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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 8375

Number of Logic Elements/Cells 67000

Total RAM Bits 4526080

Number of I/O 490

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 1156-BBGA

Supplier Device Package 1156-FPBGA (35x35)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-6fn1156c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal 
for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or 
Generic DDR interfaces.
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This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP perfor-
mance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation 
to the mixed parallel and serial implementation. 

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features
The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)

• Multiply (36 x 36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
—  Minimizes fabric use for common DSP and ALU functions
—  Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
—  Provides matching pipeline registers
—  Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
—  Dynamically selectable ALU OPCODE
—  Ternary arithmetic (addition/subtraction of three inputs)
—  Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
—  Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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Programmable I/O Cells (PIC) 
Each PIC contains two PIOs connected to their respective sysI/O buffers as shown in Figure 2-32. The PIO Block 
supplies the output data (DO) and the tri-state control signal (TO) to the sysI/O buffer and receives input from the 
buffer. Table 2-11 provides the PIO signal list.

Figure 2-32. PIC Diagram
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 
1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer to 
support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard
Data Rate 

(Mbps)
Number of 

General/Link Width Encoding Style

PCI Express 1.1 2500 x1, x2, x4 8b10b

Gigabit Ethernet 1250, 2500 x1 8b10b

SGMII 1250 x1 8b10b

XAUI 3125 x4 8b10b

Serial RapidIO Type I,
Serial RapidIO Type II,
Serial RapidIO Type III

1250,
2500,
3125

x1, x4 8b10b

CPRI-1,
CPRI-2,
CPRI-3,
CPRI-4

614.4,
1228.8,
2457.6,
3072.0

x1 8b10b

SD-SDI
(259M, 344M)

1431,
1771, 
270,
360,
540

x1 NRZI/Scrambled

HD-SDI
(292M)

1483.5,
1485 x1 NRZI/Scrambled

3G-SDI
(424M)

2967,
2970 x1 NRZI/Scrambled

SONET-STS-32 155.52 x1 N/A

SONET-STS-122 622.08 x1 N/A

SONET-STS-482 2488 x1 N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.
2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and 
Diamond software for specific restrictions and limitations.

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=32&sloc=01-01-00-10
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LVPECL33
The LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard 
is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for 
point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-3. LVPECL33 DC Conditions1

Over Recommended Operating Conditions

Parameter Description Typical Units

VCCIO Output Driver Supply (+/–5%) 3.30 V

ZOUT Driver Impedance 10 

RS Driver Series Resistor (+/–1%) 93 

RP Driver Parallel Resistor (+/–1%) 196 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage 2.05 V

VOL Output Low Voltage 1.25 V

VOD Output Differential Voltage 0.80 V

VCM Output Common Mode Voltage 1.65 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 12.11 mA

1. For input buffer, see LVDS table.

Transmission line, 
Zo = 100 Ohm differential 

Off-chipOn-chip

VCCIO = 3.3 V 
(+/–5%)

VCCIO = 3.3 V 
(+/–5%)

RP = 196 Ohms 
(+/–1%)

RT = 100 Ohms 
(+/–1%)

RS = 93.1 Ohms 
(+/–1%)

RS = 93.1 Ohms 
(+/–1%)

16 mA

16 mA

+
–

Off-chip On-chip
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MLVDS25
The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-5. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/–5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/–1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/–1%) 50.00 70.00 

RTR Receiver Termination (+/–1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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2.5 V

+
-

2.5 V

+
–

2.5 V

2.5 V

+ –

Heavily loaded backplace, effective Zo~50 to 70 Ohms differential

50 to 70 Ohms +/–1%
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Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)
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DLL Timing
Over Recommended Operating Conditions

Parameter Description Condition Min. Typ. Max. Units 

fREF 
Input reference clock frequency (on-chip or 
off-chip)  133 — 500 MHz 

fFB Feedback clock frequency (on-chip or off-chip)  133 — 500 MHz 

fCLKOP
1 Output clock frequency, CLKOP  133 — 500 MHz 

fCLKOS
2 Output clock frequency, CLKOS  33.3 — 500 MHz 

tPJIT Output clock period jitter (clean input)   — 200 ps p-p 

tDUTY 

Output clock duty cycle (at 50% levels, 50% duty 
cycle input clock, 50% duty cycle circuit turned 
off, time reference delay mode) 

Edge Clock 40  60 % 

Primary Clock 30  70 % 

tDUTYTRD 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, time reference delay mode) 

Primary Clock < 250 MHz 45  55 % 

Primary Clock 250 MHz 30  70 % 

Edge Clock 45  55 % 

tDUTYCIR 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, clock injection removal mode) with DLL 
cascading

Primary Clock < 250 MHz 40  60 % 

Primary Clock  250 MHz 30  70 % 

Edge Clock 45  55 % 

tSKEW
3 Output clock to clock skew between two outputs 

with the same phase setting  — — 100 ps 

tPHASE 
Phase error measured at device pads between 
off-chip reference clock and feedback clocks  — — +/-400 ps 

tPWH 
Input clock minimum pulse width high (at 80% 
level)  550 — — ps 

tPWL Input clock minimum pulse width low (at 20% 
level)  550 — — ps 

tINSTB Input clock period jitter  — — 500 ps

tLOCK DLL lock time  8 — 8200 cycles 

tRSWD Digital reset minimum pulse width (at 80% level)  3 — — ns 

tDEL Delay step size  27 45 70 ps 

tRANGE1 
Max. delay setting for single delay block 
(64 taps)  1.9 3.1 4.4 ns 

tRANGE4 Max. delay setting for four chained delay blocks  7.6 12.4 17.6 ns 

1. CLKOP runs at the same frequency as the input clock.
2. CLKOS minimum frequency is obtained with divide by 4.
3. This is intended to be a “path-matching” design guideline and is not a measurable specification.



3-40

DC and Switching Characteristics
LatticeECP3 Family Data Sheet

Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 150 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27–1, all channels operating, FPGA Logic active, I/Os around SERDES 
pins quiet, voltages are nominal, room temperature.
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SERDES External Reference Clock 
The external reference clock selection and its interface are a critical part of system applications for this product. 
Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

Figure 3-13. SERDES External Reference Clock Waveforms

Table 3-12. External Reference Clock Specification (refclkp/refclkn) 

Symbol Description Min. Typ. Max. Units

FREF Frequency range 15 — 320 MHz 

FREF-PPM Frequency tolerance1 –1000 — 1000 ppm

VREF-IN-SE Input swing, single-ended clock2 200 — VCCA mV, p-p

VREF-IN-DIFF Input swing, differential clock 200 — 2*VCCA
mV, p-p 

differential

VREF-IN Input levels 0 — VCCA + 0.3 V

DREF Duty cycle3 40 — 60 %

TREF-R Rise time (20% to 80%) 200 500 1000 ps

TREF-F Fall time (80% to 20%) 200 500 1000 ps

ZREF-IN-TERM-DIFF Differential input termination –20% 100/2K +20% Ohms

CREF-IN-CAP Input capacitance — — 7 pF

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as 
described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain 
at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

VREF_IN_DIFF
Min=200 mV

Max=2xVCCA

VREF_IN_DIFF=
IVp-VnI

VREF_IN_SE
Min=200 mV
Max=VCCA

VREF-IN
MAX < 1.56 V

VREF-IN
MAX < 1.56 V

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps
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Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-15. Transmit

Table 3-16. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF
1 Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.17 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.35 UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 2.5 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 2.5 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95EA ECP3-150EA

Pin Type
484 

fpBGA
672 

fpBGA
1156 

fpBGA
672 

fpBGA
1156

fpBGA

General Purpose 
Inputs/Outputs per bank

Bank 0 42 60 86 60 94

Bank 1 36 48 78 48 86

Bank 2 24 34 36 34 58

Bank 3 54 59 86 59 104

Bank 6 63 67 86 67 104

Bank 7 36 48 54 48 76

Bank 8 24 24 24 24 24

General Purpose Inputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 4 8 8 8 8

Bank 3 4 12 12 12 12

Bank 6 4 12 12 12 12

Bank 7 4 8 8 8 8

Bank 8 0 0 0 0 0

General Purpose Outputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 0 0 0 0 0

Bank 3 0 0 0 0 0

Bank 6 0 0 0 0 0

Bank 7 0 0 0 0 0

Bank 8 0 0 0 0 0

Total Single-Ended User I/O 295 380 490 380 586

VCC 16 32 32 32 32

VCCAUX 8 12 16 12 16

VTT 4 4 8 4 8

VCCA 4 8 16 8 16

VCCPLL 4 4 4 4 4

VCCIO

Bank 0 2 4 4 4 4

Bank 1 2 4 4 4 4

Bank 2 2 4 4 4 4

Bank 3 2 4 4 4 4

Bank 6 2 4 4 4 4

Bank 7 2 4 4 4 4

Bank 8 2 2 2 2 2

VCCJ 1 1 1 1 1

TAP 4 4 4 4 4

GND, GNDIO 98 139 233 139 233

NC 0 0 238 0 116

Reserved1 2 2 2 2 2

SERDES 26 52 78 52 104

Miscellaneous Pins 8 8 8 8 8

Total Bonded Pins 484 672 1156 672 1156
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95EA ECP3-150EA

Pin Type 484 fpBGA 672 fpBGA 1156 fpBGA
672 

fpBGA
1156

fpBGA

Emulated 
Differential I/O 
per Bank

Bank 0 21 30 43 30 47

Bank 1 18 24 39 24 43

Bank 2 8 12 13 12 18

Bank 3 20 23 33 23 37

Bank 6 22 25 33 25 37

Bank 7 11 16 18 16 24

Bank 8 12 12 12 12 12

Highspeed 
Differential I/O 
per Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 6 9 9 9 15

Bank 3 9 12 16 12 21

Bank 6 11 14 16 14 21

Bank 7 9 12 13 12 18

Bank 8 0 0 0 0 0

Total Single Ended/ 
Total Differential
I/O per Bank

Bank 0 42/21 60/30 86/43 60/30 94/47

Bank 1 36/18 48/24 78/39 48/24 86/43

Bank 2 28/14 42/21 44/22 42/21 66/33

Bank 3 58/29 71/35 98/49 71/35 116/58

Bank 6 67/33 78/39 98/49 78/39 116/58

Bank 7 40/20 56/28 62/31 56/28 84/42

Bank 8 24/12 24/12 24/12 24/12 24/12

DDR Groups 
Bonded 
per Bank

Bank 0 3 5 7 5 7

Bank 1 3 4 7 4 7

Bank 2 2 3 3 3 4

Bank 3 3 4 5 4 7

Bank 6 4 4 5 4 7

Bank 7 3 4 4 4 6

Configuration 
Bank8 0 0 0 0 0

SERDES Quads 1 2 3 2 4

1.These pins must remain floating on the board.


