
E. Attice Semiconductor Corporation - LFE3-70EA-6LFN1156C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8375
Number of Logic Elements/Cells	67000
Total RAM Bits	4526080
Number of I/O	490
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1156-BBGA
Supplier Device Package	1156-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-6lfn1156c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmitted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the current value on the DCNTL bus.

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of the DLL inputs and outputs.

The user can configure the DLL for many common functions such as time reference delay mode and clock injection removal mode. Lattice provides primitives in its design tools for these functions.

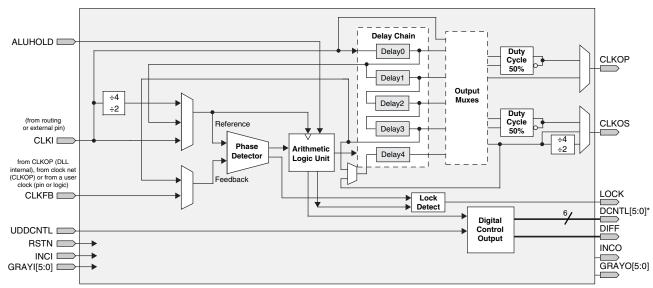
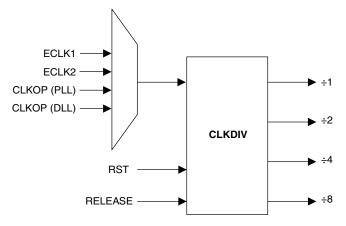
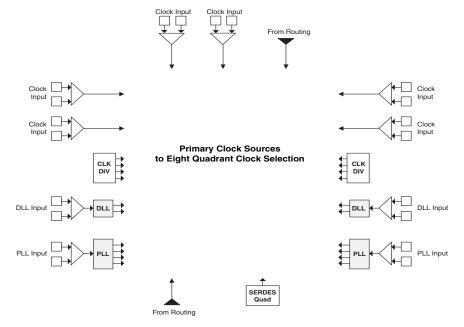



Figure 2-5. Delay Locked Loop Diagram (DLL)

* This signal is not user accessible. This can only be used to feed the slave delay line.

Figure 2-8. Clock Divider Connections

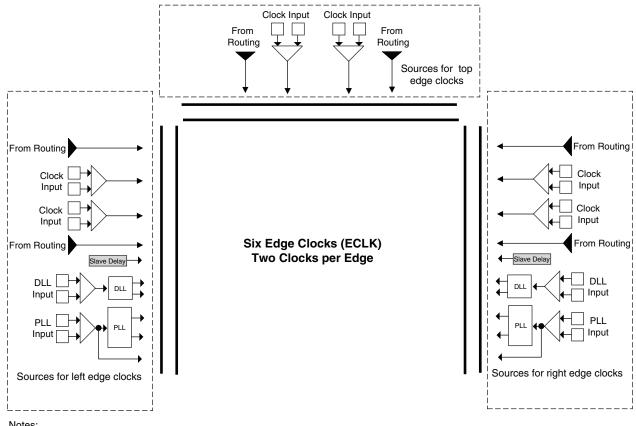

Clock Distribution Network

LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two high performance edge clocks are available on the top, left, and right edges of the device to support high speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock sources are fed throughout the chip via a clock distribution system.

Primary Clock Sources

LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, dedicated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17


Note: Clock inputs can be configured in differential or single-ended mode.

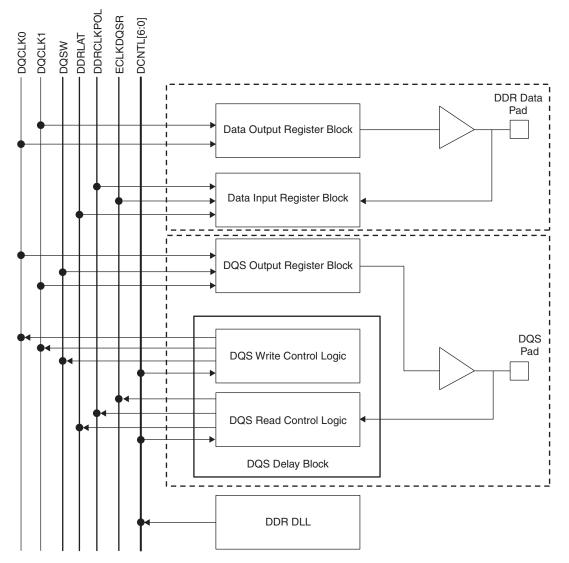
Edge Clock Sources

Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in Figure 2-19.

Notes:

1. Clock inputs can be configured in differential or single ended mode.

2. The two DLLs can also drive the two top edge clocks.


3. The top left and top right PLL can also drive the two top edge clocks.

Edge Clock Routing

LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge clock muxes on the left and right sides of the device. Figure 2-20 shows the selection muxes for these clocks.

Figure 2-37. DQS Local Bus

Polarity Control Logic

In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the preamble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support

LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input register block.

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

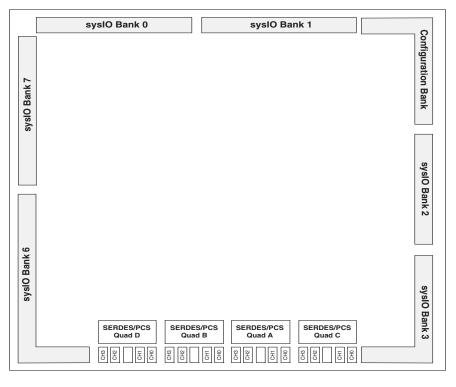
The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.


The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

Units V

Ω

Ω

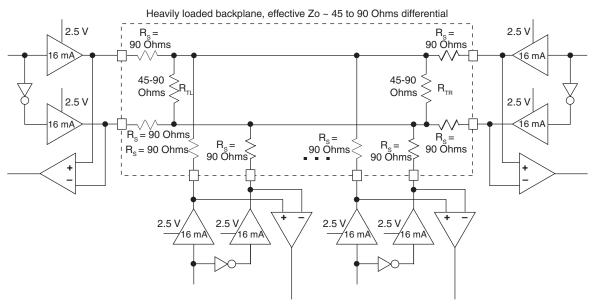
Ω

Ω

٧

٧

V


V

mΑ

BLVDS25

The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS25 DC Conditions¹

V_{CCIO}

ZOUT

R_S

R_{TL}

 R_{TR} V_{OH}

VOL

VOD

V_{CM}

	· · · · ·	-		
		Тур	ical	
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	
/ _{CCIO}	Output Driver Supply (+/– 5%)	2.50	2.50	

10.00

90.00

45.00

45.00

1.38

1.12

0.25

1.25

11.24

10.00

90.00

90.00

90.00

1.48

1.02

0.46

1.25

10.20

Over Recommended Operating Conditions

 I_{DC} 1. For input buffer, see LVDS table.

Driver Impedance

Output High Voltage

Output Low Voltage

DC Output Current

Output Differential Voltage

Output Common Mode Voltage

Driver Series Resistor (+/- 1%)

Driver Parallel Resistor (+/- 1%)

Receiver Termination (+/- 1%)

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			_	-8	-	-7	_	6	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
	nputs with Clock and Data (>10bi	its wide) are Aligned at I	Pin (GDD	RX2_RX	ECLK.A	ligned)			
(No CLKDIV)	des Using DLLCLKPIN for Clock	Innut							
	Data Setup Before CLK	ECP3-150EA	_	0.225	_	0.225	_	0.225	UI
t _{DVACLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775	0.225	0.775	0.225	0.775	0.225	UI
	DDRX2 Clock Frequency	ECP3-150EA	0.775	460	0.775	385	0.775	345	MHz
[†] MAX_GDDR	Data Setup Before CLK		_		_		_		UI
	-	ECP3-70EA/95EA	0.775	0.225		0.225		0.225	
^I DVECLKGDDR	Data Hold After CLK	ECP3-70EA/95EA ECP3-70EA/95EA	0.775		0.775		0.775		UI MHz
fMAX_GDDR	DDRX2 Clock Frequency		—	460		385	—	311	
	Data Setup Before CLK	ECP3-35EA	- 700	0.210	-	0.210	-	0.210	
	Data Hold After CLK	ECP3-35EA	0.790	-	0.790	-	0.790	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	460	_	385	_	311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK (Left and Right Sides)	ECP3-17EA	_	0.210	_	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	—	0.790	—	0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	460		385		311	MHz
Top Side Using P	CLK Pin for Clock Input								
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA		0.225	—	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775	—	0.775	—	0.775		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA	_	235	—	170	_	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	_	0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775		0.775		0.775		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA	_	235		170		130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA		0.210	—	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790	—	0.790	—	0.790	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	235	—	170	_	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA	_	0.210	—	0.210	—	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	_	0.790	_	0.790	—	UI
f _{MAX GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	235	_	170		130	MHz
-	nputs with Clock and Data (<10 E	Bits Wide) Centered at Pi	in (GDDF	X2_RX.	DQS.Cen	tered) U	sing DQ	S Pin for	Clock
Left and Right Sid	des								
t _{SUGDDR}	Data Setup Before CLK	All ECP3EA Devices	330	_	330	_	352		ps
t _{HOGDDR}	Data Hold After CLK	All ECP3EA Devices	330	_	330	—	352	_	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	_	375	MHz
	nputs with Clock and Data (<10 E	Bits Wide) Aligned at Pin	(GDDR)	(2 RX.D0	QS.Align	ed) Usin	g DQS Pi	n for Clo	ck Input
Left and Right Sid		J J J J J J J J J J	1 -	_	J	,	J		
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	—	0.225	—	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	_	0.775	_	0.775	—	UI
f _{MAX GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	_	375	MHz
	Output with Clock and Data (>10 I	Bits Wide) Centered at P	in (GDD	RX1_TX.	SCLK.Ce	ntered)10)		
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670	—	670	_	670		ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670		670		670		ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	ECP3-150EA		250		250		250	MHz
			666		CCE		664		
t _{DVBGDDR}	Data Valid Before CLK	ECP3-70EA/95EA	666		665		664		ps

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-	-8	-	-7	-	-6				
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units			
Generic DDRX2 (Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin Using PLL (GDDRX2_TX.PLL.Centered) ¹⁰											
Left and Right Si	des											
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	285		370		431	_	ps			
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	285		370		432		ps			
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	_	375	MHz			
Memory Interface	9											
DDR/DDR2 I/O Pi	n Parameters (Input Data are Strobe	Edge Aligned, Output	ut Strobe	e Edge is	Data Ce	ntered)4						
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	_	0.225	—	0.225	—	0.225	UI			
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	_	0.64	—	UI			
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI			
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	—	0.25	—	UI			
f _{MAX_DDR}	DDR Clock Frequency	All ECP3 Devices	95	200	95	200	95	166	MHz			
f _{MAX_DDR2}	DDR2 clock frequency	All ECP3 Devices	125	266	125	200	125	166	MHz			
DDR3 (Using PLI	for SCLK) I/O Pin Parameters								•			
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices		0.225		0.225		0.225	UI			
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64		0.64		0.64		UI			
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25		0.25		0.25		UI			
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25		0.25		0.25		UI			
f _{MAX_DDR3}	DDR3 clock frequency	All ECP3 Devices	300	400	266	333	266	300	MHz			
DDR3 Clock Timi	ing			•		•		•	•			
t _{CH} (avg) ⁹	Average High Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI			
t _{CL} (avg) ⁹	Average Low Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI			
t _{JIT} (per, lck) ⁹	Output Clock Period Jitter During DLL Locking Period	All ECP3 Devices	-90	90	-90	90	-90	90	ps			
t _{JIT} (cc, lck) ⁹	Output Cycle-to-Cycle Period Jit- ter During DLL Locking Period	All ECP3 Devices	_	180	_	180	_	180	ps			

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

6. Uses LVDS I/O standard.

7. The current version of software does not support per bank skew numbers; this will be supported in a future release.

8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

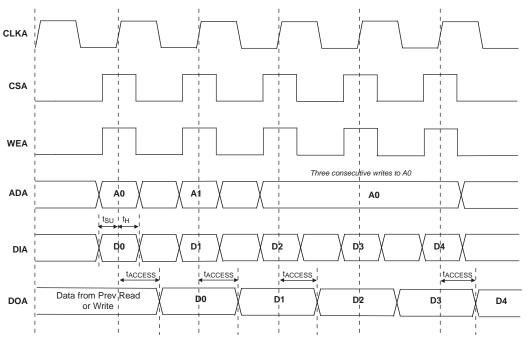
9. Using settings generated by IPexpress.

10. These numbers are generated using best case PLL located in the center of the device.

11. Uses SSTL25 Class II Differential I/O Standard.

12. All numbers are generated with ispLEVER 8.1 software.

13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.


LatticeECP3 Internal Switching Characteristics^{1, 2, 5}

		_	.8	-7		-6			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.	
PFU/PFF Logi	c Mode Timing								
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)		0.147		0.163		0.179	ns	
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	_	0.281	—	0.335	—	0.379	ns	
t _{LSR_PFU}	Set/Reset to output of PFU (Asynchronous)	—	0.593	—	0.674	—	0.756	ns	
t _{LSRREC_PFU}	Asynchronous Set/Reset recovery time for PFU Logic		0.298		0.345		0.391	ns	
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.134	—	0.144	—	0.153	_	ns	
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.097		-0.103		-0.109	_	ns	
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.068	—	0.075		ns	
t _{HD_PFU}	Clock to D input hold time	0.019	—	0.013	—	0.015		ns	
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	_	0.243	—	0.273	—	0.303	ns	
PFU Dual Port	Memory Mode Timing	1	1	I	1	I		1	
t _{CORAM_PFU}	Clock to Output (F Port)	—	0.710	_	0.803	—	0.897	ns	
t _{SUDATA_PFU}	Data Setup Time	-0.137	—	-0.155	—	-0.174	_	ns	
t _{HDATA_PFU}	Data Hold Time	0.188	—	0.217	—	0.246	_	ns	
t _{SUADDR_PFU}	Address Setup Time	-0.227	—	-0.257	—	-0.286	_	ns	
t _{HADDR_PFU}	Address Hold Time	0.240	—	0.275	—	0.310	_	ns	
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.055	—	-0.055	—	-0.063	_	ns	
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.059	_	0.059	_	0.071		ns	
PIC Timing									
PIO Input/Out	put Buffer Timing								
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)		0.423	—	0.466	—	0.508	ns	
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)		1.241	—	1.301	—	1.361	ns	
IOLOGIC Inpu	t/Output Timing							•	
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.956	_	1.124	_	1.293	_	ns	
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.225	—	0.184	—	0.240	_	ns	
t _{COO_PIO}	Output Register Clock to Output Delay ⁴	-	1.09	-	1.16	-	1.23	ns	
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.220		0.185	—	0.150		ns	
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.085	—	-0.072	—	-0.058		ns	
t _{SULSR_PIO}	Set/Reset Setup Time	0.117	—	0.103	—	0.088		ns	
t _{HLSR_PIO}	Set/Reset Hold Time	-0.107	—	-0.094	—	-0.081	_	ns	
EBR Timing	•	1	1	1	1	1		1	
t _{CO_EBR}	Clock (Read) to output from Address or Data		2.78	—	2.89	—	2.99	ns	
t _{COO_EBR}	Clock (Write) to output from EBR output Register	_	0.31	_	0.32	_	0.33	ns	
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.218	—	-0.227	—	-0.237	—	ns	
t _{HDATA_EBR}	Hold Data to EBR Memory	0.249	_	0.257		0.265	—	ns	
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.071	—	-0.070	—	-0.068	_	ns	
t _{HADDR_EBR}	Hold Address to EBR Memory	0.118	—	0.098	—	0.077	_	ns	
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.107	_	-0.106		-0.106		ns	

Over Recommended Commercial Operating Conditions

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

DLL Timing

Over Recommended Operating Conditions

Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	_	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133		500	MHz
f _{CLKOP} 1	Output clock frequency, CLKOP		133		500	MHz
f _{CLKOS²}	Output clock frequency, CLKOS		33.3		500	MHz
t _{PJIT}	Output clock period jitter (clean input)				200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	cycle input clock, 50% duty cycle circuit turned off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit	Primary Clock ≥ 250 MHz	30		70	%
	enabled, time reference delay mode)	Edge Clock	45		55	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	40		60	%
t _{DUTYCIR}	duty cycle input clock, 50% duty cycle circuit enabled, clock injection removal mode) with DLL	Primary Clock ≥ 250 MHz	30		70	%
	cascading	Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	_	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	_	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	_	_	ps
t _{INSTB}	Input clock period jitter		_		500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3			ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns

1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.

Figure 3-30. SPI Configuration Waveforms

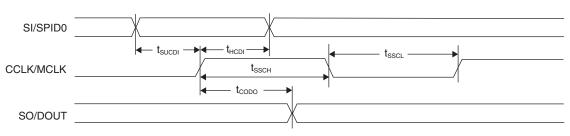
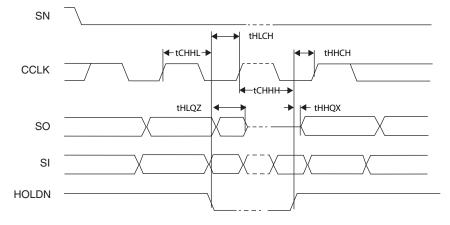



Figure 3-31. Slave SPI HOLDN Waveforms

Pin Information Summary (Cont.)

Pin Information	on Summary		ECP3-70EA	
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	21	30	43
	Bank 1	18	24	39
	Bank 2	8	12	13
Emulated Differential I/O per Bank	Bank 3	20	23	33
	Bank 6	22	25	33
	Bank 7	11	16	18
	Bank 8	12	12	12
	Bank 0	0	0	0
	Bank 1	0	0	0
	Bank 2	6	9	9
High-Speed Differential I/ O per Bank	Bank 3	9	12	16
o por Barik	Bank 6	11	14	16
	Bank 7	9	12	13
	Bank 8	0	0	0
	Bank 0	42/21	60/30	86/43
	Bank 1	36/18	48/24	78/39
Total Single-Ended/	Bank 2	28/14	42/21	44/22
Total Differential I/O	Bank 3	58/29	71/35	98/49
per Bank	Bank 6	67/33	78/39	98/49
	Bank 7	40/20	56/28	62/31
	Bank 8	24/12	24/12	24/12
	Bank 0	3	5	7
	Bank 1	3	4	7
	Bank 2	2	3	3
DDR Groups Bonded per Bank ¹	Bank 3	3	4	5
po0.111	Bank 6	4	4	5
	Bank 7	3	4	4
	Configuration Bank 8	0	0	0
SERDES Quads		1	2	3

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Pin Information Summary (Cont.)

Pin Information	Summary		ECP3-95EA		ECP3-150EA		
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA	
	Bank 0	42	60	86	60	94	
	Bank 1	36	48	78	48	86	
	Bank 2	24	34	36	34	58	
General Purpose	Bank 3	54	59	86	59	104	
nputs/Outputs per bank	Bank 6	63	67	86	67	104	
	Bank 7	36	48	54	48	76	
	Bank 8	24	24	24	24	24	
	Bank 0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	
	Bank 2	4	8	8	8	8	
General Purpose Inputs per Bank	Bank 3	4	12	12	12	12	
Jank	Bank 6	4	12	12	12	12	
	Bank 7	4	8	8	8	8	
	Bank 8	0	0	0	0	0	
	Bank 0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	
	Bank 2	0	0	0	0	0	
General Purpose Outputs per Bank	Bank 3	0	0	0	0	0	
Dalik	Bank 6	0	0	0	0	0	
	Bank 7	0	0	0	0	0	
	Bank 8	0	0	0	0	0	
Total Single-Ended User I/O		295	380	490	380	586	
VCC		16	32	32	32	32	
VCCAUX		8	12	16	12	16	
VTT		4	4	8	4	8	
VCCA		4	8	16	8	16	
VCCPLL		4	4	4	4	4	
	Bank 0	2	4	4	4	4	
	Bank 1	2	4	4	4	4	
	Bank 2	2	4	4	4	4	
VCCIO	Bank 3	2	4	4	4	4	
	Bank 6	2	4	4	4	4	
	Bank 7	2	4	4	4	4	
	Bank 8	2	2	2	2	2	
VCCJ		1	1	1	1	1	
TAP		4	4	4	4	4	
GND, GNDIO		98	139	233	139	233	
NC		0	0	238	0	116	
Reserved ¹		2	2	2	2	2	
SERDES		26	52	78	52	104	
Miscellaneous Pins		8	8	8	8	8	
Total Bonded Pins		484	672	1156	672	1156	

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-70EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	67
LFE3-70EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	67
LFE3-70EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	67
LFE3-70EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	67
LFE3-70EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	67
LFE3-70EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	67
LFE3-70EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	67
LFE3-70EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	67
LFE3-70EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	67
LFE3-70EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	67
LFE3-70EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	67
LFE3-70EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	67
LFE3-70EA-6FN1156C	1.2 V	-6	STD	Lead-Free fpBGA	1156	COM	67
LFE3-70EA-7FN1156C	1.2 V	-7	STD	Lead-Free fpBGA	1156	COM	67
LFE3-70EA-8FN1156C	1.2 V	-8	STD	Lead-Free fpBGA	1156	COM	67
LFE3-70EA-6LFN1156C	1.2 V	-6	LOW	Lead-Free fpBGA	1156	COM	67
LFE3-70EA-7LFN1156C	1.2 V	-7	LOW	Lead-Free fpBGA	1156	COM	67
LFE3-70EA-8LFN1156C	1.2 V	-8	LOW	Lead-Free fpBGA	1156	COM	67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-95EA-6FN484C	1.2 V	-6	STD	Lead-Free fpBGA	484	COM	92
LFE3-95EA-7FN484C	1.2 V	-7	STD	Lead-Free fpBGA	484	COM	92
LFE3-95EA-8FN484C	1.2 V	-8	STD	Lead-Free fpBGA	484	COM	92
LFE3-95EA-6LFN484C	1.2 V	-6	LOW	Lead-Free fpBGA	484	COM	92
LFE3-95EA-7LFN484C	1.2 V	-7	LOW	Lead-Free fpBGA	484	COM	92
LFE3-95EA-8LFN484C	1.2 V	-8	LOW	Lead-Free fpBGA	484	COM	92
LFE3-95EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	92
LFE3-95EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	92
LFE3-95EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	92
LFE3-95EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	92
LFE3-95EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	92
LFE3-95EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	92
LFE3-95EA-6FN1156C	1.2 V	-6	STD	Lead-Free fpBGA	1156	COM	92
LFE3-95EA-7FN1156C	1.2 V	-7	STD	Lead-Free fpBGA	1156	COM	92
LFE3-95EA-8FN1156C	1.2 V	-8	STD	Lead-Free fpBGA	1156	COM	92
LFE3-95EA-6LFN1156C	1.2 V	-6	LOW	Lead-Free fpBGA	1156	COM	92
LFE3-95EA-7LFN1156C	1.2 V	-7	LOW	Lead-Free fpBGA	1156	COM	92
LFE3-95EA-8LFN1156C	1.2 V	-8	LOW	Lead-Free fpBGA	1156	COM	92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149

1. Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250V.

LatticeECP3 Family Data Sheet Supplemental Information

February 2014

Data Sheet DS1021

For Further Information

A variety of technical notes for the LatticeECP3 family are available on the Lattice website at <u>www.latticesemi.com</u>.

- TN1169, LatticeECP3 sysCONFIG Usage Guide
- TN1176, LatticeECP3 SERDES/PCS Usage Guide
- TN1177, LatticeECP3 sysIO Usage Guide
- TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide
- TN1179, LatticeECP3 Memory Usage Guide
- TN1180, LatticeECP3 High-Speed I/O Interface
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- TN1182, LatticeECP3 sysDSP Usage Guide
- TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide
- TN1189, LatticeECP3 Hardware Checklist
- TN1215, LatticeECP2MS and LatticeECP2S Devices
- TN1216, LatticeECP2/M and LatticeECP3 Dual Boot Feature Advanced Security Encryption Key Programming Guide for LatticeECP3
- TN1222, LatticeECP3 Slave SPI Port User's Guide

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeECP3 Family Data Sheet Revision History

March 2015

Data Sheet DS1021

Date	Version	Section	Change Summary		
March 2015 2.8EA Pinout Information All			Updated Package Pinout Information section. Changed reference to http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.		
			Minor style/formatting changes.		
April 2014	02.7EA	DC and Switching	Updated LatticeECP3 Supply Current (Standby) table power numbers.		
		Characteristics	Removed speed grade -9 timing numbers in the following sections: — Typical Building Block Function Performance — LatticeECP3 External Switching Characteristics — LatticeECP3 Internal Switching Characteristics — LatticeECP3 Family Timing Adders		
		Ordering Information	Removed ordering information for -9 speed grade devices.		
March 2014	02.6EA	DC and Switching Characteristics	Added information to the sysl/O Single-Ended DC Electrical Character- istics section footnote.		
February 2014	February 2014 02.5EA		Updated Hot Socketing Specifications table. Changed ${\sf I}_{\sf Pw}$ to ${\sf I}_{\sf PD}$ in foo note 3.		
			Updated the following figures: — Figure 3-25, sysCONFIG Port Timing — Figure 3-27, Wake-Up Timing		
		Supplemental Information	Added technical note references.		
September 2013	02.4EA	DC and Switching	Updated the Wake-Up Timing Diagram		
	Characteristics	Added the following figures: — Master SPI POR Waveforms — SPI Configuration Waveforms — Slave SPI HOLDN Waveforms			
			Added tIODISS and tIOENSS parameters in LatticeECP3 sysCONFIG Port Timing Specifications table.		
June 2013	June 2013 02.3EA Ard		sysl/O Buffer Banks text section – Updated description of "Top (Bank 0 and Bank 1) and Bottom syslO Buffer Pairs (Single-Ended Outputs Only)" for hot socketing information.		
		sysl/O Buffer Banks text section – Updated description of "Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)" for PCI clamp information.			
		On-Chip Oscillator section – clarified the speed of the internal CMOS oscillator (130 MHz +/- 15%).			
		Architecture Overview section – Added information on the state of the register on power up and after configuration.			
		DC and Switching Characteristics	sysl/O Recommended Operating Conditions table – Removed reference to footnote 1 from RSDS standard.		
			sysl/O Single-Ended DC Electrical Characteristics table – Modified foot- note 1.		
			Added Oscillator Output Frequency table.		
			LatticeECP3 sysCONFIG Port Timing Specifications table – Updated min. column for t _{CODO} parameter.		
			LatticeECP3 Family Timing Adders table – Description column, references to VCCIO = $3.0V$ changed to $3.3V$. For PPLVDS, description changed from emulated to True LVDS and VCCIO = $2.5V$ changed to VCCIO = $2.5V$ or $3.3V$.		

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary			
			LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.			
			Updated SERDES External Reference Clock Waveforms.			
			Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break- down table.			
		Pinout Information	"Logic Signal Connections" section heading renamed "Package Pinout Information". Software menu selections within this section have been updated.			
			Signal Descriptions table – Updated description for V _{CCA} signal.			
April 2012	02.2EA	Architecture	Updated first paragraph of Output Register Block section.			
			Updated the information about sysIO buffer pairs below Figure 2-38.			
			Updated the information relating to migration between devices in the Density Shifting section.			
		DC and Switching Characteristics	Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$			
		Ordering Information	Updated topside marks with new logos in the Ordering Information sec- tion.			
February 2012	02.1EA	All	Updated document with new corporate logo.			
November 2011	02.0EA	Introduction	Added information for LatticeECP3-17EA, 328-ball csBGA package.			
		Architecture	Added information for LatticeECP3-17EA, 328-ball csBGA package.			
		DC and Switching Characteristics	Updated LatticeECP3 Supply Current table power numbers.			
			Typical Building Block Function Performance table, LatticeECP3 Exter- nal Switching Characteristics table, LatticeECP3 Internal Switching Characteristics table and LatticeECP3 Family Timing Adders: Added speed grade -9 and updated speed grade -8, -7 and -6 timing numbers.			
		Pinout Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.			
		Ordering Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.			
			Added ordering information for low power devices and -9 speed grade devices.			
July 2011	01.9EA	DC and Switching Characteristics	Removed ESD Performance table and added reference to LatticeECP3 Product Family Qualification Summary document.			
			sysCLOCK PLL TIming table, added footnote 4.			
			External Reference Clock Specification table – removed reference to VREF-CM-AC and removed footnote for VREF-CM-AC.			
		Pinout Information	Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.			
April 2011	01.8EA	Architecture	Updated Secondary Clock/Control Sources text section.			
		DC and Switching Characteristics	Added data for 150 Mbps to SERDES Power Supply Requirements table.			
			Updated Frequencies in Table 3-6 Serial Output Timing and Levels			
			Added Data for 150 Mbps to Table 3-7 Channel Output Jitter			
			Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, t_{JIT} .			
			Corrected Internal Switching Characteristics table, Description for EBR Timing, t _{SUWREN_EBR} and t _{HWREN_EBR} .			
			Added footnote 1 to sysConfig Port Timing Specifications table.			
			Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications			