
E. Attice Semiconductor Corporation - LFE3-70EA-8LFN1156C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8375
Number of Logic Elements/Cells	67000
Total RAM Bits	4526080
Number of I/O	490
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1156-BBGA
Supplier Device Package	1156-FPBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-70ea-8lfn1156c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The edge clocks on the top, left, and right sides of the device can drive the secondary clocks or general routing resources of the device. The left and right side edge clocks also can drive the primary clock network through the clock dividers (CLKDIV).

sysMEM Memory

LatticeECP3 devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18-Kbit RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers (via external PFUs).

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-7. FIFOs can be implemented in sysMEM EBR blocks by implementing support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths. For more information, please see TN1179, LatticeECP3 Memory Usage Guide.

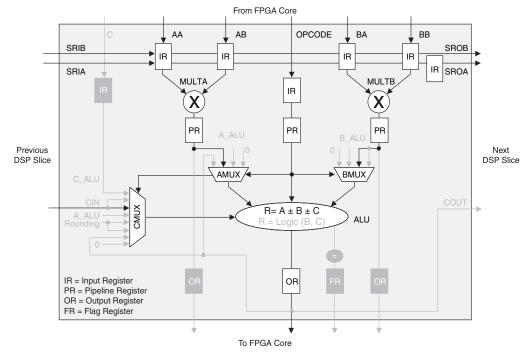
Table 2-7. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation


If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Figure 2-31. MULTADDSUBSUM Slice 1

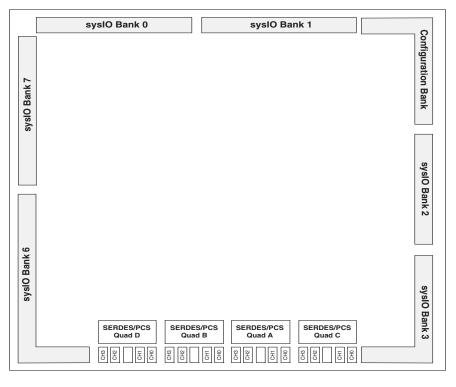
Advanced sysDSP Slice Features

Cascading

The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition

The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High performance adder functions are implemented without the use of LUTs. The maximum width adders that can be implemented are 54-bit.


Rounding

The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation operation. The rounding methods supported are:

- Rounding to zero (RTZ)
- Rounding to infinity (RTI)
- Dynamic rounding
- Random rounding
- Convergent rounding

Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

There are some restrictions to be aware of when using spread spectrum. When a quad shares a PCI Express x1 channel with a non-PCI Express channel, ensure that the reference clock for the quad is compatible with all protocols within the quad. For example, a PCI Express spread spectrum reference clock is not compatible with most Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LatticeECP3 architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, Serial RapidIO or SGMII channel within the same quad, using a PCI Express spread spectrum clocking as the transmit reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter specifications.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration

All LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with the remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more information about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LatticeECP3 device:

- 1. JTAG
- 2. Standard Serial Peripheral Interface (SPI and SPIm modes) interface to boot PROM memory
- 3. System microprocessor to drive a x8 CPU port (PCM mode)
- 4. System microprocessor to drive a serial slave SPI port (SSPI mode)
- 5. Generic byte wide flash with a MachXO[™] device, providing control and addressing

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port.

LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device (slave mode) with the SPI port of the FPGA to perform read-write operations.

LatticeECP3 Family Data Sheet DC and Switching Characteristics

April 2014

Data Sheet DS1021

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V_{CC}
Supply Voltage V_{CCAUX} $\ldots \ldots \ldots \ldots -0.5$ V to 3.75 V
Supply Voltage V_{CCJ} $\ldots \ldots \ldots \ldots \ldots -0.5$ V to 3.75 V
Output Supply Voltage V_{CCIO} –0.5 V to 3.75 V
Input or I/O Tristate Voltage Applied $^4.$ –0.5 V to 3.75 V
Storage Temperature (Ambient) $\ldots \ldots -65$ V to 150 $^{\circ}\text{C}$
Junction Temperature (T_J)

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC²}	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage, Terminating Resistor Switching Power Supply (SERDES)	3.135	3.465	V
V _{CCPLL}	PLL Supply Voltage	3.135	3.465	V
V _{CCIO^{2, 3}}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ²}	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
V_{REF1} and V_{REF2}	Input Reference Voltage	0.5	1.7	V
V _{TT} ⁵	Termination Voltage	0.5	1.3125	V
t _{јсом}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
SERDES External P	ower Supply ⁶	•	•	
	Input Buffer Power Supply (1.2 V)	1.14	1.26	V
V _{CCIB}	Input Buffer Power Supply (1.5 V)	1.425	1.575	V
	Output Buffer Power Supply (1.2 V)	1.14	1.26	V
V _{CCOB}	Output Buffer Power Supply (1.5 V)	1.425	1.575	V
V _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	1.14	1.26	V

1. For correct operation, all supplies except V_{REF} and V_{TT} must be held in their valid operation range. This is true independent of feature usage.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC.} If V_{CCIO} or V_{CCJ} is set to 3.3 V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3.3 V.

5. If not used, V_{TT} should be left floating.

6. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for information on board considerations for SERDES power supplies.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeECP3 External Switching Characteristics ^{1, 2, 3, 13}

							1	-6	
Parameter	Description	Device	Min.	-8 Max.	Min.	-7 Max.	Min.	-о Max.	Units
Clocks	Description	Device	Min.	wax.	win.	wax.	MIN.	wax.	Units
Primary Clock ⁶									
	Frequency for Primary Clock Tree	ECP3-150EA	_	500		420	_	375	MHz
t _{MAX_PRI}	Clock Pulse Width for Primary			000		420		0/0	
t _{W_PRI}	Clock	ECP3-150EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-150EA	-	300	—	330	—	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-150EA	_	250	—	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-70EA/95EA	-	500	—	420	-	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-70EA/95EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-70EA/95EA	_	360	_	370	_	380	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-70EA/95EA	—	310	—	320	—	330	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-35EA	—	500	—	420	—	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-35EA	0.8	—	0.9		1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-35EA	-	300	—	330	_	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-35EA	_	250	—	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-17EA	_	500	—	420	—	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-17EA	0.8	_	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-17EA	_	310	—	340	—	370	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-17EA	_	220	—	230	—	240	ps
Edge Clock ⁶	•		•			•	•	•	
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-150EA	_	500	—	420	—	375	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	ECP3-150EA	0.9	—	1.0	—	1.2	—	ns
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-150EA	-	200	—	210	_	220	ps
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-70EA/95EA	—	500	—	420	—	375	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	ECP3-70EA/95EA	0.9	_	1.0	—	1.2	—	ns
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-70EA/95EA	_	200	_	210	—	220	ps
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-35EA	_	500	—	420	—	375	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	ECP3-35EA	0. 9	—	1.0	—	1.2	—	ns
^t skew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-35EA	_	200	_	210	—	220	ps
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-17EA	—	500	—	420	—	375	MHz
t _{W_EDGE}	Clock Pulse Width for Edge Clock	ECP3-17EA	0. 9	—	1.0	—	1.2	—	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-17EA	_	200	_	210	—	220	ps
Generic SDR	•		•	•		•	•	•	·
General I/O Pin Pa	arameters Using Dedicated Clock In	put Primary Clock V	Vithout P	LL ²					
t _{CO}	Clock to Output - PIO Output Register	ECP3-150EA	_	3.9	—	4.3	—	4.7	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.0	_	0.0		0.0	_	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-150EA	1.5	_	1.7		2.0		ns
t _{SU_DEL}	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.3	—	1.5	_	1.7		ns

Over Recommended Commercial Operating Conditions

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units
Input Adjusters		L		•	
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
LVDS25	LVDS, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns
Output Adjusters	1	I	I	1	1
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns

Over Recommended Commercial Operating Conditions

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
	Input clock frequency (CLKI,		Edge clock	2	_	500	MHz
f _{IN}	CLKFB)		Primary clock ⁴	2	_	420	MHz
	Output clock frequency (CLKOP,		Edge clock	4	_	500	MHz
fout	CLKOS)		Primary clock ⁴	4	_	420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125	_	250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667	-	166	MHz
f _{VCO}	PLL VCO frequency			500	_	1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2	-	500	MHz
			Primary clock ⁴	2	_	420	MHz
AC Charac	teristics					1	
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	Output clock duty cycle (CLKOS, at 50% setting)	f _{OUT} ≤ 250 MHz	Primary clock	45	50	55	%
	(CERCS, at 50 % setting)	f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8		_	ns
		f _{OUT} ≥ 420 MHz		_		200	ps
t _{OPJIT} 1	Output clock period jitter	420 MHz > f _{OUT} ≥ 100 MHz		_	_	250	ps
		f _{OUT} < 100 MHz		_		0.025	UIPP
t _{SK}	Input clock to output clock skew when N/M = integer			_		500	ps
. 2		2 to 25 MHz			_	200	us
t _{LOCK} ²	Lock time	25 to 500 MHz		_	_	50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_	_	50	ns
t _{HI}	Input clock high time	90% to 90%		0.5	_	—	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	—	ns
t _{IPJIT}	Input clock period jitter			—	_	400	ps
	Reset signal pulse width high, RSTK			10		_	ns
t _{RST}	Reset signal pulse width high, RST			500	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

DLL Timing

Over Recommended Operating Conditions

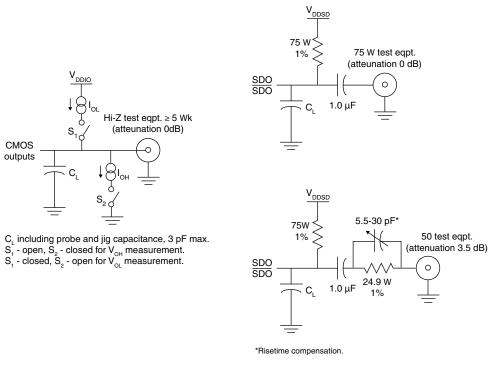
Parameter	Description	Condition	Min.	Тур.	Max.	Units
f _{REF}	Input reference clock frequency (on-chip or off-chip)		133	_	500	MHz
f _{FB}	Feedback clock frequency (on-chip or off-chip)		133		500	MHz
f _{CLKOP} 1	Output clock frequency, CLKOP		133		500	MHz
f _{CLKOS²}	Output clock frequency, CLKOS		33.3		500	MHz
t _{PJIT}	Output clock period jitter (clean input)				200	ps p-p
	Output clock duty cycle (at 50% levels, 50% duty	Edge Clock	40		60	%
t _{DUTY}	cycle input clock, 50% duty cycle circuit turned off, time reference delay mode)	Primary Clock	30		70	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	45		55	%
t _{DUTYTRD}	duty cycle input clock, 50% duty cycle circuit	Primary Clock ≥ 250 MHz	30		70	%
	enabled, time reference delay mode)	Edge Clock	45		55	%
	Output clock duty cycle (at 50% levels, arbitrary	Primary Clock < 250 MHz	40		60	%
t _{DUTYCIR}	duty cycle input clock, 50% duty cycle circuit enabled, clock injection removal mode) with DLL cascading	Primary Clock ≥ 250 MHz	30		70	%
		Edge Clock	45		55	%
t _{SKEW} ³	Output clock to clock skew between two outputs with the same phase setting		_	—	100	ps
t _{PHASE}	Phase error measured at device pads between off-chip reference clock and feedback clocks		_	_	+/-400	ps
t _{PWH}	Input clock minimum pulse width high (at 80% level)		550	_	_	ps
t _{PWL}	Input clock minimum pulse width low (at 20% level)		550	_	_	ps
t _{INSTB}	Input clock period jitter		_		500	ps
t _{LOCK}	DLL lock time		8	—	8200	cycles
t _{RSWD}	Digital reset minimum pulse width (at 80% level)		3			ns
t _{DEL}	Delay step size		27	45	70	ps
t _{RANGE1}	Max. delay setting for single delay block (64 taps)		1.9	3.1	4.4	ns
t _{RANGE4}	Max. delay setting for four chained delay blocks		7.6	12.4	17.6	ns

1. CLKOP runs at the same frequency as the input clock.

2. CLKOS minimum frequency is obtained with divide by 4.

3. This is intended to be a "path-matching" design guideline and is not a measurable specification.

Table 3-11. Periodic Receiver Jitter Tolerance Specification


Description	Frequency	Condition	Min.	Тур.	Max.	Units
Periodic	2.97 Gbps	600 mV differential eye	—		0.24	UI, p-p
Periodic	2.5 Gbps	600 mV differential eye	—	_	0.22	UI, p-p
Periodic	1.485 Gbps	600 mV differential eye	—		0.24	UI, p-p
Periodic	622 Mbps	600 mV differential eye	—		0.15	UI, p-p
Periodic	150 Mbps	600 mV differential eye	_		0.5	UI, p-p

Note: Values are measured with PRBS 2⁷–1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

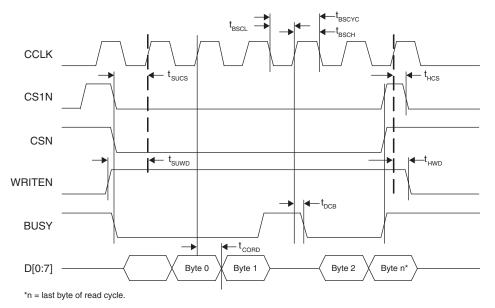


Figure 3-19. Test Loads

Test Loads

Timing Jitter Bandpass

LatticeECP3 sysCONFIG Port Timing Specifications (Continued)


Over Recommended Operating Conditions

Parameter	Description	Min.	Max.	Units
t _{SSCL}	CCLK Minimum Low Pulse	5	_	ns
t _{HLCH}	HOLDN Low Setup Time (Relative to CCLK)	5	_	ns
t _{CHHH}	HOLDN Low Hold Time (Relative to CCLK)	5	_	ns
Master and	Slave SPI (Continued)			
t _{CHHL}	HOLDN High Hold Time (Relative to CCLK)	5	_	ns
t _{HHCH}	HOLDN High Setup Time (Relative to CCLK)	5	_	ns
t _{HLQZ}	HOLDN to Output High-Z	—	9	ns
t _{HHQX}	HOLDN to Output Low-Z	—	9	ns

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of the PROGRAMN.

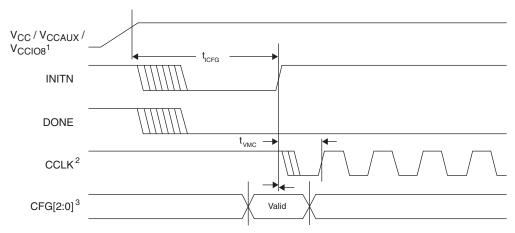

Parameter	Min.	Max.	Units
Master Clock Frequency	Selected value - 15%	Selected value + 15%	MHz
Duty Cycle	40	60	%

Figure 3-20. sysCONFIG Parallel Port Read Cycle

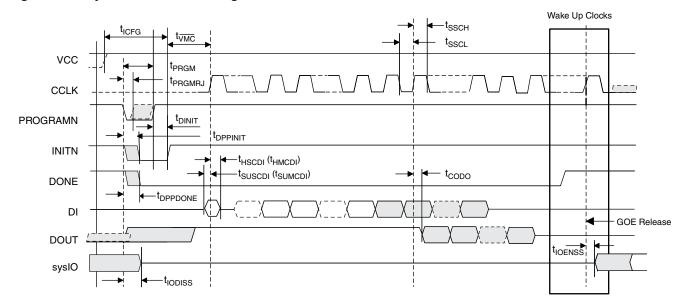
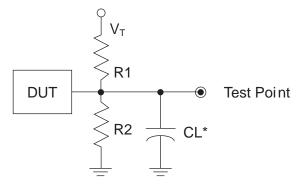


Figure 3-24. Power-On-Reset (POR) Timing

Time taken from V_{CC}, V_{CCAUX} or V_{CCIO8}, whichever is the last to cross the POR trip point.
 Device is in a Master Mode (SPI, SPIm).
 The CFG pins are normally static (hard wired).


Figure 3-25. sysCONFIG Port Timing

Switching Test Conditions

Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-23.

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
	8	×	0 pF	LVCMOS 3.3 = 1.5V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)				LVCMOS 1.8 = V _{CCIO} /2	—
				LVCMOS 1.5 = V _{CCIO} /2	—
				LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)	x	1MΩ	0 pF	V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> L)	1 MΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	0 pF	V _{OH} - 0.10	—
LVCMOS 2.5 I/O (L -> Z)	100	∞	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Signal Descriptions (Cont.)

Signal Name	I/O	Description
[LOC]DQS[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball function number.
[LOC]DQ[num]	I/O	DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated DQS number.
Test and Programming (Dedicated	Pins)	
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration.
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.
VCCJ	_	Power supply pin for JTAG Test Access Port.
Configuration Pads (Used During	sysCONFI	Ġ)
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. It is a dedicated pin.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. It is a dedicated pin.
CCLK	I	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. It is a dedicated pin.
MCLK	I/O	Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Master configuration modes.
BUSY/SISPI	0	Parallel configuration mode busy indicator. SPI/SPIm mode data output.
CSN/SN/OEN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. Parallel burst Flash output enable.
CS1N/HOLDN/RDY	I	Parallel configuration mode active-low chip select. Slave SPI hold input.
WRITEN	I	Write enable for parallel configuration modes.
DOUT/CSON/CSSPI1N	0	Serial data output. Chip select output. SPI/SPIm mode chip select.
		sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.
D[0]/SPIFASTN	I/O	sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm mode, this pin should either be tied high or low, must not be left floating. Open drain during configuration.
D1	I/O	Parallel configuration I/O. Open drain during configuration.
D2	I/O	Parallel configuration I/O. Open drain during configuration.
D3/SI	I/O	Parallel configuration I/O. Slave SPI data input. Open drain during configura- tion.
D4/SO	I/O	Parallel configuration I/O. Slave SPI data output. Open drain during configura- tion.
D5	I/O	Parallel configuration I/O. Open drain during configuration.
D6/SPID1	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.

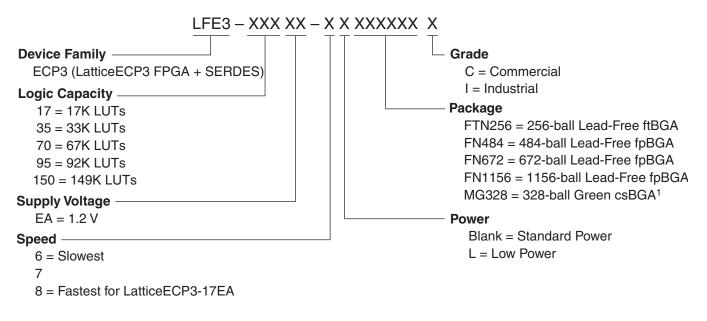
Signal Descriptions (Cont.)

I/O	Description
I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.
I/O	Serial data input for slave serial mode. SPI/SPIm mode chip select.
I	High-speed input, negative channel m
0	High-speed output, negative channel m
I	Negative Reference Clock Input
I	High-speed input, positive channel m
0	High-speed output, positive channel m
I	Positive Reference Clock Input
—	Output buffer power supply, channel m (1.2V/1.5)
	Input buffer power supply, channel m (1.2V/1.5V)
	I/O I/O I I I I I I

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, care must be given.

2. These pins are dedicated inputs or can be used as general purpose I/O.

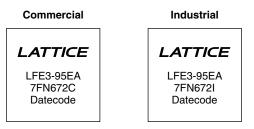
3. m defines the associated channel in the quad.



LatticeECP3 Family Data Sheet Ordering Information

April 2014

Data Sheet DS1021


LatticeECP3 Part Number Description

1. Green = Halogen free and lead free.

Ordering Information

LatticeECP3 devices have top-side markings, for commercial and industrial grades, as shown below:

Note: See PCN 05A-12 for information regarding a change to the top-side mark logo.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672I	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672I	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672I	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6LFN672I	1.2 V	-6	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7LFN672I	1.2 V	-7	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8LFN672I	1.2 V	-8	LOW	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156I	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156I	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156I	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-6LFN1156I	1.2 V	-6	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7LFN1156I	1.2 V	-7	LOW	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8LFN1156I	1.2 V	-8	LOW	Lead-Free fpBGA	1156	IND	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-7FN672ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-8FN672ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	IND	149
LFE3-150EA-6FN1156ITW ¹	1.2 V	-6	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-7FN1156ITW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	IND	149
LFE3-150EA-8FN1156ITW ¹	1.2 V	-8	STD	Lead-Free fpBGA	1156	IND	149

1. Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250V.

LatticeECP3 Family Data Sheet Revision History

March 2015

Data Sheet DS1021

Date	Version	Section	Change Summary
March 2015	March 2015 2.8EA Pinout Information All		Updated Package Pinout Information section. Changed reference to http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.
			Minor style/formatting changes.
April 2014	April 2014 02.7EA		Updated LatticeECP3 Supply Current (Standby) table power numbers.
		Characteristics	Removed speed grade -9 timing numbers in the following sections: — Typical Building Block Function Performance — LatticeECP3 External Switching Characteristics — LatticeECP3 Internal Switching Characteristics — LatticeECP3 Family Timing Adders
		Ordering Information	Removed ordering information for -9 speed grade devices.
March 2014	02.6EA	DC and Switching Characteristics	Added information to the sysl/O Single-Ended DC Electrical Character- istics section footnote.
February 2014	02.5EA	DC and Switching Characteristics	Updated Hot Socketing Specifications table. Changed I_{PW} to I_{PD} in footnote 3.
			Updated the following figures: — Figure 3-25, sysCONFIG Port Timing — Figure 3-27, Wake-Up Timing
		Supplemental Information	Added technical note references.
September 2013	02.4EA	DC and Switching	Updated the Wake-Up Timing Diagram
		Characteristics	Added the following figures: — Master SPI POR Waveforms — SPI Configuration Waveforms — Slave SPI HOLDN Waveforms
			Added tIODISS and tIOENSS parameters in LatticeECP3 sysCONFIG Port Timing Specifications table.
June 2013	June 2013 02.3EA Architecture		sysl/O Buffer Banks text section – Updated description of "Top (Bank 0 and Bank 1) and Bottom syslO Buffer Pairs (Single-Ended Outputs Only)" for hot socketing information.
			sysl/O Buffer Banks text section – Updated description of "Configuration Bank sysl/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by Configuration)" for PCI clamp information.
			On-Chip Oscillator section – clarified the speed of the internal CMOS oscillator (130 MHz +/- 15%).
			Architecture Overview section – Added information on the state of the register on power up and after configuration.
		DC and Switching Characteristics	sysl/O Recommended Operating Conditions table – Removed reference to footnote 1 from RSDS standard.
			sysl/O Single-Ended DC Electrical Characteristics table – Modified foot- note 1.
			Added Oscillator Output Frequency table.
			LatticeECP3 sysCONFIG Port Timing Specifications table – Updated min. column for t _{CODO} parameter.
			LatticeECP3 Family Timing Adders table – Description column, references to VCCIO = 3.0V changed to 3.3V. For PPLVDS, description changed from emulated to True LVDS and VCCIO = 2.5V changed to VCCIO = 2.5V or 3.3V.

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
			Updated Simplified Channel Block Diagram for SERDES/PCS Block diagram.
			Updated Device Configuration text section.
			Corrected software default value of MCCLK to be 2.5 MHz.
		DC and Switching Characteristics	Updated VCCOB Min/Max data in Recommended Operating Conditions table.
			Corrected footnote 2 in sysIO Recommended Operating Conditions table.
			Added added footnote 7 for t _{SKEW_PRIB} to External Switching Characteristics table.
			Added 2-to-1 Gearing text section and table.
			Updated External Reference Clock Specification (refclkp/refclkn) table.
			LatticeECP3 sysCONFIG Port Timing Specifications - updated t _{DINIT} information.
			Added sysCONFIG Port Timing waveform.
			Serial Input Data Specifications table, delete Typ data for V _{RX-DIFF-S} .
			Added footnote 4 to sysCLOCK PLL Timing table for t _{PFD} .
			Added SERDES/PCS Block Latency Breakdown table.
			External Reference Clock Specifications table, added footnote 4, add symbol name vREF-IN-DIFF.
			Added SERDES External Reference Clock Waveforms.
			Updated Serial Output Timing and Levels table.
			Pin-to-pin performance table, changed "typically 3% slower" to "typically slower".
			Updated timing information
			Updated SERDES minimum frequency.
			Added data to the following tables: External Switching Characteristics, Internal Switching Characteristics, Family Timing Adders, Maximum I/O Buffer Speed, DLL Timing, High Speed Data Transmitter, Channel Out- put Jitter, Typical Building Block Function Performance, Register-to- Register Performance, and Power Supply Requirements.
			Updated Serial Input Data Specifications table.
			Updated Transmit table, Serial Rapid I/O Type 2 Electrical and Timing Characteristics section.
		Pinout Information	Updated Signal Description tables.
			Updated Pin Information Summary tables and added footnote 1.
February 2009	01.0	—	Initial release.