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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 8375

Number of Logic Elements/Cells 67000

Total RAM Bits 4526080

Number of I/O 380

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 672-BBGA

Supplier Device Package 672-FPBGA (27x27)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-6fn672i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
—  A greater-than-or-equal-to B
—  A not-equal-to B
—  A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319


2-10

Architecture
LatticeECP3 Family Data Sheet

PLL/DLL Cascading 
LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable 
combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs 
are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL 
blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next 
to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Clock Dividers
LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave 
Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and 
feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all 
outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on 
clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows 
the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two 
high performance edge clocks are available on the top, left, and right edges of the device to support high speed 
interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock 
sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, ded-
icated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two 
DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two 
on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources 
for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17

RST

RELEASE

÷1

÷2

÷4

÷8

ECLK2

CLKOP (PLL)

CLKOP (DLL)

ECLK1

CLKDIV

Primary Clock Sources
to Eight Quadrant Clock Selection

From Routing

From Routing

PLL

DLL

PLL Input

Note: Clock inputs can be configured in differential or single-ended mode.

DLL Input

CLK
DIV

SERDES
Quad

Clock
Input

Clock
Input

PLL Input

DLL Input

Clock
Input

Clock
Input

Clock Input Clock Input

PLL

DLL

CLK
DIV



2-13

Architecture
LatticeECP3 Family Data Sheet

Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The pri-
mary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources 
are connected to these muxes. Figure 2-12 shows the clock routing for one quadrant. Each quadrant mux is identi-
cal. If desired, any clock can be routed globally.

Figure 2-12. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-12).

Figure 2-13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-13. DCS Waveforms

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7

63:1 63:1 63:1 63:1 58:1 58:1 58:1 58:163:1 63:1
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in 
Figure 2-19.

Figure 2-19. Edge Clock Sources

Edge Clock Routing
LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the 
implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, 
left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the 
device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge 
clock muxes on the left and right sides of the device. Figure 2-20 shows the selection muxes for these clocks.
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Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal 
for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or 
Generic DDR interfaces.
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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MMAC DSP Element
The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this 
case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and 
with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. 
The user can enable the input and pipeline registers, but the output register is always enabled. The output register 
is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered 
overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the 
MMAC sysDSP element. 

Figure 2-28. MMAC sysDSP Element
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution

DQS DQS DQS DQS DQS DQS DQS DQS DQS

D
Q

S
D

Q
S

D
Q

S
D

Q
S

D
Q

S
D

Q
S

D
Q

S

D
Q

S
D

Q
S

D
Q

S
D

Q
S

D
Q

S
D

Q
S

D
Q

S

Bank 0 Bank 1 Configuration Bank

B
an

k 2

B
an

k 
7

B
an

k 
6

B
an

k 3

DQS Strobe and Transition Detect Logic

I/O Ring

*Includes shared configuration I/Os and dedicated configuration I/Os.

SERDES

DDR DLL
(Left)

DDR DLL
(Right)

DQS Delay Control Bus

ECLK1
ECLK2

DQCLK0
DQCLK1
DDRLAT
DDRCLKPOL
ECLKDQSR
DATAVALID



2-49

Architecture
LatticeECP3 Family Data Sheet

Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dual-
boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 
system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data dur-
ing download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to 
the original backup golden configuration and try again. This all can be done without power cycling the system. 
For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support
LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configura-
tion, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device 
can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration 
SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LatticeECP3 devices require a single external, 10 kOhm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for 
configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is 
completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available 
MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence 
takes place: 

1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK 
frequency of 2.5 MHz.

This internal 130 MHz +/– 15% CMOS oscillator is available to the user by routing it as an input clock to the clock 
tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, 
LatticeECP3 sysCONFIG Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same package. Refer to the LatticeECP3 Pin Migration Tables and 
Diamond software for specific restrictions and limitations.

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1 MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=32&sloc=01-01-00-10
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Hot Socketing Specifications1, 2, 3

Hot Socketing Requirements1, 2

ESD Performance
Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including 
ESD performance.

Symbol Parameter Condition Min. Typ. Max. Units

IDK_HS4 Input or I/O Leakage Current 0 VIN  VIH (Max.) — — +/–1 mA

IDK5 Input or I/O Leakage Current
0  VIN < VCCIO — — +/–1 mA

VCCIO  VIN  VCCIO + 0.5V — 18 — mA

1. VCC, VCCAUX and VCCIO should rise/fall monotonically.
2. IDK is additive to IPU, IPD or IBH. 
3. LVCMOS and LVTTL only.
4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.
5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Description Min. Typ. Max. Units

Input current per SERDES I/O pin when device is powered down and inputs 
driven. — — 8 mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB 
(1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 
channels *2 input pins per channel = 256 mA

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=34723
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sysI/O Recommended Operating Conditions

Standard

VCCIO VREF (V)

Min. Typ. Max. Min. Typ. Max.

LVCMOS332 3.135 3.3 3.465 — — —

LVCMOS33D 3.135 3.3 3.465 — — —

LVCMOS252 2.375 2.5 2.625 — — —

LVCMOS18 1.71 1.8 1.89 — — —

LVCMOS15 1.425 1.5 1.575 — — —

LVCMOS122 1.14 1.2 1.26 — — —

LVTTL332 3.135 3.3 3.465 — — —

PCI33 3.135 3.3 3.465 — — —

SSTL153 1.43 1.5 1.57 0.68 0.75 0.9

SSTL18_I, II2 1.71 1.8 1.89 0.833 0.9 0.969

SSTL25_I, II2 2.375 2.5 2.625 1.15 1.25 1.35

SSTL33_I, II2 3.135 3.3 3.465 1.3 1.5 1.7

HSTL15_I2 1.425 1.5 1.575 0.68 0.75 0.9

HSTL18_I, II2 1.71 1.8 1.89 0.816 0.9 1.08

LVDS252 2.375 2.5 2.625 — — —

LVDS25E 2.375 2.5 2.625 — — —

MLVDS1 2.375 2.5 2.625 — — —

LVPECL331, 2 3.135 3.3 3.465 — — —

Mini LVDS 2.375 2.5 2.625 — — —

BLVDS251, 2 2.375 2.5 2.625 — — —

RSDS2 2.375 2.5 2.625 — — —

RSDSE1, 2 2.375 2.5 2.625 — — —

TRLVDS 3.14 3.3 3.47 — — —

PPLVDS 3.14/2.25 3.3/2.5 3.47/2.75 — — —

SSTL15D3 1.43 1.5 1.57 — — —

SSTL18D_I2, 3, II2, 3 1.71 1.8 1.89 — — —

SSTL25D_ I2, II2 2.375 2.5 2.625 — — —

SSTL33D_ I2, II2 3.135 3.3 3.465 — — —

HSTL15D_ I2 1.425 1.5 1.575 — — —

HSTL18D_ I2, II2 1.71 1.8 1.89 — — —

1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. For input voltage compatibility, see TN1177, LatticeECP3 sysIO Usage Guide. 
3. VREF is required when using Differential SSTL to interface to DDR memory.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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LatticeECP3 Internal Switching Characteristics1, 2, 5 
Over Recommended Commercial Operating Conditions

Parameter Description

–8 –7 –6

Units.Min. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.147 — 0.163 — 0.179 ns

tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.281 — 0.335 — 0.379 ns

tLSR_PFU Set/Reset to output of PFU (Asynchronous) — 0.593 — 0.674 — 0.756 ns

tLSRREC_PFU
Asynchronous Set/Reset recovery time for 
PFU Logic 0.298 0.345 0.391 ns

tSUM_PFU Clock to Mux (M0,M1) Input Setup Time 0.134 — 0.144 — 0.153 — ns

tHM_PFU Clock to Mux (M0,M1) Input Hold Time –0.097 — –0.103 — –0.109 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.068 — 0.075 — ns

tHD_PFU Clock to D input hold time 0.019 — 0.013 — 0.015 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.243 — 0.273 — 0.303 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 0.710 — 0.803 — 0.897 ns

tSUDATA_PFU Data Setup Time –0.137 — –0.155 — –0.174 — ns

tHDATA_PFU Data Hold Time 0.188 — 0.217 — 0.246 — ns

tSUADDR_PFU Address Setup Time –0.227 — –0.257 — –0.286 — ns

tHADDR_PFU Address Hold Time 0.240 — 0.275 — 0.310 — ns

tSUWREN_PFU Write/Read Enable Setup Time –0.055 — –0.055 — –0.063 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.059 — 0.059 — 0.071 — ns

PIC Timing

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.423 — 0.466 — 0.508 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.241 — 1.301 — 1.361 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data Before 
Clock) 0.956 — 1.124 — 1.293 — ns

tHI_PIO Input Register Hold Time (Data after Clock) 0.225 — 0.184 — 0.240 — ns

tCOO_PIO Output Register Clock to Output Delay4 - 1.09 - 1.16 - 1.23 ns

tSUCE_PIO Input Register Clock Enable Setup Time 0.220 — 0.185 — 0.150 — ns

tHCE_PIO Input Register Clock Enable Hold Time –0.085 — –0.072 — –0.058 — ns

tSULSR_PIO Set/Reset Setup Time 0.117 — 0.103 — 0.088 — ns

tHLSR_PIO Set/Reset Hold Time –0.107 — –0.094 — –0.081 — ns

EBR Timing

tCO_EBR Clock (Read) to output from Address or Data — 2.78 — 2.89 — 2.99 ns

tCOO_EBR
Clock (Write) to output from EBR output 
Register — 0.31 — 0.32 — 0.33 ns

tSUDATA_EBR Setup Data to EBR Memory –0.218 — –0.227 — –0.237 — ns

tHDATA_EBR Hold Data to EBR Memory 0.249 — 0.257 — 0.265 — ns

tSUADDR_EBR Setup Address to EBR Memory –0.071 — –0.070 — –0.068 — ns

tHADDR_EBR Hold Address to EBR Memory 0.118 — 0.098 — 0.077 — ns

tSUWREN_EBR Setup Write/Read Enable to EBR Memory –0.107 — –0.106 — –0.106 — ns
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Timing Diagrams
Figure 3-9. Read/Write Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-10. Read/Write Mode with Input and Output Registers
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LatticeECP3 Family Timing Adders1, 2, 3, 4, 5, 7 
Over Recommended Commercial Operating Conditions

Buffer Type Description –8 –7 –6 Units

Input Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5 V 0.03 –0.01 –0.03 ns

LVDS25 LVDS, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

MLVDS25 MLVDS, Emulated, VCCIO = 2.5 V 0.03 0.00 –0.04 ns

RSDS25 RSDS, VCCIO = 2.5 V 0.03 –0.01 –0.03 ns

PPLVDS Point-to-Point LVDS 0.03 –0.01 –0.03 ns

TRLVDS Transition-Reduced LVDS 0.03 0.00 –0.04 ns

Mini MLVDS Mini LVDS 0.03 –0.01 –0.03 ns

LVPECL33 LVPECL, Emulated, VCCIO = 3.3 V 0.17 0.23 0.28 ns

HSTL18_I HSTL_18 class I, VCCIO = 1.8 V 0.20 0.17 0.13 ns

HSTL18_II HSTL_18 class II, VCCIO = 1.8 V 0.20 0.17 0.13 ns

HSTL18D_I Differential HSTL 18 class I 0.20 0.17 0.13 ns

HSTL18D_II Differential HSTL 18 class II 0.20 0.17 0.13 ns

HSTL15_I HSTL_15 class I, VCCIO = 1.5 V 0.10 0.12 0.13 ns

HSTL15D_I Differential HSTL 15 class I 0.10 0.12 0.13 ns

SSTL33_I SSTL_3 class I, VCCIO = 3.3 V 0.17 0.23 0.28 ns

SSTL33_II SSTL_3 class II, VCCIO = 3.3 V 0.17 0.23 0.28 ns

SSTL33D_I Differential SSTL_3 class I 0.17 0.23 0.28 ns

SSTL33D_II Differential SSTL_3 class II 0.17 0.23 0.28 ns

SSTL25_I SSTL_2 class I, VCCIO = 2.5 V 0.12 0.14 0.16 ns

SSTL25_II SSTL_2 class II, VCCIO = 2.5 V 0.12 0.14 0.16 ns

SSTL25D_I Differential SSTL_2 class I 0.12 0.14 0.16 ns

SSTL25D_II Differential SSTL_2 class II 0.12 0.14 0.16 ns

SSTL18_I SSTL_18 class I, VCCIO = 1.8 V 0.08 0.06 0.04 ns

SSTL18_II SSTL_18 class II, VCCIO = 1.8 V 0.08 0.06 0.04 ns

SSTL18D_I Differential SSTL_18 class I 0.08 0.06 0.04 ns

SSTL18D_II Differential SSTL_18 class II 0.08 0.06 0.04 ns

SSTL15 SSTL_15, VCCIO = 1.5 V 0.087 0.059 0.032 ns

SSTL15D Differential SSTL_15 0.087 0.059 0.032 ns

LVTTL33 LVTTL, VCCIO = 3.3 V 0.07 0.07 0.07 ns

LVCMOS33 LVCMOS, VCCIO = 3.3 V 0.07 0.07 0.07 ns

LVCMOS25 LVCMOS, VCCIO = 2.5 V 0.00 0.00 0.00 ns

LVCMOS18 LVCMOS, VCCIO = 1.8 V –0.13 –0.13 –0.13 ns

LVCMOS15 LVCMOS, VCCIO = 1.5 V –0.07 –0.07 –0.07 ns

LVCMOS12 LVCMOS, VCCIO = 1.2 V –0.20 –0.19 –0.19 ns

PCI33 PCI, VCCIO = 3.3 V 0.07 0.07 0.07 ns

Output Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5 V 1.02 1.14 1.26 ns

LVDS25 LVDS, VCCIO = 2.5 V –0.11 –0.07 –0.03 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5 V 1.01 1.13 1.25 ns

MLVDS25 MLVDS, Emulated, VCCIO = 2.5 V 1.01 1.13 1.25 ns
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Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII/CPRI LV E.12 Electrical and 
Timing Characteristics
AC and DC Characteristics
Table 3-17. Transmit

Table 3-18. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.10 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.24 UI

1. Rise and fall times measured with board trace, connector and approximately 2.5 pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 1.25 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 1.25 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 1.25 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.34 UI

JRX_RJ
1, 2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.26 UI

JRX_SJ
1, 2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.11 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.71 UI

TRX_EYE Receiver eye opening 0.29 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 1.25 Gbps.
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT
1 PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

tIODISS User I/O Disable from PROGRAMN Low — 100 ns

tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence — 100 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode -0.2 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns
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Switching Test Conditions
Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-23. 

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

Table 3-23. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0 pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M 0 pF VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1 M  0 pF VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 0 pF VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  0 pF VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT 

VT

R1

R2

 

CL* 

Test Point

*CL Includes Test Fixture and Probe Capacitance
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 67

LFE3-70EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 67

LFE3-70EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 67

LFE3-70EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 67

LFE3-70EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 67

LFE3-70EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 67

LFE3-70EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484C 1.2 V –6 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-7FN484C 1.2 V –7 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-8FN484C 1.2 V –8 STD Lead-Free fpBGA 484 COM 92

LFE3-95EA-6LFN484C 1.2 V –6 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-7LFN484C 1.2 V –7 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-8LFN484C 1.2 V –8 LOW Lead-Free fpBGA 484 COM 92

LFE3-95EA-6FN672C 1.2 V –6 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-7FN672C 1.2 V –7 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-8FN672C 1.2 V –8 STD Lead-Free fpBGA 672 COM 92

LFE3-95EA-6LFN672C 1.2 V –6 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-7LFN672C 1.2 V –7 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-8LFN672C 1.2 V –8 LOW Lead-Free fpBGA 672 COM 92

LFE3-95EA-6FN1156C 1.2 V –6 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7FN1156C 1.2 V –7 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8FN1156C 1.2 V –8 STD Lead-Free fpBGA 1156 COM 92

LFE3-95EA-6LFN1156C 1.2 V –6 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-7LFN1156C 1.2 V –7 LOW Lead-Free fpBGA 1156 COM 92

LFE3-95EA-8LFN1156C 1.2 V –8 LOW Lead-Free fpBGA 1156 COM 92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.


