output Time — 3.05 — 3.35 — 3.73 ns

tCOP_DSP Pipeline Register Clock to Output Time — 1.30 — 1.47 — 1.64 ns

tCOO_DSP Output Register Clock to Output Time — 0.58 — 0.60 — 0.62 ns

tSUOPT_DSP Opcode Register Setup Time 0.31 — 0.35 — 0.39 — ns

tHOPT_DSP Opcode Register Hold Time –0.20 — –0.24 — –0.27 — ns

tSUDATA_DSP
Cascade_data through ALU to Output 
Register Setup Time 1.69 — 1.94 — 2.14 — ns

tHPDATA_DSP
Cascade_data  through ALU to Output 
Register Hold Time –0.58 — –0.80 — –0.97 — ns

1. Internal parameters are characterized but not tested on every device.
2. Commercial timing numbers are shown. Industrial timing numbers are typically slower and can be extracted from the Diamond or ispLEVER 

software.
3. DSP slice is configured in Multiply Add/Sub 18 x 18 mode.
4. The output register is in Flip-flop mode.
5. For details on –9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Internal Switching Characteristics1, 2, 5 (Continued)
Over Recommended Commercial Operating Conditions

Parameter Description

–8 –7 –6

Units.Min. Max. Min. Max. Min. Max.
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PCI33 PCI, VCCIO = 3.3 V 66 MHz

1. These maximum speeds are characterized but not tested on every device.
2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.
3. LVCMOS timing is measured with the load specified in the Switching Test Conditions table of this document.
4. All speeds are measured at fast slew.
5. Actual system operation may vary depending on user logic implementation.
6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

LatticeECP3 Maximum I/O Buffer Speed (Continued)1, 2, 3, 4, 5, 6

Over Recommended Operating Conditions

Buffer Description Max. Units
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SERDES/PCS Block Latency
Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel 
clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

Figure 3-12. Transmitter and Receiver Latency Block Diagram

Item Description Min. Avg. Max. Fixed Bypass Units

Transmit Data Latency1

T1

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

T2 8b10b Encoder — — — 2 1 word clk

T3 SERDES Bridge transmit — — — 2 1 word clk

T4
Serializer: 8-bit mode — — — 15 + 1 — UI + ps

Serializer: 10-bit mode — — — 18 + 1 — UI + ps

T5
Pre-emphasis ON — — — 1 + 2 — UI + ps

Pre-emphasis OFF — — — 0 + 3 — UI + ps

Receive Data Latency2

R1
Equalization ON — — — 1 — UI + ps

Equalization OFF — — — 2 — UI + ps

R2
Deserializer: 8-bit mode — — — 10 + 3 — UI + ps

Deserializer: 10-bit mode — — — 12 + 3 — UI + ps

R3 SERDES Bridge receive — — — 2 — word clk

R4 Word alignment 3.1 — 4 — — word clk

R5 8b10b decoder — — — 1 — word clk

R6 Clock Tolerance Compensation 7 15 23 1 1 word clk

R7

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

1. 1 = –245 ps, 2 = +88 ps, 3 = +112 ps. 
2. 1 = +118 ps, 2 = +132 ps, 3 = +700 ps. 
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SERDES High Speed Data Receiver 
Table 3-9. Serial Input Data Specifications

Input Data Jitter Tolerance
A receiver’s ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface stan-
dards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for differ-
ent jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type. 

Table 3-10. Receiver Total Jitter Tolerance Specification

Symbol Description Min. Typ. Max. Units

RX-CIDS
Stream of nontransitions1 
(CID = Consecutive Identical Digits) @ 10-12 BER

3.125 G — — 136

Bits 

2.5 G — — 144

1.485 G — — 160

622 M — — 204

270 M — — 228

150 M — — 296

VRX-DIFF-S Differential input sensitivity 150 — 1760 mV, p-p 

VRX-IN Input levels 0 — VCCA +0.54 V

VRX-CM-DC Input common mode range (DC coupled) 0.6 — VCCA V 

VRX-CM-AC Input common mode range (AC coupled)3 0.1 — VCCA +0.2 V

TRX-RELOCK SCDR re-lock time2 — 1000 — Bits

ZRX-TERM Input termination 50/75 Ohm/High Z –20% 50/75/HiZ +20% Ohms

RLRX-RL Return loss (without package) 10 — — dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.
2. This is the typical number of bit times to re-lock to a new phase or frequency within +/– 300 ppm, assuming 8b10b encoded data.
3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS inter-

faces are generally found in 622 Mbps SERDES devices.
4. Up to 1.76 V.

Description Frequency Condition Min. Typ. Max. Units

Deterministic

3.125 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

2.5 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

1.25 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

622 Mbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, 
room temperature.
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XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-13. Transmit

Over Recommended Operating Conditions

Table 3-14. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
2, 3, 4 Output data deterministic jitter — — 0.17 UI

JTX_TJ
1, 2, 3, 4 Total output data jitter — — 0.35 UI

1. Total jitter includes both deterministic jitter and random jitter.
2. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz 
to 3.125 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz 
to 3.125 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
1, 2, 3 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
1, 2, 3 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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Switching Test Conditions
Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-23. 

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

Table 3-23. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0 pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M 0 pF VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1 M  0 pF VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 0 pF VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  0 pF VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT 

VT

R1

R2

 

CL* 

Test Point

*CL Includes Test Fixture and Probe Capacitance
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[LOC]DQS[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball 
function number.

[LOC]DQ[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated 
DQS number.

Test and Programming (Dedicated Pins)

TMS I Test Mode Select input, used to control the 1149.1 state machine. Pull-up is 
enabled during configuration. 

TCK I Test Clock input pin, used to clock the 1149.1 state machine. No pull-up 
enabled. 

TDI I 

Test Data in pin. Used to load data into device using 1149.1 state machine. 
After power-up, this TAP port can be activated for configuration by sending 
appropriate command. (Note: once a configuration port is selected it is 
locked. Another configuration port cannot be selected until the power-up 
sequence). Pull-up is enabled during configuration. 

TDO O Output pin. Test Data Out pin used to shift data out of a device using 1149.1. 

VCCJ — Power supply pin for JTAG Test Access Port. 

Configuration Pads (Used During sysCONFIG)

CFG[2:0] I 
Mode pins used to specify configuration mode values latched on rising edge 
of INITN. During configuration, a pull-up is enabled. These are dedicated 
pins. 

INITN I/O Open Drain pin. Indicates the FPGA is ready to be configured. During config-
uration, a pull-up is enabled. It is a dedicated pin. 

PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an 
active pull-up. It is a dedicated pin. 

DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and 
the startup sequence is in progress. It is a dedicated pin. 

CCLK I Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and 
CPU modes. It is a dedicated pin.

MCLK I/O Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Mas-
ter configuration modes.

BUSY/SISPI O Parallel configuration mode busy indicator. SPI/SPIm mode data output. 

CSN/SN/OEN I/O Parallel configuration mode active-low chip select. Slave SPI chip select. 
Parallel burst Flash output enable.

CS1N/HOLDN/RDY I Parallel configuration mode active-low chip select. Slave SPI hold input. 

WRITEN I Write enable for parallel configuration modes.

DOUT/CSON/CSSPI1N O Serial data output. Chip select output. SPI/SPIm mode chip select.

D[0]/SPIFASTN I/O

sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.

sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm 
mode, this pin should either be tied high or low, must not be left floating. Open 
drain during configuration.

D1 I/O Parallel configuration I/O. Open drain during configuration.

D2 I/O Parallel configuration I/O. Open drain during configuration.

D3/SI I/O Parallel configuration I/O. Slave SPI data input. Open drain during configura-
tion.

D4/SO I/O Parallel configuration I/O. Slave SPI data output. Open drain during configura-
tion.

D5 I/O Parallel configuration I/O. Open drain during configuration.

D6/SPID1 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

Signal Descriptions (Cont.)
Signal Name I/O Description 


