E. Lattice Semiconductor Corporation - <u>LFE3-70EA-6FN1156C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8375
Number of Logic Elements/Cells	67000
Total RAM Bits	4526080
Number of I/O	490
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1156-BBGA
Supplier Device Package	1156-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-6fn1156c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmitted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the current value on the DCNTL bus.

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of the DLL inputs and outputs.

The user can configure the DLL for many common functions such as time reference delay mode and clock injection removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)

* This signal is not user accessible. This can only be used to feed the slave delay line.

Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or Generic DDR interfaces.

This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation to the mixed parallel and serial implementation.

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features

The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

- Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)
- Multiply (36 x 36 by cascading across two sysDSP slices)
- Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Multiplies feed into an accumulator that can accumulate up to 52 bits)
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysl/O buffers as shown in Figure 2-32. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysl/O buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-32. PIC Diagram

* Signals are available on left/right/top edges only.

** Signals are available on the left and right sides only

*** Selected PIO.

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

SCI (SERDES Client Interface) Bus

The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by registers rather than the configuration memory cells. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each quad in a design.

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the core.

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary and secondary protocol combinations.

Flexible Quad SERDES Architecture

The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and standards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one standard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol	Secondary Protocol
PCI Express 1.1	SGMII
PCI Express 1.1	Gigabit Ethernet
PCI Express 1.1	Serial RapidIO Type I
PCI Express 1.1	Serial RapidIO Type II
Serial RapidIO Type I	SGMII
Serial RapidIO Type I	Gigabit Ethernet
Serial RapidIO Type II	SGMII
Serial RapidIO Type II	Gigabit Ethernet
Serial RapidIO Type II	Serial RapidIO Type I
CPRI-3	CPRI-2 and CPRI-1
3G-SDI	HD-SDI and SD-SDI

MCCLK (MHz)	MCCLK (MHz)
	10
2.5 ¹	13
4.3	15 ²
5.4	20
6.9	26
8.1	33 ³
9.2	

Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.

2. Maximum MCCLK with encryption enabled.

3. Maximum MCCLK without encryption.

Density Shifting

The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and Diamond software for specific restrictions and limitations.

LVPECL33

The LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-3. LVPECL33 DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

MLVDS25

The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

Table 3-5. MLVDS25 DC Conditions¹

		Тур		
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage	1.52	1.60	V
V _{OL}	Output Low Voltage	0.98	0.90	V
V _{OD}	Output Differential Voltage	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)

DLL Timing

Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133	—	500	MHz
f _{CLKOP} 1	Output clock frequency, CLKOP		133	—	500	MHz
f _{CLKOS²}	Output clock frequency, CLKOS		33.3	—	500	MHz
t _{PJIT}	Output clock period jitter (clean input)			—	200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit enabled, time reference delay mode)	Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
	DUTYCIR Output clock duty cycle (at 50% levels, arbitrary duty cycle input clock, 50% duty cycle circuit enabled, clock injection removal mode) with DLL cascading	Primary Clock < 250 MHz	40		60	%
t _{DUTYCIB}		Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	—	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	—	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	—	_	ps
t _{INSTB}	Input clock period jitter			—	500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3	—	—	ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns

1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.

Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Periodic	2.97 Gbps	600 mV differential eye	_	_	0.24	UI, p-p
Periodic	2.5 Gbps	600 mV differential eye	_	—	0.22	UI, p-p
Periodic	1.485 Gbps	600 mV differential eye	—	—	0.24	UI, p-p
Periodic	622 Mbps	600 mV differential eye	_	_	0.15	UI, p-p
Periodic	150 Mbps	600 mV differential eye	_		0.5	UI, p-p

Note: Values are measured with PRBS 2⁷–1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min.	Тур.	Max.	Units
F _{REF}	Frequency range	15	_	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	_	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ²	200	_	V _{CCA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	_	2*V _{CCA}	mV, p-p differential
V _{REF-IN}	Input levels	0	_	V _{CCA} + 0.3	V
D _{REF}	Duty cycle ³	40	_	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-20%	100/2K	+20%	Ohms
C _{REF-IN-CAP}	Input capacitance	_	—	7	pF

Table 3-12. External Reference Clock Specification (refclkp/refclkn)

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

Figure 3-13. SERDES External Reference Clock Waveforms

Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter			_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—		dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) andPIO Within PICData (DQ) Pins							
For Left and Right Edges of the Device									
P[Edge] [n-3]	А	DQ							
	В	DQ							
P[Edge] [n-2]	А	DQ							
	В	DQ							
D[Edgo] [n 1]	А	DQ							
	В	DQ							
	А	[Edge]DQSn							
	В	DQ							
	А	DQ							
	В	DQ							
	А	DQ							
r[Euge][II+2]	В	DQ							
For Top Edge of the Devi	ce								
P[Edge] [n-3]	А	DQ							
	В	DQ							
	А	DQ							
	В	DQ							
P[Edge] [n-1]	А	DQ							
	В	DQ							
P[Edge] [n]	А	[Edge]DQSn							
	В	DQ							
P[Edge] [n+1]	А	DQ							
i [Luge] [ii+i]	В	DQ							
P[Edge] [n 2]	А	DQ							
י נבטשכן נוידבן	В	DQ							

Note: "n" is a row PIC number.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-95EA			ECP3-150EA	
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	42	60	86	60	94
	Bank 1	36	48	78	48	86
	Bank 2	24	34	36	34	58
General Purpose	Bank 3	54	59	86	59	104
inputs/outputs per bank	Bank 6	63	67	86	67	104
	Bank 7	36	48	54	48	76
	Bank 8	24	24	24	24	24
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	4	8	8	8	8
General Purpose Inputs per	Bank 3	4	12	12	12	12
Dank	Bank 6	4	12	12	12	12
	Bank 7	4	8	8	8	8
	Bank 8	0	0	0	0	0
	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	0	0	0	0	0
General Purpose Outputs per	Bank 3	0	0	0	0	0
Dank	Bank 6	0	0	0	0	0
	Bank 7	0	0	0	0	0
	Bank 8	0	0	0	0	0
Total Single-Ended User I/O		295	380	490	380	586
VCC		16	32	32	32	32
VCCAUX		8	12	16	12	16
VTT		4	4	8	4	8
VCCA		4	8	16	8	16
VCCPLL		4	4	4	4	4
	Bank 0	2	4	4	4	4
	Bank 1	2	4	4	4	4
VCCIO	Bank 2	2	4	4	4	4
	Bank 3	2	4	4	4	4
	Bank 6	2	4	4	4	4
	Bank 7	2	4	4	4	4
	Bank 8	2	2	2	2	2
VCCJ		1	1	1	1	1
ТАР		4	4	4	4	4
GND, GNDIO		98	139	233	139	233
NC		0	0	238	0	116
Reserved ¹		2	2	2	2	2
SERDES		26	52	78	52	104
Miscellaneous Pins		8	8	8	8	8
Total Bonded Pins		484	672	1156	672	1156

Pin Information Summary (Cont.)

Pin Information Summary Pin Type		ECP3-95EA			ECP3-150EA	
		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA
Emulated Differential I/O per Bank	Bank 0	21	30	43	30	47
	Bank 1	18	24	39	24	43
	Bank 2	8	12	13	12	18
	Bank 3	20	23	33	23	37
	Bank 6	22	25	33	25	37
	Bank 7	11	16	18	16	24
	Bank 8	12	12	12	12	12
Highspeed Differential I/O per Bank	Bank 0	0	0	0	0	0
	Bank 1	0	0	0	0	0
	Bank 2	6	9	9	9	15
	Bank 3	9	12	16	12	21
	Bank 6	11	14	16	14	21
	Bank 7	9	12	13	12	18
	Bank 8	0	0	0	0	0
Total Single Ended/ Total Differential I/O per Bank	Bank 0	42/21	60/30	86/43	60/30	94/47
	Bank 1	36/18	48/24	78/39	48/24	86/43
	Bank 2	28/14	42/21	44/22	42/21	66/33
	Bank 3	58/29	71/35	98/49	71/35	116/58
	Bank 6	67/33	78/39	98/49	78/39	116/58
	Bank 7	40/20	56/28	62/31	56/28	84/42
	Bank 8	24/12	24/12	24/12	24/12	24/12
DDR Groups Bonded per Bank	Bank 0	3	5	7	5	7
	Bank 1	3	4	7	4	7
	Bank 2	2	3	3	3	4
	Bank 3	3	4	5	4	7
	Bank 6	4	4	5	4	7
	Bank 7	3	4	4	4	6
	Configuration Bank8	0	0	0	0	0
SERDES Quads	1	1	2	3	2	4

1. These pins must remain floating on the board.