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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 
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Secondary Clock/Control Sources 
LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads 
and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are 
defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and 
SC4-SC7 are for the clock.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an 
input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7.

Figure 2-14. Secondary Clock Sources

Secondary Clock/Control Routing
Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock 
routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the 
LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the 
secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP 
slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 
20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight 
secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control 
signals. 
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Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection
Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All 
the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used 
as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other 
signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection
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This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP perfor-
mance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation 
to the mixed parallel and serial implementation. 

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features
The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)

• Multiply (36 x 36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
—  Minimizes fabric use for common DSP and ALU functions
—  Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
—  Provides matching pipeline registers
—  Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
—  Dynamically selectable ALU OPCODE
—  Ternary arithmetic (addition/subtraction of three inputs)
—  Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
—  Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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as, overflow, underflow and convergent rounding, etc.
—  Flexible cascading across slices to get larger functions

• RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy 
users

• Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require 
processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the 
LatticeECP2™ sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The 
functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as 
shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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Figure 2-33. Input Register Block for Left, Right and Top Edges

Output Register Block 
The output register block registers signals from the core of the device before they are passed to the sysI/O buffers. 
The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the 
same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is 
used in DDR3 memory interfaces.The PIO blocks on the bottom contain the SDR registers but do not support 
generic DDR. 

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges. 

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a 
Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next 
clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed 
the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, 
OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them 
are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 
clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock 
domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the 
DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high 
speed DDR data from and to the DDR3 Memory. 

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, 
refer to the sysIO section of this data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on the 
bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank (Config-
uration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is 
not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. 
Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration Bank, 
has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. Figure 2-38 
shows the seven banks and their associated supplies. 

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only 
allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals. 

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot 
socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these 
banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side 
pads can be identified by the Lattice Diamond tool.
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 
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SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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SERDES Power Supply Requirements1, 2, 3

Over Recommended Operating Conditions

Symbol Description Typ. Max. Units

Standby (Power Down)

ICCA-SB VCCA current (per channel) 3 5 mA

ICCIB-SB Input buffer current (per channel) — — mA

ICCOB-SB Output buffer current (per channel) — — mA

Operating (Data Rate = 3.2 Gbps)

ICCA-OP VCCA current (per channel) 68 77 mA

ICCIB-OP Input buffer current (per channel) 5 7 mA

ICCOB-OP Output buffer current (per channel) 19 25 mA

Operating (Data Rate = 2.5 Gbps)

ICCA-OP VCCA current (per channel) 66 76 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 1.25 Gbps)

ICCA-OP VCCA current (per channel) 62 72 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 250 Mbps)

ICCA-OP VCCA current (per channel) 55 65 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 14 17 mA

Operating (Data Rate = 150 Mbps)

ICCA-OP VCCA current (per channel) 55 65 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 14 17 mA

1. Equalization enabled, pre-emphasis disabled.
2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, 

pre-emphasis disabled, equalization enabled).
3. Pre-emphasis adds 20 mA to ICCA-OP data.
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LVDS25E
The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS 
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one 
possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

LVCMOS33D
All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external 
resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V 
VCCIO. The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 
4 mA, 8 mA, 16 mA or 20 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/–5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/–1%) 158 

RP Driver Parallel Resistor (+/–1%) 140 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage 1.43 V

VOL Output Low Voltage 1.07 V

VOD Output Differential Voltage 0.35 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 6.03 mA

+ 
- 

RS=158 Ohms
(±1%)

RS=158 Ohms
(±1%)

RP = 140 Ohms
(±1%)

RT = 100 Ohms
(±1%)

OFF-chip 

Transmission line, Zo = 100 Ohm differential 

VCCIO = 2.5 V (±5%)

8 mA

VCCIO = 2.5 V (±5%)

ON-chip OFF-chip ON-chip

8 mA
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LVPECL33
The LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard 
is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for 
point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-3. LVPECL33 DC Conditions1

Over Recommended Operating Conditions

Parameter Description Typical Units

VCCIO Output Driver Supply (+/–5%) 3.30 V

ZOUT Driver Impedance 10 

RS Driver Series Resistor (+/–1%) 93 

RP Driver Parallel Resistor (+/–1%) 196 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage 2.05 V

VOL Output Low Voltage 1.25 V

VOD Output Differential Voltage 0.80 V

VCM Output Common Mode Voltage 1.65 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 12.11 mA

1. For input buffer, see LVDS table.

Transmission line, 
Zo = 100 Ohm differential 

Off-chipOn-chip

VCCIO = 3.3 V 
(+/–5%)

VCCIO = 3.3 V 
(+/–5%)

RP = 196 Ohms 
(+/–1%)

RT = 100 Ohms 
(+/–1%)

RS = 93.1 Ohms 
(+/–1%)

RS = 93.1 Ohms 
(+/–1%)

16 mA

16 mA

+
–

Off-chip On-chip
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tH_DEL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-150EA 0.0 — 0.0 — 0.0 — ns

fMAX_IO
Clock Frequency of I/O and PFU 
Register ECP3-150EA — 500 — 420 — 375 MHz

tCO
Clock to Output - PIO Output 
Register ECP3-70EA/95EA — 3.8 — 4.2 — 4.6 ns

tSU
Clock to Data Setup - PIO Input 
Register ECP3-70EA/95EA 0.0 — 0.0  — 0.0 — ns

tH
Clock to Data Hold - PIO Input 
Register ECP3-70EA/95EA 1.4 — 1.6 — 1.8 — ns

tSU_DEL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-70EA/95EA 1.3 — 1.5 — 1.7 — ns

tH_DEL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-70EA/95EA 0.0 — 0.0 — 0.0 — ns

fMAX_IO
Clock Frequency of I/O and PFU 
Register ECP3-70EA/95EA — 500 — 420 — 375 MHz

tCO
Clock to Output - PIO Output 
Register ECP3-35EA — 3.7 — 4.1 — 4.5 ns

tSU
Clock to Data Setup - PIO Input 
Register ECP3-35EA 0.0 — 0.0 — 0.0 — ns

tH
Clock to Data Hold - PIO Input 
Register ECP3-35EA 1.2 — 1.4 — 1.6 — ns

tSU_DEL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-35EA 1.3 — 1.4 — 1.5 — ns

tH_DEL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-35EA 0.0 — 0.0 — 0.0 — ns

fMAX_IO
Clock Frequency of I/O and PFU 
Register ECP3-35EA — 500 — 420 — 375 MHz

tCO
Clock to Output - PIO Output 
Register ECP3-17EA — 3.5 — 3.9 — 4.3 ns

tSU
Clock to Data Setup - PIO Input 
Register ECP3-17EA 0.0 — 0.0 — 0.0 — ns

tH
Clock to Data Hold - PIO Input 
Register ECP3-17EA 1.3 — 1.5 — 1.6 — ns

tSU_DEL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-17EA 1.3 — 1.4 — 1.5 — ns

tH_DEL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-17EA 0.0 — 0.0 — 0.0 — ns

fMAX_IO
Clock Frequency of I/O and PFU 
Register ECP3-17EA — 500 — 420 — 375 MHz

General I/O Pin Parameters Using Dedicated Clock Input Primary Clock with PLL with Clock Injection Removal Setting2

tCOPLL
Clock to Output - PIO Output 
Register ECP3-150EA — 3.3 — 3.6 — 39 ns

tSUPLL
Clock to Data Setup - PIO Input 
Register ECP3-150EA 0.7 — 0.8 — 0.9 — ns

tHPLL
Clock to Data Hold - PIO Input 
Register ECP3-150EA 0.8 — 0.9 — 1.0 — ns

tSU_DELPLL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-150EA 1.6 — 1.8 — 2.0 — ns

tH_DELPLL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-150EA — 0.0 — 0.0 — 0.0 ns

tCOPLL
Clock to Output - PIO Output 
Register ECP3-70EA/95EA — 3.3 — 3.5 — 3.8 ns

tSUPLL
Clock to Data Setup - PIO Input 
Register ECP3-70EA/95EA 0.7 — 0.8  — 0.9 — ns

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin  Using PLL (GDDRX2_TX.PLL.Centered)10

Left and Right Sides

tDVBGDDR Data Valid Before CLK All ECP3EA Devices 285 — 370 — 431 — ps

tDVAGDDR Data Valid After CLK All ECP3EA Devices 285 — 370 — 432 — ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 500 — 420 — 375 MHz

Memory Interface

DDR/DDR2 I/O Pin Parameters (Input Data are Strobe Edge Aligned, Output Strobe Edge is Data Centered)4 

tDVADQ Data Valid After DQS (DDR Read) All ECP3 Devices — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) All ECP3 Devices 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

fMAX_DDR DDR Clock Frequency All ECP3 Devices 95 200 95 200 95 166 MHz

fMAX_DDR2 DDR2 clock frequency All ECP3 Devices 125 266 125 200 125 166 MHz

DDR3 (Using PLL for SCLK) I/O Pin Parameters

tDVADQ Data Valid After DQS (DDR Read) All ECP3 Devices — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) All ECP3 Devices 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  All ECP3 Devices 0.25 — 0.25 — 0.25 — UI

fMAX_DDR3 DDR3 clock frequency All ECP3 Devices 300 400 266 333 266 300 MHz

DDR3 Clock Timing

tCH (avg)9 Average High Pulse Width All ECP3 Devices 0.47 0.53 0.47 0.53 0.47 0.53 UI

tCL (avg)9 Average Low Pulse Width All ECP3 Devices 0.47 0.53 0.47 0.53 0.47 0.53 UI

tJIT (per, lck)9 Output Clock Period Jitter During 
DLL Locking Period All ECP3 Devices –90 90 –90 90 –90 90 ps

tJIT (cc, lck)9 Output Cycle-to-Cycle Period Jit-
ter During DLL Locking Period All ECP3 Devices — 180 — 180 — 180 ps

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER soft-
ware.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.
3. Generic DDR timing numbers based on LVDS I/O.
4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.
5. DDR3 timing numbers based on SSTL15.
6. Uses LVDS I/O standard.
7. The current version of software does not support per bank skew numbers; this will be supported in a future release.
8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
9. Using settings generated by IPexpress.
10. These numbers are generated using best case PLL located in the center of the device.
11. Uses SSTL25 Class II Differential I/O Standard.
12. All numbers are generated with ispLEVER 8.1 software.
13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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PCI33 PCI, VCCIO = 3.3 V 66 MHz

1. These maximum speeds are characterized but not tested on every device.
2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.
3. LVCMOS timing is measured with the load specified in the Switching Test Conditions table of this document.
4. All speeds are measured at fast slew.
5. Actual system operation may vary depending on user logic implementation.
6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

LatticeECP3 Maximum I/O Buffer Speed (Continued)1, 2, 3, 4, 5, 6

Over Recommended Operating Conditions

Buffer Description Max. Units
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Table 3-7. Channel Output Jitter

Description Frequency Min. Typ. Max. Units

Deterministic 3.125 Gbps — — 0.17 UI, p-p

Random 3.125 Gbps — — 0.25 UI, p-p

Total 3.125 Gbps — — 0.35 UI, p-p

Deterministic 2.5 Gbps — — 0.17 UI, p-p

Random 2.5 Gbps — — 0.20 UI, p-p

Total 2.5 Gbps — — 0.35 UI, p-p

Deterministic 1.25 Gbps — — 0.10 UI, p-p

Random 1.25 Gbps — — 0.22 UI, p-p

Total 1.25 Gbps — — 0.24 UI, p-p

Deterministic 622 Mbps — — 0.10 UI, p-p

Random 622 Mbps — — 0.20 UI, p-p

Total 622 Mbps — — 0.24 UI, p-p

Deterministic 250 Mbps — — 0.10 UI, p-p

Random 250 Mbps — — 0.18 UI, p-p

Total 250 Mbps — — 0.24 UI, p-p

Deterministic 150 Mbps — — 0.10 UI, p-p

Random 150 Mbps — — 0.18 UI, p-p

Total 150 Mbps — — 0.24 UI, p-p

Note: Values are measured with PRBS 27-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, 
reference clock @ 10X mode.
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Figure 3-24. Power-On-Reset (POR) Timing

Figure 3-25. sysCONFIG Port Timing

CCLK 2

DONE

VCC / VCCAUX /
VCCIO81

CFG[2:0] 3

tICFG

Valid

INITN

tVMC

1.  Time taken from VCC, VCCAUX or VCCIO8, whichever is the last to cross the POR trip point.
2.  Device is in a Master Mode (SPI, SPIm).
3.  The CFG pins are normally static (hard wired).

VCC

CCLK

PROGRAMN

INITN

DONE

DI
GOE Release

DOUT

sysIO

Wake Up Clocks
tSSCH

tSSCL
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tDPPINIT   
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tHSCDI (tHMCDI)

tDPPDONE
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tSUSCDI (tSUMCDI)
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website at www.latticesemi.com.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

• TN1215, LatticeECP2MS and LatticeECP2S Devices 

• TN1216, LatticeECP2/M and LatticeECP3 Dual Boot Feature Advanced Security Encryption Key Program-
ming Guide for LatticeECP3

• TN1222, LatticeECP3 Slave SPI Port User's Guide

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com
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