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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Introduction
The LatticeECP3™ (EConomy Plus Third generation) family of FPGA devices is optimized to deliver high perfor-
mance features such as an enhanced DSP architecture, high speed SERDES and high speed source synchronous 
interfaces in an economical FPGA fabric. This combination is achieved through advances in device architecture 
and the use of 65 nm technology making the devices suitable for high-volume, high-speed, low-cost applications.

The LatticeECP3 device family expands look-up-table (LUT) capacity to 149K logic elements and supports up to 
586 user I/Os. The LatticeECP3 device family also offers up to 320 18 x 18 multipliers and a wide range of parallel 
I/O standards.

The LatticeECP3 FPGA fabric is optimized with high performance and low cost in mind. The LatticeECP3 devices 
utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distrib-
uted and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), pre-engineered source 
synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and 
dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the LatticeECP3 device family supports a broad 
range of interface standards, including DDR3, XGMII and 7:1 LVDS.

The LatticeECP3 device family also features high speed SERDES with dedicated PCS functions. High jitter toler-
ance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular 
data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit Pre-empha-
sis and Receive Equalization settings make the SERDES suitable for transmission and reception over various 
forms of media.

The LatticeECP3 devices also provide flexible, reliable and secure configuration options, such as dual-boot capa-
bility, bit-stream encryption, and TransFR field upgrade features.

The Lattice Diamond™ and ispLEVER® design software allows large complex designs to be efficiently imple-
mented using the LatticeECP3 FPGA family. Synthesis library support for LatticeECP3 is available for popular logic 
synthesis tools. Diamond and ispLEVER tools use the synthesis tool output along with the constraints from its floor 
planning tools to place and route the design in the LatticeECP3 device. The tools extract the timing from the routing 
and back-annotate it into the design for timing verification. 

Lattice provides many pre-engineered IP (Intellectual Property) modules for the LatticeECP3 family. By using these 
configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their 
design, increasing their productivity.
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in 
Figure 2-19.

Figure 2-19. Edge Clock Sources

Edge Clock Routing
LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the 
implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, 
left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the 
device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge 
clock muxes on the left and right sides of the device. Figure 2-20 shows the selection muxes for these clocks.
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For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and 
AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline regis-
ters. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element
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www.latticesemi.com/dynamic/view_document.cfm?document_id=32322
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MMAC DSP Element
The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this 
case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and 
with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. 
The user can enable the input and pipeline registers, but the output register is always enabled. The output register 
is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered 
overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the 
MMAC sysDSP element. 

Figure 2-28. MMAC sysDSP Element
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ALU Flags
The sysDSP slice provides a number of flags from the ALU including:

• Equal to zero (EQZ)

• Equal to zero with mask (EQZM)

• Equal to one with mask (EQOM)

• Equal to pattern with mask (EQPAT)

• Equal to bit inverted pattern with mask (EQPATB)

• Accumulator Overflow (OVER)

• Accumulator Underflow (UNDER)

• Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock 
sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output 
register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and out-
put register.

Resources Available in the LatticeECP3 Family 
Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows 
the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM 
can be used to store variables locally for fast DSP operations. 

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family 

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device DSP Slices 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

ECP3-17 12 48 24 6

ECP3-35 32 128 64 16

ECP3-70 64 256 128 32

ECP3-95 64 256 128 32

ECP3-150 160 640 320 80

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 

ECP3-17 38 700

ECP3-35 72 1327

ECP3-70 240 4420

ECP3-95 240 4420

ECP3-150 372 6850
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-37. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits 
to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at 
the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is reg-
istered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ 
cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high 
speed DDR data from and to the DDR3 Memory. 

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, 
refer to the sysIO section of this data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on the 
bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank (Config-
uration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is 
not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. 
Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration Bank, 
has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. Figure 2-38 
shows the seven banks and their associated supplies. 

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only 
allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals. 

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot 
socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these 
banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side 
pads can be identified by the Lattice Diamond tool.
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Hot Socketing Specifications1, 2, 3

Hot Socketing Requirements1, 2

ESD Performance
Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including 
ESD performance.

Symbol Parameter Condition Min. Typ. Max. Units

IDK_HS4 Input or I/O Leakage Current 0 VIN  VIH (Max.) — — +/–1 mA

IDK5 Input or I/O Leakage Current
0  VIN < VCCIO — — +/–1 mA

VCCIO  VIN  VCCIO + 0.5V — 18 — mA

1. VCC, VCCAUX and VCCIO should rise/fall monotonically.
2. IDK is additive to IPU, IPD or IBH. 
3. LVCMOS and LVTTL only.
4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.
5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Description Min. Typ. Max. Units

Input current per SERDES I/O pin when device is powered down and inputs 
driven. — — 8 mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB 
(1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 
channels *2 input pins per channel = 256 mA

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=34723
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sysI/O Recommended Operating Conditions

Standard

VCCIO VREF (V)

Min. Typ. Max. Min. Typ. Max.

LVCMOS332 3.135 3.3 3.465 — — —

LVCMOS33D 3.135 3.3 3.465 — — —

LVCMOS252 2.375 2.5 2.625 — — —

LVCMOS18 1.71 1.8 1.89 — — —

LVCMOS15 1.425 1.5 1.575 — — —

LVCMOS122 1.14 1.2 1.26 — — —

LVTTL332 3.135 3.3 3.465 — — —

PCI33 3.135 3.3 3.465 — — —

SSTL153 1.43 1.5 1.57 0.68 0.75 0.9

SSTL18_I, II2 1.71 1.8 1.89 0.833 0.9 0.969

SSTL25_I, II2 2.375 2.5 2.625 1.15 1.25 1.35

SSTL33_I, II2 3.135 3.3 3.465 1.3 1.5 1.7

HSTL15_I2 1.425 1.5 1.575 0.68 0.75 0.9

HSTL18_I, II2 1.71 1.8 1.89 0.816 0.9 1.08

LVDS252 2.375 2.5 2.625 — — —

LVDS25E 2.375 2.5 2.625 — — —

MLVDS1 2.375 2.5 2.625 — — —

LVPECL331, 2 3.135 3.3 3.465 — — —

Mini LVDS 2.375 2.5 2.625 — — —

BLVDS251, 2 2.375 2.5 2.625 — — —

RSDS2 2.375 2.5 2.625 — — —

RSDSE1, 2 2.375 2.5 2.625 — — —

TRLVDS 3.14 3.3 3.47 — — —

PPLVDS 3.14/2.25 3.3/2.5 3.47/2.75 — — —

SSTL15D3 1.43 1.5 1.57 — — —

SSTL18D_I2, 3, II2, 3 1.71 1.8 1.89 — — —

SSTL25D_ I2, II2 2.375 2.5 2.625 — — —

SSTL33D_ I2, II2 3.135 3.3 3.465 — — —

HSTL15D_ I2 1.425 1.5 1.575 — — —

HSTL18D_ I2, II2 1.71 1.8 1.89 — — —

1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. For input voltage compatibility, see TN1177, LatticeECP3 sysIO Usage Guide. 
3. VREF is required when using Differential SSTL to interface to DDR memory.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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Generic DDRX2 Inputs with Clock and Data (>10bits wide) are Aligned at Pin (GDDRX2_RX.ECLK.Aligned)  
(No CLKDIV)

Left and Right Sides Using DLLCLKPIN for Clock Input

tDVACLKGDDR Data Setup Before CLK ECP3-150EA — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK ECP3-150EA 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — 460 — 385 — 345 MHz

tDVACLKGDDR Data Setup Before CLK ECP3-70EA/95EA — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK ECP3-70EA/95EA 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-70EA/95EA — 460 — 385 — 311 MHz

tDVACLKGDDR Data Setup Before CLK ECP3-35EA — 0.210 — 0.210 — 0.210 UI

tDVECLKGDDR Data Hold After CLK ECP3-35EA 0.790 — 0.790  — 0.790 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-35EA — 460 — 385 — 311 MHz

tDVACLKGDDR
Data Setup Before CLK 
(Left and Right Sides) ECP3-17EA — 0.210 — 0.210 — 0.210 UI

tDVECLKGDDR Data Hold After CLK ECP3-17EA 0.790 — 0.790  — 0.790 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-17EA — 460 — 385 — 311 MHz

Top Side Using PCLK Pin for Clock Input

tDVACLKGDDR Data Setup Before CLK ECP3-150EA — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK ECP3-150EA 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — 235 — 170 — 130 MHz

tDVACLKGDDR Data Setup Before CLK ECP3-70EA/95EA — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK ECP3-70EA/95EA 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-70EA/95EA — 235 — 170 — 130 MHz

tDVACLKGDDR Data Setup Before CLK ECP3-35EA — 0.210 — 0.210 — 0.210 UI

tDVECLKGDDR Data Hold After CLK ECP3-35EA 0.790 — 0.790  — 0.790 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-35EA — 235 — 170 — 130 MHz

tDVACLKGDDR Data Setup Before CLK      ECP3-17EA — 0.210 — 0.210 — 0.210 UI

tDVECLKGDDR Data Hold After CLK ECP3-17EA 0.790 — 0.790  — 0.790 — UI

fMAX_GDDR DDRX2 Clock Frequency ECP3-17EA — 235 — 170 — 130 MHz

Generic DDRX2 Inputs with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX2_RX.DQS.Centered)  Using DQS Pin for Clock 
Input

Left and Right Sides

tSUGDDR Data Setup Before CLK All ECP3EA Devices 330 — 330 — 352 — ps

tHOGDDR Data Hold After CLK All ECP3EA Devices 330 — 330 — 352 — ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 400 — 400 — 375 MHz

Generic DDRX2 Inputs with Clock and Data (<10 Bits Wide) Aligned at Pin (GDDRX2_RX.DQS.Aligned) Using DQS Pin for Clock Input

Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All ECP3EA Devices — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK All ECP3EA Devices 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 400 — 400 — 375 MHz

Generic DDRX1 Output with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_TX.SCLK.Centered)10

tDVBGDDR Data Valid Before CLK ECP3-150EA 670 — 670 — 670 — ps

tDVAGDDR Data Valid After CLK ECP3-150EA 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-70EA/95EA 666 — 665 — 664 — ps

tDVAGDDR Data Valid After CLK ECP3-70EA/95EA 666 — 665 — 664 — ps

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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LatticeECP3 Internal Switching Characteristics1, 2, 5 
Over Recommended Commercial Operating Conditions

Parameter Description

–8 –7 –6

Units.Min. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.147 — 0.163 — 0.179 ns

tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.281 — 0.335 — 0.379 ns

tLSR_PFU Set/Reset to output of PFU (Asynchronous) — 0.593 — 0.674 — 0.756 ns

tLSRREC_PFU
Asynchronous Set/Reset recovery time for 
PFU Logic 0.298 0.345 0.391 ns

tSUM_PFU Clock to Mux (M0,M1) Input Setup Time 0.134 — 0.144 — 0.153 — ns

tHM_PFU Clock to Mux (M0,M1) Input Hold Time –0.097 — –0.103 — –0.109 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.068 — 0.075 — ns

tHD_PFU Clock to D input hold time 0.019 — 0.013 — 0.015 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.243 — 0.273 — 0.303 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 0.710 — 0.803 — 0.897 ns

tSUDATA_PFU Data Setup Time –0.137 — –0.155 — –0.174 — ns

tHDATA_PFU Data Hold Time 0.188 — 0.217 — 0.246 — ns

tSUADDR_PFU Address Setup Time –0.227 — –0.257 — –0.286 — ns

tHADDR_PFU Address Hold Time 0.240 — 0.275 — 0.310 — ns

tSUWREN_PFU Write/Read Enable Setup Time –0.055 — –0.055 — –0.063 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.059 — 0.059 — 0.071 — ns

PIC Timing

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.423 — 0.466 — 0.508 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.241 — 1.301 — 1.361 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data Before 
Clock) 0.956 — 1.124 — 1.293 — ns

tHI_PIO Input Register Hold Time (Data after Clock) 0.225 — 0.184 — 0.240 — ns

tCOO_PIO Output Register Clock to Output Delay4 - 1.09 - 1.16 - 1.23 ns

tSUCE_PIO Input Register Clock Enable Setup Time 0.220 — 0.185 — 0.150 — ns

tHCE_PIO Input Register Clock Enable Hold Time –0.085 — –0.072 — –0.058 — ns

tSULSR_PIO Set/Reset Setup Time 0.117 — 0.103 — 0.088 — ns

tHLSR_PIO Set/Reset Hold Time –0.107 — –0.094 — –0.081 — ns

EBR Timing

tCO_EBR Clock (Read) to output from Address or Data — 2.78 — 2.89 — 2.99 ns

tCOO_EBR
Clock (Write) to output from EBR output 
Register — 0.31 — 0.32 — 0.33 ns

tSUDATA_EBR Setup Data to EBR Memory –0.218 — –0.227 — –0.237 — ns

tHDATA_EBR Hold Data to EBR Memory 0.249 — 0.257 — 0.265 — ns

tSUADDR_EBR Setup Address to EBR Memory –0.071 — –0.070 — –0.068 — ns

tHADDR_EBR Hold Address to EBR Memory 0.118 — 0.098 — 0.077 — ns

tSUWREN_EBR Setup Write/Read Enable to EBR Memory –0.107 — –0.106 — –0.106 — ns
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Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 150 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27–1, all channels operating, FPGA Logic active, I/Os around SERDES 
pins quiet, voltages are nominal, room temperature.
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Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-15. Transmit

Table 3-16. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF
1 Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.17 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.35 UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 2.5 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 2.5 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals3

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. These pins are dedicated inputs or can be used as general purpose I/O.
3. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-17EA ECP3-35EA

Pin Type 256 ftBGA 328 csBGA 484 fpBGA 256 ftBGA 484 fpBGA 672 fpBGA

Emulated Differential I/O per 
Bank

Bank 0 13 10 18 13 21 24

Bank 1 7 5 12 7 18 18

Bank 2 2 2 4 1 8 8

Bank 3 4 2 13 5 20 19

Bank 6 5 1 13 6 22 20

Bank 7 6 9 10 6 11 13

Bank 8 12 12 12 12 12 12

Highspeed Differential I/O per 
Bank

Bank 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0

Bank 2 2 2 3 3 6 6

Bank 3 5 4 9 4 9 12

Bank 6 5 4 9 4 11 12

Bank 7 5 6 8 5 9 10

Bank 8 0 0 0 0 0 0

Total Single Ended/ Total 
Differential I/O per Bank

Bank 0 26/13 20/10 36/18 26/13 42/21 48/24

Bank 1 14/7 10/5 24/12 14/7 36/18 36/18

Bank 2 8/4 9/4 14/7 8/4 28/14 28/14

Bank 3 18/9 12/6 44/22 18/9 58/29 63/31

Bank 6 20/10 11/5 44/22 20/10 67/33 65/32

Bank 7 23/11 30/15 36/18 23/11 40/20 46/23

Bank 8 24/12 24/12 24/12 24/12 24/12 24/12

DDR Groups Bonded per 
Bank2

Bank 0 2 1 3 2 3 4

Bank 1 1 0 2 1 3 3

Bank 2 0 0 1 0 2 2

Bank 3 1 0 3 1 3 4

Bank 6 1 0 3 1 4 4

Bank 7 1 2 2 1 3 3

Configuration 
Bank 8 0 0 0 0 0 0

SERDES Quads 1 1 1 1 1 1

1. These pins must remain floating on the board.
2. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.
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Part Number Voltage Grade1 Power Package Pins Temp. LUTs (K) 

LFE3-150EA-6FN672I 1.2 V –6 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-7FN672I 1.2 V –7 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-8FN672I 1.2 V –8 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-6LFN672I 1.2 V –6 LOW Lead-Free fpBGA 672 IND 149

LFE3-150EA-7LFN672I 1.2 V –7 LOW Lead-Free fpBGA 672 IND 149

LFE3-150EA-8LFN672I 1.2 V –8 LOW Lead-Free fpBGA 672 IND 149

LFE3-150EA-6FN1156I 1.2 V –6 STD Lead-Free fpBGA 1156 IND 149

LFE3-150EA-7FN1156I 1.2 V –7 STD Lead-Free fpBGA 1156 IND 149

LFE3-150EA-8FN1156I 1.2 V –8 STD Lead-Free fpBGA 1156 IND 149

LFE3-150EA-6LFN1156I 1.2 V –6 LOW Lead-Free fpBGA 1156 IND 149

LFE3-150EA-7LFN1156I 1.2 V –7 LOW Lead-Free fpBGA 1156 IND 149

LFE3-150EA-8LFN1156I 1.2 V –8 LOW Lead-Free fpBGA 1156 IND 149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number Voltage Grade Power Package Pins Temp. LUTs (K)

LFE3-150EA-6FN672ITW1 1.2 V –6 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-7FN672ITW1 1.2 V –7 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-8FN672ITW1 1.2 V –8 STD Lead-Free fpBGA 672 IND 149

LFE3-150EA-6FN1156ITW1 1.2 V –6 STD Lead-Free fpBGA 1156 IND 149

LFE3-150EA-7FN1156ITW1 1.2 V –7 STD Lead-Free fpBGA 1156 IND 149

LFE3-150EA-8FN1156ITW1 1.2 V –8 STD Lead-Free fpBGA 1156 IND 149

1. Specifications for the LFE3-150EA-spFNpkgCTW and LFE3-150EA-spFNpkgITW devices, (where sp is the speed and pkg 
is the package), are the same as the LFE3-150EA-spFNpkgC and LFE3-150EA-spFNpkgI devices respectively, except as 
specified below.
• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed 

and implemented in soft IP.

•  The SERDES XRES pin on the TW device passes CDM testing at 250V.


