E.J. Lattice Semiconductor Corporation - LFE3-70EA-7FN672C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8375
Number of Logic Elements/Cells	67000
Total RAM Bits	4526080
Number of I/O	380
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-7fn672c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The edge clocks on the top, left, and right sides of the device can drive the secondary clocks or general routing resources of the device. The left and right side edge clocks also can drive the primary clock network through the clock dividers (CLKDIV).

sysMEM Memory

LatticeECP3 devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18-Kbit RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers (via external PFUs).

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-7. FIFOs can be implemented in sysMEM EBR blocks by implementing support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths. For more information, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-7. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Figure 2-25. Detailed sysDSP Slice Diagram

Note: A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

The LatticeECP2 sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

 Table 2-8. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1 ¹	1/2	_

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

ALU Flags

The sysDSP slice provides a number of flags from the ALU including:

- Equal to zero (EQZ)
- Equal to zero with mask (EQZM)
- Equal to one with mask (EQOM)
- Equal to pattern with mask (EQPAT)
- Equal to bit inverted pattern with mask (EQPATB)
- Accumulator Overflow (OVER)
- Accumulator Underflow (UNDER)
- Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and output register.

Resources Available in the LatticeECP3 Family

Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Slices	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
ECP3-17	12	48	24	6
ECP3-35	32	128	64	16
ECP3-70	64	256	128	32
ECP3-95	64	256	128	32
ECP3-150	160	640	320	80

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)
ECP3-17	38	700
ECP3-35	72	1327
ECP3-70	240	4420
ECP3-95	240	4420
ECP3-150	372	6850

Package	ECP3-17	ECP3-35	ECP3-70	ECP3-95	ECP3-150
256 ftBGA	1	1	—	—	—
328 csBGA	2 channels	—	—	—	—
484 fpBGA	1	1	1	1	
672 fpBGA	—	1	2	2	2
1156 fpBGA	—	—	3	3	4

SERDES Block

A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS

As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, selects the polarity and passes the 8/10 bit data to the transmit SERDES channel.

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic.

Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dualboot image support.

1. TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

2. Dual-Boot Image Support

Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide.

External Resistor

LatticeECP3 devices require a single external, 10 kOhm \pm 1% value between the XRES pin and ground. Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the external resistor pad.

On-Chip Oscillator

Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK frequency of 2.5 MHz.

This internal 130 MHz +/- 15% CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
IDK_HS⁴	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (Max.)		_	+/—1	mA
IDK⁵	Input or I/O Leakage Current	$0 \le V_{IN} < V_{CCIO}$		_	+/—1	mA
		$V_{CCIO} \le V_{IN} \le V_{CCIO} + 0.5V$	_	18		mA

1. $V_{CC},\,V_{CCAUX}$ and V_{CCIO} should rise/fall monotonically.

2. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} .

3. LVCMOS and LVTTL only.

4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.

5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Hot Socketing Requirements^{1, 2}

Description	Min.	Тур.	Max.	Units
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	-	8	mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB (1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 channels *2 input pins per channel = 256 mA

ESD Performance

Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including ESD performance.

sysI/O Differential Electrical Characteristics LVDS25

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} ¹ , V _{INM} ¹	Input Voltage		0	_	2.4	V
V _{CM} ¹	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100	_	_	mV
I _{IN}	Input Current	Power On or Power Off		_	+/-10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm		1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	$(V_{OP} + V_{OM})/2$, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L		_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

1, On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

RSDS25E

The LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-4. RSDS25E DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/–5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/–1%)	294	Ω
R _P	Driver Parallel Resistor (+/-1%)	121	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage	1.35	V
V _{OL}	Output Low Voltage	1.15	V
V _{OD}	Output Differential Voltage	0.20	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	101.5	Ω
I _{DC}	DC Output Current	3.66	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8 -7			_	-6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-70EA/95EA	0.7	—	0.7	—	0.8	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-70EA/95EA	1.6	—	1.8	_	2.0	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-70EA/95EA	0.0	—	0.0	—	0.0	—	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-35EA	_	3.2	—	3.4	—	3.6	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-35EA	0.6	_	0.7	—	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-35EA	0.3	—	0.3	—	0.4	-	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-35EA	1.6	_	1.7	_	1.8	_	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-35EA	0.0	_	0.0	_	0.0	_	ns
t _{COPLL}	Clock to Output - PIO Output Register	ECP3-17EA	_	3.0	—	3.3	—	3.5	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	ECP3-17EA	0.6	_	0.7	_	0.8	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	ECP3-17EA	0.3	_	0.3	_	0.4	—	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-17EA	1.6	—	1.7	—	1.8	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	ECP3-17EA	0.0	_	0.0	_	0.0	—	ns
Generic DDR ¹²									
Generic DDRX1 In Input	puts with Clock and Data (>10 Bits	Wide) Centered at Pi	n (GDDF	RX1_RX.S	SCLK.Ce	ntered) L	Ising PC	LK Pin fo	or Clock
t _{SUGDDR}	Data Setup Before CLK	All ECP3EA Devices	480	—	480	_	480		ps
t _{HOGDDR}	Data Hold After CLK	All ECP3EA Devices	480	—	480	—	480		ps
f _{MAX_GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	—	250	—	250	—	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.SC	CLK.PLL	Aligned)	Using P	LLCLKIN	Pin for
Data Left, Right, a	nd Top Sides and Clock Left and F	Right Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775	_	UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In Clock Input	puts with Clock and Data (>10 Bits	Wide) Aligned at Pin	(GDDR)	(1_RX.S0	CLK.Alig	ned) Usiı	ng DLL -	CLKIN P	in for
Data Left, Right ar	d Top Sides and Clock Left and R	ight Sides							
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	_	0.225	—	0.225	—	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	—	0.775		UI
f _{MAX GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In Input	puts with Clock and Data (<10 Bits	Wide) Centered at Pi	n (GDDF	X1_RX.	DQS.Cen	tered) U	sing DQ	S Pin for	Clock
t _{SUGDDB}	Data Setup After CLK	All ECP3EA Devices	535	_	535		535		ps
tHOGDDR	Data Hold After CLK	All ECP3EA Devices	535	—	535		535	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	All ECP3EA Devices	_	250	—	250	_	250	MHz
Generic DDRX1 In	puts with Clock and Data (<10bits	wide) Aligned at Pin (GDDRX	1_RX.DQ	S.Aligne	d) Using	DQS Pin	for Cloc	k Input
Data and Clock Le	ft and Right Sides	`			-				-
t _{DVACI KGDDB}	Data Setup Before CLK	All ECP3EA Devices	—	0.225	_	0.225		0.225	UI
STROLIGEDIT									

Over Recommended Commercial Operating Conditions

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7} (Continued)

Buffer Type	Description	-8	-7	-6	Units
RSDS25	RSDS, VCCIO = 2.5 V	-0.07	-0.04	-0.01	ns
PPLVDS	Point-to-Point LVDS, True LVDS, VCCIO = 2.5 V or 3.3 V	-0.22	-0.19	-0.16	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.67	0.76	0.86	ns
HSTL18_I	HSTL_18 class I 8mA drive, VCCIO = 1.8 V	1.20	1.34	1.47	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.89	1.00	1.11	ns
HSTL18D_I	Differential HSTL 18 class I 8 mA drive	1.20	1.34	1.47	ns
HSTL18D_II	Differential HSTL 18 class II	0.89	1.00	1.11	ns
HSTL15_I	HSTL_15 class I 4 mA drive, VCCIO = 1.5 V	1.67	1.83	1.99	ns
HSTL15D_I	Differential HSTL 15 class I 4 mA drive	1.67	1.83	1.99	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	1.12	1.17	1.21	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	1.08	1.12	1.15	ns
SSTL33D_I	Differential SSTL_3 class I	1.12	1.17	1.21	ns
SSTL33D_II	Differential SSTL_3 class II	1.08	1.12	1.15	ns
SSTL25_I	SSTL_2 class I 8 mA drive, VCCIO = 2.5 V	1.06	1.19	1.31	ns
SSTL25_II	SSTL_2 class II 16 mA drive, VCCIO = 2.5 V	1.04	1.17	1.31	ns
SSTL25D_I	Differential SSTL_2 class I 8 mA drive	1.06	1.19	1.31	ns
SSTL25D_II	Differential SSTL_2 class II 16 mA drive	1.04	1.17	1.31	ns
SSTL18_I	SSTL_1.8 class I, VCCIO = 1.8 V	0.70	0.84	0.97	ns
SSTL18_II	SSTL_1.8 class II 8 mA drive, VCCIO = 1.8 V	0.70	0.84	0.97	ns
SSTL18D_I	Differential SSTL_1.8 class I	0.70	0.84	0.97	ns
SSTL18D_II	Differential SSTL_1.8 class II 8 mA drive	0.70	0.84	0.97	ns
SSTL15	SSTL_1.5, VCCIO = 1.5 V	1.22	1.35	1.48	ns
SSTL15D	Differential SSTL_15	1.22	1.35	1.48	ns
LVTTL33_4mA	LVTTL 4 mA drive, VCCIO = 3.3V	0.25	0.24	0.23	ns
LVTTL33_8mA	LVTTL 8 mA drive, VCCIO = 3.3V	-0.06	-0.06	-0.07	ns
LVTTL33_12mA	LVTTL 12 mA drive, VCCIO = 3.3V	-0.01	-0.02	-0.02	ns
LVTTL33_16mA	LVTTL 16 mA drive, VCCIO = 3.3V	-0.07	-0.07	-0.08	ns
LVTTL33_20mA	LVTTL 20 mA drive, VCCIO = 3.3V	-0.12	-0.13	-0.14	ns
LVCMOS33_4mA	LVCMOS 3.3 4 mA drive, fast slew rate	0.25	0.24	0.23	ns
LVCMOS33_8mA	LVCMOS 3.3 8 mA drive, fast slew rate	-0.06	-0.06	-0.07	ns
LVCMOS33_12mA	LVCMOS 3.3 12 mA drive, fast slew rate	-0.01	-0.02	-0.02	ns
LVCMOS33_16mA	LVCMOS 3.3 16 mA drive, fast slew rate	-0.07	-0.07	-0.08	ns
LVCMOS33_20mA	LVCMOS 3.3 20 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS25_4mA	LVCMOS 2.5 4 mA drive, fast slew rate	0.12	0.10	0.09	ns
LVCMOS25_8mA	LVCMOS 2.5 8 mA drive, fast slew rate	-0.05	-0.06	-0.07	ns
LVCMOS25_12mA	LVCMOS 2.5 12 mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS25_20mA	LVCMOS 2.5 20 mA drive, fast slew rate	-0.12	-0.13	-0.14	ns
LVCMOS18_4mA	LVCMOS 1.8 4 mA drive, fast slew rate	0.11	0.12	0.14	ns
LVCMOS18_8mA	LVCMOS 1.8 8 mA drive, fast slew rate	0.11	0.12	0.14	ns
LVCMOS18_12mA	LVCMOS 1.8 12 mA drive, fast slew rate	-0.04	-0.03	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16 mA drive, fast slew rate	-0.04	-0.03	-0.03	ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Maximum I/O Buffer Speed (Continued)^{1, 2, 3, 4, 5, 6}

Over Recommended Operating Conditions

Buffer	Description	Max.	Units
PCI33	PCI, V _{CCIO} = 3.3 V	66	MHz

1. These maximum speeds are characterized but not tested on every device.

2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.

3. LVCMOS timing is measured with the load specified in the Switching Test Conditions table of this document.

4. All speeds are measured at fast slew.

5. Actual system operation may vary depending on user logic implementation.

6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

SERDES High Speed Data Receiver

Table 3-9. Serial Input Data Specifications

Symbol	Description		Min.	Тур.	Max.	Units
		3.125 G	—	—	136	
		2.5 G	—	—	144	
	Stream of nontransitions ¹ (CID = Consecutive Identical Digits) @ 10^{-12} BER	1.485 G	—	—	160	Dite
RX-OID _S		622 M	—	—	204	DIIS
		270 M	—	—	228	
		150 M	—	—	296	
V _{RX-DIFF-S}	Differential input sensitivity		150	—	1760	mV, p-p
V _{RX-IN}	Input levels		0	—	V _{CCA} +0.5 ⁴	V
V _{RX-CM-DC}	Input common mode range (DC coupled)		0.6	—	V _{CCA}	V
V _{RX-CM-AC}	Input common mode range (AC coupled) ³		0.1	—	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ²	—	1000	—	Bits	
Z _{RX-TERM}	Input termination 50/75 Ohm/High Z	-20%	50/75/HiZ	+20%	Ohms	
RL _{RX-RL}	Return loss (without package)		10	—	—	dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.

2. This is the typical number of bit times to re-lock to a new phase or frequency within +/- 300 ppm, assuming 8b10b encoded data.

3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS interfaces are generally found in 622 Mbps SERDES devices.

4. Up to 1.76 V.

Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	3.125 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	600 mV differential eye		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	2.5 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—		0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	1.25 Gbps	600 mV differential eye	—	_	0.18	UI, p-p
Total		600 mV differential eye	—	_	0.65	UI, p-p
Deterministic		600 mV differential eye	—	_	0.47	UI, p-p
Random	622 Mbps	600 mV differential eye	—	_	0.18	UI, p-p
Total]	600 mV differential eye	—	—	0.65	UI, p-p

Table 3-10. Receiver Total Jitter Tolerance Specification

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Periodic	2.97 Gbps	600 mV differential eye	_	_	0.24	UI, p-p
Periodic	2.5 Gbps	600 mV differential eye	_	—	0.22	UI, p-p
Periodic	1.485 Gbps	600 mV differential eye	—	—	0.24	UI, p-p
Periodic	622 Mbps	600 mV differential eye	_	_	0.15	UI, p-p
Periodic	150 Mbps	600 mV differential eye	_		0.5	UI, p-p

Note: Values are measured with PRBS 2⁷–1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-13. Transmit

Over Recommended Operating Conditions

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF}	Differential rise/fall time	20%-80%	_	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{2, 3, 4}	Output data deterministic jitter		_	—	0.17	UI
J _{TX_TJ} ^{1, 2, 3, 4}	Total output data jitter		_	—	0.35	UI

1. Total jitter includes both deterministic jitter and random jitter.

2. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Values are measured at 2.5 Gbps.

Table 3-14. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 3.125 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 3.125 GHz	6	_	_	dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{1, 2, 3}	Deterministic jitter tolerance (peak-to-peak)		—		0.37	UI
J _{RX_RJ} ^{1, 2, 3}	Random jitter tolerance (peak-to-peak)		—		0.18	UI
J _{RX_SJ} ^{1, 2, 3}	Sinusoidal jitter tolerance (peak-to-peak)		—	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3}	Total jitter tolerance (peak-to-peak)		—	_	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35			UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

Figure 3-19. Test Loads

Test Loads

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40		ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20		ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10		ns
t _{BTH}	TCK [BSCAN] hold time	8		ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8		ns
t _{BTCRH}	BSCAN test capture register hold time	25		ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable		25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable		25	ns

Figure 3-32. JTAG Port Timing Waveforms

Pin Information Summary

Pin Information Summary		ECP3-17EA			ECP3-35EA			ECP3-70EA		
Pin Tyr	De	256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA	1156 fpBGA
	Bank 0	26	20	36	26	42	48	42	60	86
	Bank 1	14	10	24	14	36	36	36	48	78
	Bank 2	6	7	12	6	24	24	24	34	36
General Purpose	Bank 3	18	12	44	16	54	59	54	59	86
	Bank 6	20	11	44	18	63	61	63	67	86
	Bank 7	19	26	32	19	36	42	36	48	54
	Bank 8	24	24	24	24	24	24	24	24	24
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	2	2	2	2	4	4	4	8	8
General Purpose Inputs	Bank 3	0	0	0	2	4	4	4	12	12
per bank	Bank 6	0	0	0	2	4	4	4	12	12
	Bank 7	4	4	4	4	4	4	4	8	8
	Bank 8	0	0	0	0	0	0	0	0	0
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	0	0	0	0	0	0	0	0	0
General Purpose Out-	Bank 3	0	0	0	0	0	0	0	0	0
	Bank 6	0	0	0	0	0	0	0	0	0
	Bank 7	0	0	0	0	0	0	0	0	0
	Bank 8	0	0	0	0	0	0	0	0	0
Total Single-Ended User	I/O	133	116	222	133	295	310	295	380	490
VCC		6	16	16	6	16	32	16	32	32
VCCAUX		4	5	8	4	8	12	8	12	16
VTT		4	7	4	4	4	4	4	4	8
VCCA		4	6	4	4	4	8	4	8	16
VCCPLL		2	2	4	2	4	4	4	4	4
	Bank 0	2	3	2	2	2	4	2	4	4
	Bank 1	2	3	2	2	2	4	2	4	4
	Bank 2	2	2	2	2	2	4	2	4	4
VCCIO	Bank 3	2	3	2	2	2	4	2	4	4
	Bank 6	2	3	2	2	2	4	2	4	4
	Bank 7	2	3	2	2	2	4	2	4	4
	Bank 8	1	2	2	1	2	2	2	2	2
VCCJ		1	1	1	1	1	1	1	1	1
TAP		4	4	4	4	4	4	4	4	4
GND, GNDIO		51	126	98	51	98	139	98	139	233
NC		0	0	73	0	0	96	0	0	238
Reserved ¹		0	0	2	0	2	2	2	2	2
SERDES		26	18	26	26	26	26	26	52	78
Miscellaneous Pins		8	8	8	8	8	8	8	8	8
Total Bonded Pins		256	328	484	256	484	672	484	672	1156

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-70EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	67
LFE3-70EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	67
LFE3-70EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	67
LFE3-70EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	67
LFE3-70EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	67
LFE3-70EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	67

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-95EA-6FN484I	1.2 V	-6	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-7FN484I	1.2 V	-7	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-8FN484I	1.2 V	-8	STD	Lead-Free fpBGA	484	IND	92
LFE3-95EA-6LFN484I	1.2 V	-6	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-7LFN484I	1.2 V	-7	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-8LFN484I	1.2 V	-8	LOW	Lead-Free fpBGA	484	IND	92
LFE3-95EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	92
LFE3-95EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	92
LFE3-95EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	92
LFE3-95EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	92

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.