# E. Lattice Semiconductor Corporation - <u>LFE3-95EA-6FN1156C Datasheet</u>



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                        |
|--------------------------------|-------------------------------------------------------------------------------|
| Number of LABs/CLBs            | 11500                                                                         |
| Number of Logic Elements/Cells | 92000                                                                         |
| Total RAM Bits                 | 4526080                                                                       |
| Number of I/O                  | 490                                                                           |
| Number of Gates                | -                                                                             |
| Voltage - Supply               | 1.14V ~ 1.26V                                                                 |
| Mounting Type                  | Surface Mount                                                                 |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                               |
| Package / Case                 | 1156-BBGA                                                                     |
| Supplier Device Package        | 1156-FPBGA (35x35)                                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-95ea-6fn1156c |
|                                |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong







Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.

# **PFU Blocks**

The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.



### Figure 2-3. Slice Diagram



For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK WRE is from LSR

DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 WAD [A:D] is a 4-bit address from slice 2 LUT input

Table 2-2. Slice Signal Descriptions

| Function | Туре               | Signal Names   | Description                                                          |
|----------|--------------------|----------------|----------------------------------------------------------------------|
| Input    | Data signal        | A0, B0, C0, D0 | Inputs to LUT4                                                       |
| Input    | Data signal        | A1, B1, C1, D1 | Inputs to LUT4                                                       |
| Input    | Multi-purpose      | M0             | Multipurpose Input                                                   |
| Input    | Multi-purpose      | M1             | Multipurpose Input                                                   |
| Input    | Control signal     | CE             | Clock Enable                                                         |
| Input    | Control signal     | LSR            | Local Set/Reset                                                      |
| Input    | Control signal     | CLK            | System Clock                                                         |
| Input    | Inter-PFU signal   | FC             | Fast Carry-in <sup>1</sup>                                           |
| Input    | Inter-slice signal | FXA            | Intermediate signal to generate LUT6 and LUT7                        |
| Input    | Inter-slice signal | FXB            | Intermediate signal to generate LUT6 and LUT7                        |
| Output   | Data signals       | F0, F1         | LUT4 output register bypass signals                                  |
| Output   | Data signals       | Q0, Q1         | Register outputs                                                     |
| Output   | Data signals       | OFX0           | Output of a LUT5 MUX                                                 |
| Output   | Data signals       | OFX1           | Output of a LUT6, LUT7, LUT8 <sup>2</sup> MUX depending on the slice |
| Output   | Inter-PFU signal   | FCO            | Slice 2 of each PFU is the fast carry chain output <sup>1</sup>      |

1. See Figure 2-3 for connection details.

2. Requires two PFUs.



chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmitted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the current value on the DCNTL bus.

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of the DLL inputs and outputs.

The user can configure the DLL for many common functions such as time reference delay mode and clock injection removal mode. Lattice provides primitives in its design tools for these functions.



Figure 2-5. Delay Locked Loop Diagram (DLL)

\* This signal is not user accessible. This can only be used to feed the slave delay line.



### Figure 2-8. Clock Divider Connections



# **Clock Distribution Network**

LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two high performance edge clocks are available on the top, left, and right edges of the device to support high speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock sources are fed throughout the chip via a clock distribution system.

# **Primary Clock Sources**

LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, dedicated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources for LatticeECP3 devices.

### Figure 2-9. Primary Clock Sources for LatticeECP3-17



Note: Clock inputs can be configured in differential or single-ended mode.



### Figure 2-20. Sources of Edge Clock (Left and Right Edges)



Figure 2-21. Sources of Edge Clock (Top Edge)



The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or Generic DDR interfaces.



### Figure 2-25. Detailed sysDSP Slice Diagram



Note: A\_ALU, B\_ALU and C\_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

The LatticeECP2 sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

 Table 2-8. Maximum Number of Elements in a Slice

| Width of Multiply | x9                    | x18 | x36 |
|-------------------|-----------------------|-----|-----|
| MULT              | 4                     | 2   | 1/2 |
| MAC               | 1                     | 1   | —   |
| MULTADDSUB        | 2                     | 1   | —   |
| MULTADDSUBSUM     | <b>1</b> <sup>1</sup> | 1/2 | _   |

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.



### MAC DSP Element

In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but the output register is always enabled. The output register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 shows the MAC sysDSP element.

### Figure 2-27. MAC DSP Element





# MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

### Figure 2-30. MULTADDSUBSUM Slice 0







#### Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution

DQS Strobe and Transition Detect Logic

### I/O Ring

\*Includes shared configuration I/Os and dedicated configuration I/Os.



To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the most significant bit will invert the clock for a 180-degree shift of the incoming clock.

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high speed DDR data from and to the DDR3 Memory.

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, refer to the sysIO section of this data sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface implementation in LatticeECP3.

# sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, LVPECL, PCI.

### sysl/O Buffer Banks

LatticeECP3 devices have six sysl/O buffer banks: six banks for user I/Os arranged two per side. The banks on the bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysl/O buffer bank (Configuration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. Each sysl/O bank has its own I/O supply voltage ( $V_{CCIO}$ ). In addition, each bank, except the Configuration Bank, has voltage references,  $V_{REF1}$  and  $V_{REF2}$ , which allow it to be completely independent from the others. Figure 2-38 shows the seven banks and their associated supplies.

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using  $V_{CCIO}$ . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of  $V_{CCIO}$ .

Each bank can support up to two separate  $V_{REF}$  voltages,  $V_{REF1}$  and  $V_{REF2}$ , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.



# LVDS25E

The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.





### Table 3-1. LVDS25E DC Conditions

| Parameter         | Description                      | Typical | Units |
|-------------------|----------------------------------|---------|-------|
| V <sub>CCIO</sub> | Output Driver Supply (+/-5%)     | 2.50    | V     |
| Z <sub>OUT</sub>  | Driver Impedance                 | 20      | Ω     |
| R <sub>S</sub>    | Driver Series Resistor (+/-1%)   | 158     | Ω     |
| R <sub>P</sub>    | Driver Parallel Resistor (+/-1%) | 140     | Ω     |
| R <sub>T</sub>    | Receiver Termination (+/-1%)     | 100     | Ω     |
| V <sub>OH</sub>   | Output High Voltage              | 1.43    | V     |
| V <sub>OL</sub>   | Output Low Voltage               | 1.07    | V     |
| V <sub>OD</sub>   | Output Differential Voltage      | 0.35    | V     |
| V <sub>CM</sub>   | Output Common Mode Voltage       | 1.25    | V     |
| Z <sub>BACK</sub> | Back Impedance                   | 100.5   | Ω     |
| I <sub>DC</sub>   | DC Output Current                | 6.03    | mA    |

# LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V V<sub>CCIO</sub>. The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 4 mA, 8 mA, 16 mA or 20 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.



# LatticeECP3 External Switching Characteristics (Continued)<sup>1, 2, 3, 13</sup>

|                           |                                |                           | -8 -7    |          | -        | -6        |          |           |          |
|---------------------------|--------------------------------|---------------------------|----------|----------|----------|-----------|----------|-----------|----------|
| Parameter                 | Description                    | Device                    | Min.     | Max.     | Min.     | Max.      | Min.     | Max.      | Units    |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | All ECP3EA Devices        | 0.775    | —        | 0.775    | —         | 0.775    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX1 Clock Frequency          | All ECP3EA Devices        | _        | 250      | _        | 250       | _        | 250       | MHz      |
| Generic DDRX2 In<br>Input | puts with Clock and Data (>10  | Bits Wide) Centered at P  | in (GDDF | RX2_RX.E | CLK.Ce   | ntered) L | Ising PC | LK Pin fo | or Clock |
| Left and Right Sid        | les                            |                           |          |          |          |           |          |           |          |
| t <sub>SUGDDR</sub>       | Data Setup Before CLK          | ECP3-150EA                | 321      |          | 403      |           | 471      |           | ps       |
| t <sub>HOGDDR</sub>       | Data Hold After CLK            | ECP3-150EA                | 321      | _        | 403      | —         | 471      | —         | ps       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-150EA                |          | 405      | _        | 325       | _        | 280       | MHz      |
| t <sub>SUGDDR</sub>       | Data Setup Before CLK          | ECP3-70EA/95EA            | 321      |          | 403      |           | 535      |           | ps       |
| t <sub>HOGDDR</sub>       | Data Hold After CLK            | ECP3-70EA/95EA            | 321      | _        | 403      |           | 535      | —         | ps       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-70EA/95EA            |          | 405      | _        | 325       | _        | 250       | MHz      |
| t <sub>SUGDDR</sub>       | Data Setup Before CLK          | ECP3-35EA                 | 335      |          | 425      |           | 535      | —         | ps       |
| t <sub>HOGDDR</sub>       | Data Hold After CLK            | ECP3-35EA                 | 335      |          | 425      |           | 535      | —         | ps       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-35EA                 | _        | 405      | _        | 325       |          | 250       | MHz      |
| t <sub>SUGDDR</sub>       | Data Setup Before CLK          | ECP3-17EA                 | 335      |          | 425      |           | 535      |           | ps       |
| t <sub>HOGDDR</sub>       | Data Hold After CLK            | ECP3-17EA                 | 335      |          | 425      |           | 535      |           | ps       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-17EA                 | _        | 405      |          | 325       |          | 250       | MHz      |
| Generic DDRX2 In          | puts with Clock and Data (>10  | Bits Wide) Aligned at Pin | (GDDR)   | (2_RX.EC | CLK.Alig | ned)      | •        |           |          |
| Left and Right Sid        | le Using DLLCLKIN Pin for Cloo | ck Input                  |          |          |          |           |          |           |          |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-150EA                | —        | 0.225    | —        | 0.225     |          | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-150EA                | 0.775    |          | 0.775    | _         | 0.775    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-150EA                | _        | 460      | _        | 385       |          | 345       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-70EA/95EA            | _        | 0.225    | —        | 0.225     |          | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-70EA/95EA            | 0.775    | _        | 0.775    | —         | 0.775    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-70EA/95EA            | _        | 460      | —        | 385       | _        | 311       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-35EA                 | _        | 0.210    | _        | 0.210     | _        | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-35EA                 | 0.790    | _        | 0.790    | —         | 0.790    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-35EA                 | _        | 460      | —        | 385       |          | 311       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-17EA                 | —        | 0.210    | _        | 0.210     | _        | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-17EA                 | 0.790    | _        | 0.790    | —         | 0.790    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-17EA                 |          | 460      |          | 385       | _        | 311       | MHz      |
| Top Side Using P          | CLK Pin for Clock Input        |                           |          |          |          |           |          |           |          |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-150EA                |          | 0.225    | _        | 0.225     |          | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-150EA                | 0.775    |          | 0.775    | _         | 0.775    | _         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-150EA                |          | 235      |          | 170       | —        | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-70EA/95EA            |          | 0.225    |          | 0.225     |          | 0.225     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-70EA/95EA            | 0.775    | _        | 0.775    | —         | 0.775    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-70EA/95EA            |          | 235      |          | 170       | _        | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-35EA                 |          | 0.210    | _        | 0.210     | _        | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-35EA                 | 0.790    | _        | 0.790    | —         | 0.790    | —         | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-35EA                 |          | 235      |          | 170       |          | 130       | MHz      |
| t <sub>DVACLKGDDR</sub>   | Data Setup Before CLK          | ECP3-17EA                 |          | 0.210    |          | 0.210     |          | 0.210     | UI       |
| t <sub>DVECLKGDDR</sub>   | Data Hold After CLK            | ECP3-17EA                 | 0.790    |          | 0.790    |           | 0.790    |           | UI       |
| f <sub>MAX_GDDR</sub>     | DDRX2 Clock Frequency          | ECP3-17EA                 | —        | 235      | —        | 170       | —        | 130       | MHz      |

# **Over Recommended Commercial Operating Conditions**







Figure 3-7. DDR/DDR2/DDR3 Parameters





# LatticeECP3 Internal Switching Characteristics<sup>1, 2, 5</sup> (Continued)

|                         |                                                           | _      | 8    | -7     |      | -6     |      |        |
|-------------------------|-----------------------------------------------------------|--------|------|--------|------|--------|------|--------|
| Parameter               | Description                                               | Min.   | Max. | Min.   | Max. | Min.   | Max. | Units. |
| t <sub>HWREN_EBR</sub>  | Hold Write/Read Enable to EBR Memory                      | 0.141  |      | 0.145  |      | 0.149  |      | ns     |
| t <sub>SUCE_EBR</sub>   | Clock Enable Setup Time to EBR Output<br>Register         | 0.087  |      | 0.096  |      | 0.104  |      | ns     |
| t <sub>HCE_EBR</sub>    | Clock Enable Hold Time to EBR Output<br>Register          | -0.066 |      | -0.080 |      | -0.094 |      | ns     |
| t <sub>SUBE_EBR</sub>   | Byte Enable Set-Up Time to EBR Output<br>Register         | -0.071 |      | -0.070 |      | -0.068 |      | ns     |
| t <sub>HBE_EBR</sub>    | Byte Enable Hold Time to EBR Output<br>Register           | 0.118  | _    | 0.098  | _    | 0.077  | _    | ns     |
| DSP Block Tin           | ning <sup>3</sup>                                         |        |      |        |      |        |      |        |
| t <sub>SUI_DSP</sub>    | Input Register Setup Time                                 | 0.32   | _    | 0.36   | _    | 0.39   | _    | ns     |
| t <sub>HI_DSP</sub>     | Input Register Hold Time                                  | -0.17  | _    | -0.19  | _    | -0.21  | _    | ns     |
| t <sub>SUP_DSP</sub>    | Pipeline Register Setup Time                              | 2.23   | _    | 2.30   | _    | 2.37   | _    | ns     |
| t <sub>HP_DSP</sub>     | Pipeline Register Hold Time                               | -1.02  | _    | -1.09  | _    | -1.15  | _    | ns     |
| t <sub>SUO_DSP</sub>    | Output Register Setup Time                                | 3.09   | _    | 3.22   | _    | 3.34   | _    | ns     |
| t <sub>HO_DSP</sub>     | Output Register Hold Time                                 | -1.67  | _    | -1.76  | _    | -1.84  | _    | ns     |
| t <sub>COI_DSP</sub>    | Input Register Clock to Output Time                       | _      | 3.05 | _      | 3.35 | _      | 3.73 | ns     |
| t <sub>COP_DSP</sub>    | Pipeline Register Clock to Output Time                    | _      | 1.30 | _      | 1.47 | _      | 1.64 | ns     |
| t <sub>COO_DSP</sub>    | Output Register Clock to Output Time                      | —      | 0.58 | —      | 0.60 | —      | 0.62 | ns     |
| t <sub>SUOPT_DSP</sub>  | Opcode Register Setup Time                                | 0.31   | _    | 0.35   | _    | 0.39   | _    | ns     |
| t <sub>HOPT_DSP</sub>   | Opcode Register Hold Time                                 | -0.20  | _    | -0.24  |      | -0.27  | _    | ns     |
| t <sub>SUDATA_DSP</sub> | Cascade_data through ALU to Output<br>Register Setup Time | 1.69   |      | 1.94   |      | 2.14   |      | ns     |
| t <sub>HPDATA_DSP</sub> | Cascade_data through ALU to Output<br>Register Hold Time  | -0.58  |      | -0.80  |      | -0.97  |      | ns     |

# **Over Recommended Commercial Operating Conditions**

1. Internal parameters are characterized but not tested on every device.

2. Commercial timing numbers are shown. Industrial timing numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. DSP slice is configured in Multiply Add/Sub 18 x 18 mode.

4. The output register is in Flip-flop mode.

5. For details on –9 speed grade devices, please contact your Lattice Sales Representative.



# LatticeECP3 Family Timing Adders<sup>1, 2, 3, 4, 5, 7</sup> (Continued)

| <b>Over Recommended Commercial</b> | Operating | Conditions |
|------------------------------------|-----------|------------|
|------------------------------------|-----------|------------|

| Buffer Type   | Description                            | -8    | -7    | -6    | Units |
|---------------|----------------------------------------|-------|-------|-------|-------|
| LVCMOS15_4mA  | LVCMOS 1.5 4 mA drive, fast slew rate  | 0.21  | 0.25  | 0.29  | ns    |
| LVCMOS15_8mA  | LVCMOS 1.5 8 mA drive, fast slew rate  | 0.05  | 0.07  | 0.09  | ns    |
| LVCMOS12_2mA  | LVCMOS 1.2 2 mA drive, fast slew rate  | 0.43  | 0.51  | 0.59  | ns    |
| LVCMOS12_6mA  | LVCMOS 1.2 6 mA drive, fast slew rate  | 0.23  | 0.28  | 0.33  | ns    |
| LVCMOS33_4mA  | LVCMOS 3.3 4 mA drive, slow slew rate  | 1.44  | 1.58  | 1.72  | ns    |
| LVCMOS33_8mA  | LVCMOS 3.3 8 mA drive, slow slew rate  | 0.98  | 1.10  | 1.22  | ns    |
| LVCMOS33_12mA | LVCMOS 3.3 12 mA drive, slow slew rate | 0.67  | 0.77  | 0.86  | ns    |
| LVCMOS33_16mA | LVCMOS 3.3 16 mA drive, slow slew rate | 0.97  | 1.09  | 1.21  | ns    |
| LVCMOS33_20mA | LVCMOS 3.3 20 mA drive, slow slew rate | 0.67  | 0.76  | 0.85  | ns    |
| LVCMOS25_4mA  | LVCMOS 2.5 4 mA drive, slow slew rate  | 1.48  | 1.63  | 1.78  | ns    |
| LVCMOS25_8mA  | LVCMOS 2.5 8 mA drive, slow slew rate  | 1.02  | 1.14  | 1.27  | ns    |
| LVCMOS25_12mA | LVCMOS 2.5 12 mA drive, slow slew rate | 0.74  | 0.84  | 0.94  | ns    |
| LVCMOS25_16mA | LVCMOS 2.5 16 mA drive, slow slew rate | 1.02  | 1.14  | 1.26  | ns    |
| LVCMOS25_20mA | LVCMOS 2.5 20 mA drive, slow slew rate | 0.74  | 0.83  | 0.93  | ns    |
| LVCMOS18_4mA  | LVCMOS 1.8 4 mA drive, slow slew rate  | 1.60  | 1.77  | 1.93  | ns    |
| LVCMOS18_8mA  | LVCMOS 1.8 8 mA drive, slow slew rate  | 1.11  | 1.25  | 1.38  | ns    |
| LVCMOS18_12mA | LVCMOS 1.8 12 mA drive, slow slew rate | 0.87  | 0.98  | 1.09  | ns    |
| LVCMOS18_16mA | LVCMOS 1.8 16 mA drive, slow slew rate | 0.86  | 0.97  | 1.07  | ns    |
| LVCMOS15_4mA  | LVCMOS 1.5 4 mA drive, slow slew rate  | 1.71  | 1.89  | 2.08  | ns    |
| LVCMOS15_8mA  | LVCMOS 1.5 8 mA drive, slow slew rate  | 1.20  | 1.34  | 1.48  | ns    |
| LVCMOS12_2mA  | LVCMOS 1.2 2 mA drive, slow slew rate  | 1.37  | 1.56  | 1.74  | ns    |
| LVCMOS12_6mA  | LVCMOS 1.2 6 mA drive, slow slew rate  | 1.11  | 1.27  | 1.43  | ns    |
| PCI33         | PCI, VCCIO = 3.3 V                     | -0.12 | -0.13 | -0.14 | ns    |

1. Timing adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Not all I/O standards and drive strengths are supported for all banks. See the Architecture section of this data sheet for details.

5. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

6. This data does not apply to the LatticeECP3-17EA device.

7. For details on -9 speed grade devices, please contact your Lattice Sales Representative.



### Table 3-11. Periodic Receiver Jitter Tolerance Specification

| Description | Frequency  | Condition               | Min. | Тур. | Max. | Units   |
|-------------|------------|-------------------------|------|------|------|---------|
| Periodic    | 2.97 Gbps  | 600 mV differential eye | _    | _    | 0.24 | UI, p-p |
| Periodic    | 2.5 Gbps   | 600 mV differential eye | _    | —    | 0.22 | UI, p-p |
| Periodic    | 1.485 Gbps | 600 mV differential eye | —    | —    | 0.24 | UI, p-p |
| Periodic    | 622 Mbps   | 600 mV differential eye | _    | _    | 0.15 | UI, p-p |
| Periodic    | 150 Mbps   | 600 mV differential eye | _    |      | 0.5  | UI, p-p |

Note: Values are measured with PRBS 2<sup>7</sup>–1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.



# XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing Characteristics

### **AC and DC Characteristics**

Table 3-13. Transmit

### **Over Recommended Operating Conditions**

| Symbol                                   | Description                      | Test Conditions | Min. | Тур. | Max. | Units |
|------------------------------------------|----------------------------------|-----------------|------|------|------|-------|
| T <sub>RF</sub>                          | Differential rise/fall time      | 20%-80%         | _    | 80   | —    | ps    |
| Z <sub>TX_DIFF_DC</sub>                  | Differential impedance           |                 | 80   | 100  | 120  | Ohms  |
| J <sub>TX_DDJ</sub> <sup>2, 3, 4</sup>   | Output data deterministic jitter |                 | _    | —    | 0.17 | UI    |
| J <sub>TX_TJ</sub> <sup>1, 2, 3, 4</sup> | Total output data jitter         |                 | _    | —    | 0.35 | UI    |

1. Total jitter includes both deterministic jitter and random jitter.

2. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Values are measured at 2.5 Gbps.

### Table 3-14. Receive and Jitter Tolerance

#### **Over Recommended Operating Conditions**

| Symbol                                | Description                                   | Test Conditions              | Min. | Тур. | Max. | Units |
|---------------------------------------|-----------------------------------------------|------------------------------|------|------|------|-------|
| RL <sub>RX_DIFF</sub>                 | Differential return loss                      | From 100 MHz<br>to 3.125 GHz | 10   | _    | _    | dB    |
| RL <sub>RX_CM</sub>                   | Common mode return loss                       | From 100 MHz<br>to 3.125 GHz | 6    | _    | _    | dB    |
| Z <sub>RX_DIFF</sub>                  | Differential termination resistance           |                              | 80   | 100  | 120  | Ohms  |
| J <sub>RX_DJ</sub> <sup>1, 2, 3</sup> | Deterministic jitter tolerance (peak-to-peak) |                              | —    |      | 0.37 | UI    |
| J <sub>RX_RJ</sub> <sup>1, 2, 3</sup> | Random jitter tolerance (peak-to-peak)        |                              | —    |      | 0.18 | UI    |
| J <sub>RX_SJ</sub> <sup>1, 2, 3</sup> | Sinusoidal jitter tolerance (peak-to-peak)    |                              | —    | _    | 0.10 | UI    |
| J <sub>RX_TJ</sub> <sup>1, 2, 3</sup> | Total jitter tolerance (peak-to-peak)         |                              | —    | _    | 0.65 | UI    |
| T <sub>RX_EYE</sub>                   | Receiver eye opening                          |                              | 0.35 |      |      | UI    |

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.



# LatticeECP3 sysCONFIG Port Timing Specifications

| Parameter            | r Description                                                                     |                    |      | Max. | Units  |
|----------------------|-----------------------------------------------------------------------------------|--------------------|------|------|--------|
| POR, Confi           | guration Initialization, and Wakeup                                               |                    |      |      | 1      |
|                      | Time from the Application of $V_{CC}$ , $V_{CCAUX}$ or $V_{CCIO8}^{*}$ (Whichever | Master mode        |      | 23   | ms     |
| t <sub>ICFG</sub>    | is the Last to Cross the POR Trip Point) to the Rising Edge of INITN              | Slave mode         | —    | 6    | ms     |
| t <sub>VMC</sub>     | Time from t <sub>ICFG</sub> to the Valid Master MCLK                              |                    | —    | 5    | μs     |
| t <sub>PRGM</sub>    | PROGRAMN Low Time to Start Configuration                                          |                    | 25   | —    | ns     |
| t <sub>PRGMRJ</sub>  | PROGRAMN Pin Pulse Rejection                                                      |                    | —    | 10   | ns     |
| t <sub>DPPINIT</sub> | Delay Time from PROGRAMN Low to INITN Low                                         |                    | —    | 37   | ns     |
| t <sub>DPPDONE</sub> | Delay Time from PROGRAMN Low to DONE Low                                          |                    | _    | 37   | ns     |
| t <sub>DINIT</sub> 1 | PROGRAMN High to INITN High Delay                                                 |                    | —    | 1    | ms     |
| t <sub>MWC</sub>     | Additional Wake Master Clock Signals After DONE Pin is High                       |                    | 100  | 500  | cycles |
| t <sub>CZ</sub>      | MCLK From Active To Low To High-Z                                                 |                    | —    | 300  | ns     |
| t <sub>IODISS</sub>  | User I/O Disable from PROGRAMN Low                                                |                    |      | 100  | ns     |
| t <sub>IOENSS</sub>  | User I/O Enabled Time from CCLK Edge During Wake-up Sequer                        | ice                |      | 100  | ns     |
| All Configu          | ration Modes                                                                      |                    |      |      |        |
| t <sub>SUCDI</sub>   | Data Setup Time to CCLK/MCLK                                                      |                    | 5    | —    | ns     |
| t <sub>HCDI</sub>    | Data Hold Time to CCLK/MCLK                                                       |                    | 1    | —    | ns     |
| t <sub>CODO</sub>    | CCLK/MCLK to DOUT in Flowthrough Mode                                             |                    | -0.2 | 12   | ns     |
| Slave Seria          | l                                                                                 |                    |      |      | 1      |
| t <sub>SSCH</sub>    | CCLK Minimum High Pulse                                                           | 5                  | —    | ns   |        |
| t <sub>SSCL</sub>    | CCLK Minimum Low Pulse                                                            |                    | 5    | _    | ns     |
|                      | Without encryption                                                                |                    | _    | 33   | MHz    |
| ICCLK                | CCLK Frequency                                                                    | With encryption    |      | 20   | MHz    |
| Master and           | Slave Parallel                                                                    | 1                  |      |      |        |
| t <sub>SUCS</sub>    | CSN[1:0] Setup Time to CCLK/MCLK                                                  |                    | 7    | —    | ns     |
| t <sub>HCS</sub>     | CSN[1:0] Hold Time to CCLK/MCLK                                                   |                    | 1    | —    | ns     |
| t <sub>SUWD</sub>    | WRITEN Setup Time to CCLK/MCLK                                                    |                    | 7    | _    | ns     |
| t <sub>HWD</sub>     | WRITEN Hold Time to CCLK/MCLK                                                     |                    | 1    | _    | ns     |
| t <sub>DCB</sub>     | CCLK/MCLK to BUSY Delay Time                                                      |                    | _    | 12   | ns     |
| t <sub>CORD</sub>    | CCLK to Out for Read Data                                                         |                    | _    | 12   | ns     |
| t <sub>BSCH</sub>    | CCLK Minimum High Pulse                                                           |                    | 6    | _    | ns     |
| t <sub>BSCL</sub>    | CCLK Minimum Low Pulse                                                            |                    | 6    | _    | ns     |
| t <sub>BSCYC</sub>   | Byte Slave Cycle Time                                                             |                    | 30   | —    | ns     |
|                      |                                                                                   | Without encryption |      | 33   | MHz    |
| <sup>†</sup> CCLK    | CCLK/MCLK Frequency                                                               | With encryption    |      | 20   | MHz    |
| Master and           | Slave SPI                                                                         |                    |      | 1    | 1      |
| t <sub>CFGX</sub>    | INITN High to MCLK Low                                                            |                    |      | 80   | ns     |
| t <sub>CSSPI</sub>   | INITN High to CSSPIN Low                                                          |                    | 0.2  | 2    | μs     |
| t <sub>SOCDO</sub>   | MCLK Low to Output Valid                                                          |                    |      | 15   | ns     |
| t <sub>CSPID</sub>   | CSSPIN[0:1] Low to First MCLK Edge Setup Time                                     |                    | 0.3  |      | μs     |
| ,                    |                                                                                   | Without encryption |      | 33   | MHz    |
| <sup>†</sup> CCLK    | CCLK Frequency                                                                    | With encryption    |      | 20   | MHz    |
| t <sub>SSCH</sub>    | CCLK Minimum High Pulse                                                           |                    | 5    | _    | ns     |

### **Over Recommended Operating Conditions**



# sysl/O Differential Electrical Characteristics

# Transition Reduced LVDS (TRLVDS DC Specification)

### **Over Recommended Operating Conditions**

| Symbol           | Description                       | Min. | Nom. | Max.  | Units |
|------------------|-----------------------------------|------|------|-------|-------|
| V <sub>CCO</sub> | Driver supply voltage (+/- 5%)    | 3.14 | 3.3  | 3.47  | V     |
| V <sub>ID</sub>  | Input differential voltage        | 150  | _    | 1200  | mV    |
| V <sub>ICM</sub> | Input common mode voltage         | 3    | _    | 3.265 | V     |
| V <sub>CCO</sub> | Termination supply voltage        | 3.14 | 3.3  | 3.47  | V     |
| R <sub>T</sub>   | Termination resistance (off-chip) | 45   | 50   | 55    | Ohms  |

Note: LatticeECP3 only supports the TRLVDS receiver.



# Mini LVDS

### **Over Recommended Operating Conditions**

| Parameter Symbol                | Description                                                       | Min.                      | Тур. | Max.                      | Units |
|---------------------------------|-------------------------------------------------------------------|---------------------------|------|---------------------------|-------|
| Z <sub>O</sub>                  | Single-ended PCB trace impedance                                  | 30                        | 50   | 75                        | Ohms  |
| R <sub>T</sub>                  | Differential termination resistance                               | 50                        | 100  | 150                       | Ohms  |
| V <sub>OD</sub>                 | Output voltage, differential,  V <sub>OP</sub> - V <sub>OM</sub>  | 300                       | _    | 600                       | mV    |
| V <sub>OS</sub>                 | Output voltage, common mode, $ V_{OP} + V_{OM} /2$                | 1                         | 1.2  | 1.4                       | V     |
| $\Delta V_{OD}$                 | Change in V <sub>OD</sub> , between H and L                       | —                         | _    | 50                        | mV    |
| $\Delta V_{ID}$                 | Change in V <sub>OS</sub> , between H and L                       | —                         | _    | 50                        | mV    |
| V <sub>THD</sub>                | Input voltage, differential,  V <sub>INP</sub> - V <sub>INM</sub> | 200                       | _    | 600                       | mV    |
| V <sub>CM</sub>                 | Input voltage, common mode, $ V_{INP} + V_{INM} /2$               | 0.3+(V <sub>THD</sub> /2) | _    | 2.1-(V <sub>THD</sub> /2) |       |
| T <sub>R</sub> , T <sub>F</sub> | Output rise and fall times, 20% to 80%                            | —                         | _    | 550                       | ps    |
| T <sub>ODUTY</sub>              | Output clock duty cycle                                           | 40                        | —    | 60                        | %     |

Note: Data is for 6 mA differential current drive. Other differential driver current options are available.



### Industrial

The following devices may have associated errata. Specific devices with associated errata will be notated with a footnote.

| Part Number         | Voltage | Grade | Power | Package <sup>1</sup> | Pins | Temp. | LUTs (K) |
|---------------------|---------|-------|-------|----------------------|------|-------|----------|
| LFE3-17EA-6FTN256I  | 1.2 V   | -6    | STD   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-7FTN256I  | 1.2 V   | -7    | STD   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-8FTN256I  | 1.2 V   | -8    | STD   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-6LFTN256I | 1.2 V   | -6    | LOW   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-7LFTN256I | 1.2 V   | -7    | LOW   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-8LFTN256I | 1.2 V   | -8    | LOW   | Lead-Free ftBGA      | 256  | IND   | 17       |
| LFE3-17EA-6MG328I   | 1.2 V   | -6    | STD   | Lead-Free csBGA      | 328  | IND   | 17       |
| LFE3-17EA-7MG328I   | 1.2 V   | -7    | STD   | Lead-Free csBGA      | 328  | IND   | 17       |
| LFE3-17EA-8MG328I   | 1.2 V   | -8    | STD   | Lead-Free csBGA      | 328  | IND   | 17       |
| LFE3-17EA-6LMG328I  | 1.2 V   | -6    | LOW   | Green csBGA          | 328  | IND   | 17       |
| LFE3-17EA-7LMG328I  | 1.2 V   | -7    | LOW   | Green csBGA          | 328  | IND   | 17       |
| LFE3-17EA-8LMG328I  | 1.2 V   | -8    | LOW   | Green csBGA          | 328  | IND   | 17       |
| LFE3-17EA-6FN484I   | 1.2 V   | -6    | STD   | Lead-Free fpBGA      | 484  | IND   | 17       |
| LFE3-17EA-7FN484I   | 1.2 V   | -7    | STD   | Lead-Free fpBGA      | 484  | IND   | 17       |
| LFE3-17EA-8FN484I   | 1.2 V   | -8    | STD   | Lead-Free fpBGA      | 484  | IND   | 17       |
| LFE3-17EA-6LFN484I  | 1.2 V   | -6    | LOW   | Lead-Free fpBGA      | 484  | IND   | 17       |
| LFE3-17EA-7LFN484I  | 1.2 V   | -7    | LOW   | Lead-Free fpBGA      | 484  | IND   | 17       |
| LFE3-17EA-8LFN484I  | 1.2 V   | -8    | LOW   | Lead-Free fpBGA      | 484  | IND   | 17       |

1. Green = Halogen free and lead free.

| Part Number         | Voltage | Grade <sup>1</sup> | Power | Package         | Pins | Temp. | LUTs (K) |
|---------------------|---------|--------------------|-------|-----------------|------|-------|----------|
| LFE3-35EA-6FTN256I  | 1.2 V   | -6                 | STD   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-7FTN256I  | 1.2 V   | -7                 | STD   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-8FTN256I  | 1.2 V   | -8                 | STD   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-6LFTN256I | 1.2 V   | -6                 | LOW   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-7LFTN256I | 1.2 V   | -7                 | LOW   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-8LFTN256I | 1.2 V   | -8                 | LOW   | Lead-Free ftBGA | 256  | IND   | 33       |
| LFE3-35EA-6FN484I   | 1.2 V   | -6                 | STD   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-7FN484I   | 1.2 V   | -7                 | STD   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-8FN484I   | 1.2 V   | -8                 | STD   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-6LFN484I  | 1.2 V   | -6                 | LOW   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-7LFN484I  | 1.2 V   | -7                 | LOW   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-8LFN484I  | 1.2 V   | -8                 | LOW   | Lead-Free fpBGA | 484  | IND   | 33       |
| LFE3-35EA-6FN672I   | 1.2 V   | -6                 | STD   | Lead-Free fpBGA | 672  | IND   | 33       |
| LFE3-35EA-7FN672I   | 1.2 V   | -7                 | STD   | Lead-Free fpBGA | 672  | IND   | 33       |
| LFE3-35EA-8FN672I   | 1.2 V   | -8                 | STD   | Lead-Free fpBGA | 672  | IND   | 33       |
| LFE3-35EA-6LFN672I  | 1.2 V   | -6                 | LOW   | Lead-Free fpBGA | 672  | IND   | 33       |
| LFE3-35EA-7LFN672I  | 1.2 V   | -7                 | LOW   | Lead-Free fpBGA | 672  | IND   | 33       |
| LFE3-35EA-8LFN672I  | 1.2 V   | -8                 | LOW   | Lead-Free fpBGA | 672  | IND   | 33       |

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.