E. Lattice Semiconductor Corporation - LFE3-70EA-7LFN672C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8375
Number of Logic Elements/Cells	67000
Total RAM Bits	4526080
Number of I/O	380
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-7lfn672c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Introduction

February 2012

Features

- Higher Logic Density for Increased System Integration
 - 17K to 149K LUTs
 - 116 to 586 I/Os
- Embedded SERDES
 - 150 Mbps to 3.2 Gbps for Generic 8b10b, 10-bit SERDES, and 8-bit SERDES modes
 - Data Rates 230 Mbps to 3.2 Gbps per channel for all other protocols
 - Up to 16 channels per device: PCI Express, SONET/SDH, Ethernet (1GbE, SGMII, XAUI), CPRI, SMPTE 3G and Serial RapidIO

■ sysDSP[™]

- Fully cascadable slice architecture
- 12 to 160 slices for high performance multiply and accumulate
- Powerful 54-bit ALU operations
- Time Division Multiplexing MAC Sharing
- Rounding and truncation
- Each slice supports
 - -Half 36x36, two 18x18 or four 9x9 multipliers
 - Advanced 18x36 MAC and 18x18 Multiply-
 - Multiply-Accumulate (MMAC) operations

■ Flexible Memory Resources

- Up to 6.85Mbits sysMEM[™] Embedded Block RAM (EBR)
- 36K to 303K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs
 Two DLLs and up to ten PLLs per device
- Pre-Engineered Source Synchronous I/O
 - DDR registers in I/O cells

Table 1-1. LatticeECP3™ Family Selection Guide

• Dedicated read/write levelling functionality

Data Sheet DS1021

- Dedicated gearing logic
- Source synchronous standards support
 ADC/DAC, 7:1 LVDS, XGMII
 Link Speed ADC/DAC devices
 - -High Speed ADC/DAC devices
- Dedicated DDR/DDR2/DDR3 memory with DQS support
- Optional Inter-Symbol Interference (ISI) correction on outputs
- Programmable sysl/O[™] Buffer Supports Wide Range of Interfaces
 - On-chip termination
 - Optional equalization filter on inputs
 - LVTTL and LVCMOS 33/25/18/15/12
 - SSTL 33/25/18/15 I, II
 - HSTL15 I and HSTL18 I, II
 - PCI and Differential HSTL, SSTL
 - LVDS, Bus-LVDS, LVPECL, RSDS, MLVDS

Flexible Device Configuration

- Dedicated bank for configuration I/Os
- SPI boot flash interface
- Dual-boot images supported
- Slave SPI
- TransFR™ I/O for simple field updates
- Soft Error Detect embedded macro

System Level Support

- IEEE 1149.1 and IEEE 1532 compliant
- Reveal Logic Analyzer
- ORCAstra FPGA configuration utility
- · On-chip oscillator for initialization & general use
- 1.2 V core power supply

Device	ECP3-17	ECP3-35	ECP3-70	ECP3-95	ECP3-150
LUTs (K)	17	33	67	92	149
sysMEM Blocks (18 Kbits)	38	72	240	240	372
Embedded Memory (Kbits)	700	1327	4420	4420	6850
Distributed RAM Bits (Kbits)	36	68	145	188	303
18 x 18 Multipliers	24	64	128	128	320
SERDES (Quad)	1	1	3	3	4
PLLs/DLLs	2/2	4/2	10/2	10 / 2	10/2
Packages and SERDES Channels	/ I/O Combinatio	ns		•	
328 csBGA (10 x 10 mm)	2/116				
256 ftBGA (17 x 17 mm)	4 / 133	4 / 133			
484 fpBGA (23 x 23 mm)	4 / 222	4 / 295	4 / 295	4 / 295	
672 fpBGA (27 x 27 mm)		4 / 310	8 / 380	8 / 380	8 / 380
1156 fpBGA (35 x 35 mm)			12 / 490	12 / 490	16 / 586

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction

The LatticeECP3[™] (EConomy Plus Third generation) family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES and high speed source synchronous interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 65 nm technology making the devices suitable for high-volume, high-speed, low-cost applications.

The LatticeECP3 device family expands look-up-table (LUT) capacity to 149K logic elements and supports up to 586 user I/Os. The LatticeECP3 device family also offers up to 320 18 x 18 multipliers and a wide range of parallel I/O standards.

The LatticeECP3 FPGA fabric is optimized with high performance and low cost in mind. The LatticeECP3 devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the LatticeECP3 device family supports a broad range of interface standards, including DDR3, XGMII and 7:1 LVDS.

The LatticeECP3 device family also features high speed SERDES with dedicated PCS functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit Pre-emphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The LatticeECP3 devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

The Lattice Diamond[™] and ispLEVER[®] design software allows large complex designs to be efficiently implemented using the LatticeECP3 FPGA family. Synthesis library support for LatticeECP3 is available for popular logic synthesis tools. Diamond and ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeECP3 device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the LatticeECP3 family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- 1. **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- 3. **Read-Before-Write (EA devices only)** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2-22.

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this data sheet.

sysDSP[™] Slice

The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths.

2. Left and Right (Banks 2, 3, 6 and 7) sysl/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysl/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

3. Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)

The sysl/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bidirectional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysl/O Standards

The LatticeECP3 sysl/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysl/O buffer to support a variety of standards please see TN1177, LatticeECP3 syslO Usage Guide.

Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dualboot image support.

1. TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

2. Dual-Boot Image Support

Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide.

External Resistor

LatticeECP3 devices require a single external, 10 kOhm \pm 1% value between the XRES pin and ground. Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the external resistor pad.

On-Chip Oscillator

Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK frequency of 2.5 MHz.

This internal 130 MHz +/- 15% CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

LatticeECP3 Supply Current (Standby)^{1, 2, 3, 4, 5, 6}

			Тур	ical	
Symbol	Parameter	Device	-6L, -7L, -8L	-6, -7, -8	Units
		ECP-17EA	29.8	49.4	mA
		ECP3-35EA	53.7	89.4	mA
I _{CC}	Core Power Supply Current	ECP3-70EA	137.3	230.7	mA
		ECP3-95EA	137.3	230.7	mA
	AUX Auxiliary Power Supply Current	ECP3-150EA	219.5	370.9	mA
		ECP-17EA	18.3	19.4	mA
		ECP3-35EA	19.6	23.1	mA
I _{CCAUX}	Auxiliary Power Supply Current	ECP3-70EA	26.5	32.4	mA
		ECP3-95EA	26.5	32.4	mA
		ECP3-150EA	37.0	45.7	mA
		ECP-17EA	0.0	0.0	mA
	PLL Power Supply Current (Per PLL)	ECP3-35EA	0.1	0.1	mA
I _{CCPLL}		ECP3-70EA	0.1	0.1	mA
		ECP3-95EA	0.1	0.1	mA
		ECP3-150EA	0.1	0.1	mA
		ECP-17EA	1.3	1.4	mA
		ECP3-35EA	1.3	1.4	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	ECP3-70EA	1.4	1.5	mA
		ECP3-95EA	1.4	1.5	mA
		ECP3-150EA	1.4	1.5	mA
I _{CCJ}	JTAG Power Supply Current	All Devices	2.5	2.5	mA
		ECP-17EA	6.1	6.1	mA
		ECP3-35EA	6.1	6.1	mA
I _{CCA}	Iransmit, Receive, PLL and Reference Clock Buffer Power Supply	ECP3-70EA	18.3	18.3	mA
		ECP3-95EA	18.3	18.3	mA
		ECP3-150EA	24.4	24.4	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see the list of technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

5. $T_J = 85$ °C, power supplies at nominal voltage.

6. To determine the LatticeECP3 peak start-up current data, use the Power Calculator tool.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			_	-8	_	7	_	-6	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775		0.775	—	0.775		UI
f _{MAX_GDDR}	DDRX1 Clock Frequency	All ECP3EA Devices		250		250		250	MHz
Generic DDRX2 Ir Input	puts with Clock and Data (>10	Bits Wide) Centered at P	in (GDDF	X2_RX.	CLK.Ce	ntered) L	Ising PC	LK Pin fo	or Clock
Left and Right Sic	les								
t _{SUGDDR}	Data Setup Before CLK	ECP3-150EA	321		403		471		ps
t _{HOGDDR}	Data Hold After CLK	ECP3-150EA	321		403	_	471		ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA	_	405	—	325	_	280	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	321	_	403	—	535	—	ps
t _{HOGDDR}	Data Hold After CLK	ECP3-70EA/95EA	321	_	403	_	535		ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA	_	405		325	_	250	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-35EA	335	_	425	_	535	—	ps
t _{HOGDDR}	Data Hold After CLK	ECP3-35EA	335	—	425	_	535	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	405	_	325	_	250	MHz
t _{SUGDDR}	Data Setup Before CLK	ECP3-17EA	335	_	425	_	535	—	ps
t _{HOGDDR}	Data Hold After CLK	ECP3-17EA	335	_	425	_	535		ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	405		325		250	MHz
Generic DDRX2 Ir	puts with Clock and Data (>10	Bits Wide) Aligned at Pin	(GDDR)	(2_RX.E	CLK.Alig	ned)			
Left and Right Sid	le Using DLLCLKIN Pin for Clo	ck Input							
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA	—	0.225	_	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775		0.775		0.775		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA		460	—	385	—	345	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA		0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775		0.775	_	0.775		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA		460		385		311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA	—	0.210	—	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790		0.790	—	0.790	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	460		385		311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA	—	0.210	—	0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	_	0.790	—	0.790	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	460	_	385	_	311	MHz
Top Side Using P	CLK Pin for Clock Input								
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA	_	0.225	—	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775	—	0.775		0.775	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA	_	235	_	170	_	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	_	0.225	_	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775	_	0.775	—	0.775	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA	—	235	—	170		130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA	—	0.210	—	0.210	_	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790		0.790	_	0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	235		170	_	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA	—	0.210		0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790		0.790	_	0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA		235		170		130	MHz

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-8 -7 -6					6	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250		250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-35EA	683	_	688		690	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	683	—	688	—	690	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	—	250	_	250	_	250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	683	_	688		690		ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	683	—	688	—	690	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-17EA	—	250	_	250	_	250	MHz
Generic DDRX1 Output with Clock and Data Aligned at Pin (GDDRX1_TX.SCLK.Aligned) ¹⁰									
t _{DIBGDDR}	Data Invalid Before Clock	ECP3-150EA	—	335	—	338	—	341	ps
t _{DIAGDDR}	Data Invalid After Clock	ECP3-150EA	—	335	—	338		341	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-150EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-70EA/95EA	_	339	_	343		347	ps
t _{DIAGDDB}	Data Invalid After Clock	ECP3-70EA/95EA	_	339	_	343		347	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-35EA		322		320		321	ps
	Data Invalid After Clock	ECP3-35EA	_	322	_	320		321	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-35EA	_	250	_	250		250	MHz
	Data Invalid Before Clock	ECP3-17EA		322		320		321	ps
	Data Invalid After Clock	ECP3-17EA	_	322	_	320		321	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250		250	MHz
Generic DDRX1 Ou	Itput with Clock and Data (<10 B	its Wide) Centered at F	in (GDD	RX1_TX.	DQS.Cen	tered) ¹⁰			
Left and Right Side	25		-			-			
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670		670		670	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	_	670	_	670	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-150EA	_	250	_	250	_	250	MHz
	Data Valid Before CLK	ECP3-70EA/95EA	657		652		650	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-70EA/95EA	657	_	652		650	_	ps
f _{MAX GDDB}	DDRX1 Clock Frequency	ECP3-70EA/95EA	_	250	_	250	_	250	MHz
	Data Valid Before CLK	ECP3-35EA	670		675		676	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-35EA	670	—	675	—	676	_	ps
f _{MAX GDDR}	DDRX1 Clock Frequency	ECP3-35EA	_	250	—	250	_	250	MHz
t _{DVBGDDR}	Data Valid Before CLK	ECP3-17EA	670	—	670	—	670	_	ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-17EA	670	_	670	_	670	_	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-17EA	_	250	_	250		250	MHz
Generic DDRX2 Ou	tput with Clock and Data (>10 B	its Wide) Aligned at Pi	n (GDDR	X2_TX.A	ligned)				
Left and Right Side	es								
t _{DIBGDDR}	Data Invalid Before Clock	All ECP3EA Devices	—	200	—	210	_	220	ps
t _{DIAGDDR}	Data Invalid After Clock	All ECP3EA Devices	—	200	—	210	—	220	ps
f _{MAX GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	_	420	_	375	MHz
Generic DDRX2 Ou	tput with Clock and Data (>10 B	its Wide) Centered at P	in Using	DQSDL	L (GDDF	X2_TX.C	QSDLL.	Centered)11
Left and Right Side	S								
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	400		400		431	_	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	400	—	400	—	432	—	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	—	400	—	400	—	375	MHz

Over Recommended Commercial Operating Conditions

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

			-	-8	-7		7 –6		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDRX2 Ou	tput with Clock and Data (>10 Bits	Wide) Centered at Pir	n Using I	PLL (GDI	DRX2_TX	.PLL.Cer	ntered) ¹⁰		
Left and Right Side	es								
t _{DVBGDDR}	Data Valid Before CLK	All ECP3EA Devices	285	—	370	_	431	—	ps
t _{DVAGDDR}	Data Valid After CLK	All ECP3EA Devices	285	—	370	_	432	_	ps
f _{MAX_GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	500	—	420	—	375	MHz
Memory Interface		•							
DDR/DDR2 I/O Pin	Parameters (Input Data are Strobe	Edge Aligned, Output	ut Strobe	e Edge is	Data Ce	ntered)4			
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	—	0.225		0.225		0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	—	0.64	—	UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	_	UI
f _{MAX_DDR}	DDR Clock Frequency	All ECP3 Devices	95	200	95	200	95	166	MHz
f _{MAX_DDR2}	DDR2 clock frequency	All ECP3 Devices	125	266	125	200	125	166	MHz
DDR3 (Using PLL f	or SCLK) I/O Pin Parameters	•							
t _{DVADQ}	Data Valid After DQS (DDR Read)	All ECP3 Devices	_	0.225		0.225		0.225	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All ECP3 Devices	0.64	—	0.64	_	0.64	—	UI
t _{DQVBS}	Data Valid Before DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI
t _{DQVAS}	Data Valid After DQS	All ECP3 Devices	0.25	—	0.25	_	0.25	—	UI
f _{MAX_DDR3}	DDR3 clock frequency	All ECP3 Devices	300	400	266	333	266	300	MHz
DDR3 Clock Timing	9								
t _{CH} (avg) ⁹	Average High Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{CL} (avg) ⁹	Average Low Pulse Width	All ECP3 Devices	0.47	0.53	0.47	0.53	0.47	0.53	UI
t _{JIT} (per, lck) ⁹	Output Clock Period Jitter During DLL Locking Period	All ECP3 Devices	-90	90	-90	90	-90	90	ps
t _{JIT} (cc, lck) ⁹	Output Cycle-to-Cycle Period Jit- ter During DLL Locking Period	All ECP3 Devices	_	180	—	180	—	180	ps

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

6. Uses LVDS I/O standard.

7. The current version of software does not support per bank skew numbers; this will be supported in a future release.

8. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

9. Using settings generated by IPexpress.

10. These numbers are generated using best case PLL located in the center of the device.

11. Uses SSTL25 Class II Differential I/O Standard.

12. All numbers are generated with ispLEVER 8.1 software.

13. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
4	Input clock frequency (CLKI,		Edge clock	2		500	MHz
'IN	CLKFB)		Primary clock ⁴	2		420	MHz
4	Output clock frequency (CLKOP,		Edge clock	4		500	MHz
OUT	CLKOS)		Primary clock ⁴	4		420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125		250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667		166	MHz
f _{VCO}	PLL VCO frequency			500		1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2		500	MHz
			Primary clock ⁴	2		420	MHz
AC Charac	teristics						
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	Output clock duty cycle	$f_{OUT} \le 250 \text{ MHz}$	Primary clock	45	50	55	%
		f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8	_	_	ns
		$f_{OUT} \ge 420 \text{ MHz}$			_	200	ps
t _{OPJIT} 1	Output clock period jitter	420 MHz > f _{OUT} ≥ 100 MHz		—		250	ps
		f _{OUT} < 100 MHz		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.025	UIPP	
t _{SK}	Input clock to output clock skew when N/M = integer			—		500	ps
. 2		2 to 25 MHz			_	200	us
LOCK_	Lock lime	25 to 500 MHz		—	—	50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_		50	ns
t _{HI}	Input clock high time	90% to 90%		0.5		_	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	_	ns
t _{IPJIT}	Input clock period jitter			_	—	400	ps
	Reset signal pulse width high, RSTK			10		_	ns
^I RST	Reset signal pulse width high, RST			500	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

SERDES High Speed Data Receiver

Table 3-9. Serial Input Data Specifications

Symbol	Description		Min.	Тур.	Max.	Units
		3.125 G	—	_	136	
RX-CID _S		2.5 G	—	_	144	
	Stream of nontransitions ¹ (CID = Consecutive Identical Digits) @ 10 ⁻¹² BER	1.485 G	—		160	Dite
		622 M	—	_	204	Dits
		270 M	—		228	
		150 M	—		296	
V _{RX-DIFF-S}	Differential input sensitivity	·	150	_	1760	mV, p-p
V _{RX-IN}	Input levels		0	_	V _{CCA} +0.5 ⁴	V
V _{RX-CM-DC}	Input common mode range (DC coupled)		0.6	_	V _{CCA}	V
V _{RX-CM-AC}	Input common mode range (AC coupled) ³		0.1		V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ²		—	1000	—	Bits
Z _{RX-TERM}	Input termination 50/75 Ohm/High Z		-20%	50/75/HiZ	+20%	Ohms
RL _{RX-RL}	Return loss (without package)		10	_	—	dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.

2. This is the typical number of bit times to re-lock to a new phase or frequency within +/- 300 ppm, assuming 8b10b encoded data.

3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS interfaces are generally found in 622 Mbps SERDES devices.

4. Up to 1.76 V.

Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Deterministic		600 mV differential eye	_	_	0.47	UI, p-p
Random	3.125 Gbps	600 mV differential eye	_	_	0.18	UI, p-p
Total		600 mV differential eye	_		0.65	UI, p-p
Deterministic		600 mV differential eye	_	_	0.47	UI, p-p
Random	2.5 Gbps	600 mV differential eye	_	_	0.18	UI, p-p
Total		600 mV differential eye	_		0.65	UI, p-p
Deterministic		600 mV differential eye	_	_	0.47	UI, p-p
Random	1.25 Gbps	600 mV differential eye	_	_	0.18	UI, p-p
Total		600 mV differential eye	_	_	0.65	UI, p-p
Deterministic		600 mV differential eye	_	_	0.47	UI, p-p
Random	622 Mbps	600 mV differential eye	_	_	0.18	UI, p-p
Total]	600 mV differential eye		—	0.65	UI, p-p

Table 3-10. Receiver Total Jitter Tolerance Specification

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

Figure 3-16. Jitter Transfer – 1.25 Gbps

Figure 3-17. Jitter Transfer – 622 Mbps

SMPTE SD/HD-SDI/3G-SDI (Serial Digital Interface) Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-19. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
BR _{SDO}	Serial data rate		270	—	2975	Mbps
T _{JALIGNMENT} ²	Serial output jitter, alignment	270 Mbps	—	—	0.20	UI
T _{JALIGNMENT} ²	Serial output jitter, alignment	1485 Mbps	—	—	0.20	UI
T _{JALIGNMENT} ^{1, 2}	Serial output jitter, alignment	2970Mbps	—	—	0.30	UI
T _{JTIMING}	Serial output jitter, timing	270 Mbps	—	—	0.20	UI
T _{JTIMING}	Serial output jitter, timing	1485 Mbps	—	—	1.0	UI
T _{JTIMING}	Serial output jitter, timing	2970 Mbps	—	—	2.0	UI

Notes:

 Timing jitter is measured in accordance with SMPTE RP 184-1996, SMPTE RP 192-1996 and the applicable serial data transmission standard, SMPTE 259M-1997 or SMPTE 292M (proposed). A color bar test pattern is used. The value of f_{SCLK} is 270 MHz or 360 MHz for SMPTE 259M, 540 MHz for SMPTE 344M or 1485 MHz for SMPTE 292M serial data rates. See the Timing Jitter Bandpass section.

2. Jitter is defined in accordance with SMPTE RP1 184-1996 as: jitter at an equipment output in the absence of input jitter.

3. All Tx jitter is measured at the output of an industry standard cable driver; connection to the cable driver is via a 50 Ohm impedance differential signal from the Lattice SERDES device.

4. The cable driver drives: RL=75 Ohm, AC-coupled at 270, 1485, or 2970 Mbps, RREFLVL=RREFPRE=4.75 kOhm 1%.

Table 3-20. Receive

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
BR _{SDI}	Serial input data rate		270	—	2970	Mbps
CID	Stream of non-transitions (=Consecutive Identical Digits)		7(3G)/26(SMPTE Triple rates) @ 10-12 BER		_	Bits

Table 3-21. Reference Clock

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
F _{VCLK}	Video output clock frequency		27	-	74.25	MHz
DCV	Duty cycle, video clock		45	50	55	%

LatticeECP3 sysCONFIG Port Timing Specifications (Continued)

Over Recommended Operating Conditions

Parameter	Description	Min.	Max.	Units			
t _{SSCL}	CCLK Minimum Low Pulse	5		ns			
t _{HLCH}	HOLDN Low Setup Time (Relative to CCLK)	5	_	ns			
t _{CHHH}	HOLDN Low Hold Time (Relative to CCLK)	5	_	ns			
Master and	Master and Slave SPI (Continued)						
t _{CHHL}	HOLDN High Hold Time (Relative to CCLK)	5	_	ns			
t _{HHCH}	HOLDN High Setup Time (Relative to CCLK)	5		ns			
t _{HLQZ}	HOLDN to Output High-Z	_	9	ns			
t _{HHQX}	HOLDN to Output Low-Z	_	9	ns			

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of the PROGRAMN.

Parameter	Min.	Max.	Units
Master Clock Frequency	Selected value - 15%	Selected value + 15%	MHz
Duty Cycle	40	60	%

Figure 3-20. sysCONFIG Parallel Port Read Cycle

Figure 3-21. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3-22. sysCONFIG Master Serial Port Timing

Switching Test Conditions

Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-23.

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Table 3-23. Te	est Fixture Required	Components,	Non-Terminated Interfaces
----------------	----------------------	-------------	---------------------------

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5V	
				LVCMOS 2.5 = $V_{CCIO}/2$	
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞	∞	0 pF	LVCMOS 1.8 = V _{CCIO} /2	
				LVCMOS 1.5 = $V_{CCIO}/2$	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> H)	8	1MΩ	0 pF	V _{CCIO} /2	
LVCMOS 2.5 I/O (Z -> L)	1 MΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	8	100	0 pF	V _{OH} - 0.10	
LVCMOS 2.5 I/O (L -> Z)	100	x	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pin Information Summary (Cont.)

Pin Information Sun		ECP3-17EA		ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA
	Bank 0	13	10	18	13	21	24
	Bank 1	7	5	12	7	18	18
	Bank 2	2	2	4	1	8	8
Emulated Differential I/O per	Bank 3	4	2	13	5	20	19
Dank	Bank 6	5	1	13	6	22	20
	Bank 7	6	9	10	6	11	13
	Bank 8	12	12	12	12	12	12
	Bank 0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0
	Bank 2	2	2	3	3	6	6
Highspeed Differential I/O per	Bank 3	5	4	9	4	9	12
Dank	Bank 6	5	4	9	4	11	12
	Bank 7	5	6	8	5	9	10
	Bank 8	0	0	0	0	0	0
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14
Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12
	Bank 0	2	1	3	2	3	4
	Bank 1	1	0	2	1	3	3
	Bank 2	0	0	1	0	2	2
DDR Groups Bonded per	Bank 3	1	0	3	1	3	4
Bank [∠]	Bank 6	1	0	3	1	4	4
	Bank 7	1	2	2	1	3	3
	Configuration Bank 8	0	0	0	0	0	0
SERDES Quads	1	1	1	1	1	1	

These pins must remain floating on the board.
 Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149

1. Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250V.

LatticeECP3 Family Data Sheet Supplemental Information

February 2014

Data Sheet DS1021

For Further Information

A variety of technical notes for the LatticeECP3 family are available on the Lattice website at <u>www.latticesemi.com</u>.

- TN1169, LatticeECP3 sysCONFIG Usage Guide
- TN1176, LatticeECP3 SERDES/PCS Usage Guide
- TN1177, LatticeECP3 sysIO Usage Guide
- TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide
- TN1179, LatticeECP3 Memory Usage Guide
- TN1180, LatticeECP3 High-Speed I/O Interface
- TN1181, Power Consumption and Management for LatticeECP3 Devices
- TN1182, LatticeECP3 sysDSP Usage Guide
- TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide
- TN1189, LatticeECP3 Hardware Checklist
- TN1215, LatticeECP2MS and LatticeECP2S Devices
- TN1216, LatticeECP2/M and LatticeECP3 Dual Boot Feature Advanced Security Encryption Key Programming Guide for LatticeECP3
- TN1222, LatticeECP3 Slave SPI Port User's Guide

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			Updated Frequency to 150 Mbps in Table 3-11 Periodic Receiver Jitter Tolerance Specification
December 2010	01.7EA	Multiple	Data sheet made final. Removed "preliminary" headings.
			Removed data for 70E and 95E devices. A separate data sheet is available for these specific devices.
			Updated for Lattice Diamond design software.
		Introduction	Corrected number of user I/Os
		Architecture	Corrected the package type in Table 2-14 Available SERDES Quad per LatticeECP3 Devices.
			Updated description of General Purpose PLL
			Added additional information in the Flexible Quad SERDES Architecture section.
			Added footnotes and corrected the information in Table 2-16 Selectable master Clock (MCCLK) Frequencies During Configuration (Nominal).
			Updated Figure 2-16, Per Region Secondary Clock Selection.
			Updated description for On-Chip Programmable Termination.
			Added information about number of rows of DSP slices.
			Updated footnote 2 for Table 2-12, On-Chip Termination Options for Input Modes.
			Updated information for sysIO buffer pairs.
			Corrected minimum number of General Purpose PLLs (was 4, now 2).
		DC and Switching Characteristics	Regenerated sysCONFIG Port Timing figure.
			Added ${\rm t}_{\rm W}$ (clock pulse width) in External Switching Characteristics table.
			Corrected units, revised and added data, and corrected footnote 1 in External Switching Characteristics table.
			Added Jitter Transfer figures in SERDES External Reference Clock section.
			Corrected capacitance information in the DC Electrical Characteristics table.
			Corrected data in the Register-to-Register Performance table.
			Corrected GDDR Parameter name HOGDDR.
			Corrected RSDS25 -7 data in Family Timing Adders table.
			Added footnotes 10-12 to DDR data information in the External Switch- ing Characteristics table.
			Corrected titles for Figures 3-7 (DDR/DDR2/DDR3 Parameters) and 3-8 (Generic DDR/DDRX2 Parameters).
			Updated titles for Figures 3-5 (MLVDS25 (Multipoint Low Voltage Differ- ential Signaling)) and 3-6 (Generic DDRX1/DDRX2 (With Clock and Data Edges Aligned)).
			Updated Supply Current table.
			Added GDDR interface information to the External Switching and Characteristics table.
			Added footnote to sysIO Recommended Operating Conditions table.
			Added footnote to LVDS25 table.
			Corrected DDR section footnotes and references.
			Corrected Hot Socketing support from "top and bottom banks" to "top and bottom I/O pins".
		Pinout Information	Updated description for VTTx.