E.J. Lattice Semiconductor Corporation - LFE3-95EA-6FN484C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11500
Number of Logic Elements/Cells	92000
Total RAM Bits	4526080
Number of I/O	295
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-95ea-6fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP3 Family Data Sheet Architecture

June 2013

Data Sheet DS1021

Architecture Overview

Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sys-DSP[™] Digital Signal Processing slices, as shown in Figure 2-1. The LatticeECP3-150 has four rows of DSP slices; all other LatticeECP3 devices have two rows of DSP slices. In addition, the LatticeECP3 family contains SERDES Quads on the bottom of the device.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2 Gbps SERDES (Serializer / Deserializer) channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The functionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by registers that are addressable during device operation. The registers in every quad can be programmed via the SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysl/O buffers. The sysl/O buffers of the LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3.

The LatticeECP3 registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). The PLL and DLL blocks are located at the end of the EBR/DSP rows.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family supports a sysCONFIG[™] port located in the corner between banks one and two, which allows for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The LatticeECP3 devices use 1.2 V as their core voltage.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-8. Clock Divider Connections

Clock Distribution Network

LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two high performance edge clocks are available on the top, left, and right edges of the device to support high speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock sources are fed throughout the chip via a clock distribution system.

Primary Clock Sources

LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, dedicated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection

Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or Generic DDR interfaces.

as, overflow, underflow and convergent rounding, etc.

- Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the LatticeECP2[™] sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-32. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs.

Table 2-11. PIO Signal List

Name	Туре	Description
INDD	Input Data	Register bypassed input. This is not the same port as INCK.
IPA, INA, IPB, INB	Input Data	Ports to core for input data
OPOSA, ONEGA ¹ , OPOSB, ONEGB ¹	Output Data	Output signals from core. An exception is the ONEGB port, used for tristate logic at the DQS pad.
CE	PIO Control	Clock enables for input and output block flip-flops.
SCLK	PIO Control	System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.
LSR	PIO Control	Local Set/Reset
ECLK1, ECLK2	PIO Control	Edge clock sources. Entire PIO selects one of two sources using mux.
ECLKDQSR ¹	Read Control	From DQS_STROBE, shifted strobe for memory interfaces only.
DDRCLKPOL ¹	Read Control	Ensures transfer from DQS domain to SCLK domain.
DDRLAT ¹	Read Control	Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat- apath.
DEL[3:0]	Read Control	Dynamic input delay control bits.
INCK	To Clock Distribution and PLL	PIO treated as clock PIO, path to distribute to primary clocks and PLL.
TS	Tristate Data	Tristate signal from core (SDR)
DQCLK0 ¹ , DQCLK1 ¹	Write Control	Two clocks edges, 90 degrees out of phase, used in output gearing.
DQSW ²	Write Control	Used for output and tristate logic at DQS only.
DYNDEL[7:0]	Write Control	Shifting of write clocks for specific DQS group, using 6:0 each step is approxi- mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). There is also a static control for this 8-bit setting, enabled with a memory cell.
DCNTL[6:0]	PIO Control	Original delay code from DDR DLL
DATAVALID ¹	Output Data	Status flag from DATAVALID logic, used to indicate when input data is captured in IOLOGIC and valid to core.
READ	For DQS_Strobe	Read signal for DDR memory interface
DQSI	For DQS_Strobe	Unshifted DQS strobe from input pad
PRMBDET	For DQS_Strobe	DQSI biased to go high when DQSI is tristate, goes to input logic block as well as core logic.
GSRN	Control from routing	Global Set/Reset

1. Signals available on left/right/top edges only.

2. Selected PIO.

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and top edges. The input register block for the bottom edge contains one element to register the input signal and no DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges only.

Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution

DQS Strobe and Transition Detect Logic

I/O Ring

*Includes shared configuration I/Os and dedicated configuration I/Os.

Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

Enhanced Configuration Options

LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and dualboot image support.

1. TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for details.

2. Dual-Boot Image Support

Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the LatticeECP3 device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the LatticeECP3 device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide.

External Resistor

LatticeECP3 devices require a single external, 10 kOhm \pm 1% value between the XRES pin and ground. Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the external resistor pad.

On-Chip Oscillator

Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCCLK is nominally 2.5 MHz. Table 2-16 lists all the available MCCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 3.1 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK frequency of 2.5 MHz.

This internal 130 MHz +/- 15% CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1, 4}$	Input or I/O Low Leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2 \text{ V})$	—	_	10	μΑ
I _{IH} ^{1, 3}	Input or I/O High Leakage	$(V_{CCIO} - 0.2 \text{ V}) < V_{IN} \leq 3.6 \text{ V}$	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	—	-210	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30	—	210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	—	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	_	—	210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	—	-210	μΑ
V _{BHT}	Bus Hold Trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V_{IL} (MAX)	—	V_{IH} (MIN)	V
C1	I/O Capacitance ²		_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, V_{CC} = 1.2 V, V_{IO} = 0 \text{ to } V_{IH} (MAX)$	_	5	7	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

3. Applicable to general purpose I/Os in top and bottom banks. 4. When used as V_{REF} maximum leakage= 25 μ A.

LatticeECP3 External Switching Characteristics ^{1, 2, 3, 13}

			-8 -7 -6						
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Clocks									
Primary Clock ⁶									
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-150EA	—	500	—	420	—	375	MHz
t _{w_PRI}	Clock Pulse Width for Primary Clock	ECP3-150EA	0.8	—	0.9	—	1.0		ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-150EA	—	300	_	330	—	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-150EA	—	250		280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
tw_pri	Pulse Width for Primary Clock	ECP3-70EA/95EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-70EA/95EA	_	360	_	370	_	380	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-70EA/95EA	—	310	_	320	—	330	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-35EA	—	500	—	420	—	375	MHz
tw_pri	Pulse Width for Primary Clock	ECP3-35EA	0.8	—	0.9	—	1.0	—	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-35EA	_	300	_	330	—	360	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-35EA	—	250	—	280	—	300	ps
f _{MAX_PRI}	Frequency for Primary Clock Tree	ECP3-17EA	—	500	_	420	—	375	MHz
t _{W_PRI}	Pulse Width for Primary Clock	ECP3-17EA	0.8	—	0.9	—	1.0	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Device	ECP3-17EA	_	310	_	340	—	370	ps
t _{SKEW_PRIB}	Primary Clock Skew Within a Bank	ECP3-17EA	—	220	_	230	—	240	ps
Edge Clock ⁶									
fMAX_EDGE	Frequency for Edge Clock	ECP3-150EA	—	500	—	420		375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-150EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-150EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-70EA/95EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-70EA/95EA	0.9	—	1.0	—	1.2	—	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-70EA/95EA	_	200	_	210	—	220	ps
fMAX_EDGE	Frequency for Edge Clock	ECP3-35EA	—	500	—	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-35EA	0.9	—	1.0	—	1.2	_	ns
tskew_edge_dqs	Edge Clock Skew Within an Edge of the Device	ECP3-35EA	_	200	_	210	—	220	ps
f _{MAX_EDGE}	Frequency for Edge Clock	ECP3-17EA	—	500	_	420	—	375	MHz
tw_edge	Clock Pulse Width for Edge Clock	ECP3-17EA	0.9	—	1.0	—	1.2	_	ns
t _{SKEW_EDGE_DQS}	Edge Clock Skew Within an Edge of the Device	ECP3-17EA	—	200	_	210	—	220	ps
Generic SDR									
General I/O Pin Par	ameters Using Dedicated Clock In	put Primary Clock W	Vithout Pl	LL ²					
t _{co}	Clock to Output - PIO Output Register	ECP3-150EA		3.9		4.3	_	4.7	ns
t _{SU}	Clock to Data Setup - PIO Input Register	ECP3-150EA	0.0	_	0.0		0.0	_	ns
t _H	Clock to Data Hold - PIO Input Register	ECP3-150EA	1.5	_	1.7	_	2.0		ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	ECP3-150EA	1.3	_	1.5	_	1.7	—	ns

Over Recommended Commercial Operating Conditions

Figure 3-7. DDR/DDR2/DDR3 Parameters

LatticeECP3 Internal Switching Characteristics^{1, 2, 5}

			8	_	7	-		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
PFU/PFF Logi	c Mode Timing							
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	—	0.147	_	0.163	_	0.179	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.281		0.335	_	0.379	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asynchronous)	—	0.593	—	0.674	—	0.756	ns
t _{LSRREC_PFU}	Asynchronous Set/Reset recovery time for PFU Logic		0.298		0.345		0.391	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.134	_	0.144	_	0.153		ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.097	_	-0.103	_	-0.109	_	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	_	0.068	_	0.075		ns
t _{HD_PFU}	Clock to D input hold time	0.019	_	0.013	_	0.015		ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	_	0.243	_	0.273	_	0.303	ns
PFU Dual Port	Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	0.710	—	0.803	—	0.897	ns
t _{SUDATA_PFU}	Data Setup Time	-0.137	_	-0.155	_	-0.174		ns
t _{HDATA_PFU}	Data Hold Time	0.188	_	0.217	_	0.246	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.227	_	-0.257	_	-0.286		ns
t _{HADDR_PFU}	Address Hold Time	0.240	_	0.275	_	0.310	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.055		-0.055	_	-0.063	_	ns
t _{HWREN_} PFU	Write/Read Enable Hold Time	0.059	_	0.059	_	0.071	_	ns
PIC Timing								
PIO Input/Out	out Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)		0.423		0.466		0.508	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	—	1.241	_	1.301	_	1.361	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.956		1.124		1.293		ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.225		0.184		0.240		ns
t _{COO_PIO}	Output Register Clock to Output Delay ⁴	-	1.09	-	1.16	-	1.23	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.220	_	0.185	_	0.150	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.085		-0.072		-0.058		ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.117	_	0.103	_	0.088	_	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.107	_	-0.094	_	-0.081	_	ns
EBR Timing								
t _{CO_EBR}	Clock (Read) to output from Address or Data	—	2.78	—	2.89	—	2.99	ns
t _{COO_EBR}	Clock (Write) to output from EBR output Register	—	0.31	—	0.32	—	0.33	ns
t _{SUDATA_EBR}	Setup Data to EBR Memory	-0.218	_	-0.227	_	-0.237	_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory	0.249		0.257		0.265	—	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory	-0.071		-0.070		-0.068		ns
t _{HADDR_EBR}	Hold Address to EBR Memory	0.118		0.098		0.077		ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory	-0.107	_	-0.106	_	-0.106	—	ns

Over Recommended Commercial Operating Conditions

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
4	Input clock frequency (CLKI,		Edge clock	2		500	MHz
'IN	CLKFB)		Primary clock ⁴	2		420	MHz
f	Output clock frequency (CLKOP,		Edge clock	4		500	MHz
OUT	CLKOS)		Primary clock ⁴	4		420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125		250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667	_	166	MHz
f _{VCO}	PLL VCO frequency			500	_	1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2		500	MHz
			Primary clock ⁴	2		420	MHz
AC Charac	teristics					-	
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	CLKOS at 50% setting)	$f_{OUT} \le 250 \text{ MHz}$	Primary clock	45	50	55	%
		f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8	_	_	ns
		$f_{OUT} \ge 420 \text{ MHz}$		—	_	200	ps
t _{OPJIT} 1	Output clock period jitter	420 MHz > $f_{OUT} \ge 100$ MHz		_	_	250	ps
		f _{OUT} < 100 MHz		—	_	0.025	UIPP
t _{SK}	Input clock to output clock skew when N/M = integer			_		500	ps
+ 2	Look time	2 to 25 MHz		—	_	200	us
LOCK		25 to 500 MHz		—		50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_		50	ns
t _{HI}	Input clock high time	90% to 90%		0.5	_	—	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	—	ns
t _{IPJIT}	Input clock period jitter			—	_	400	ps
+	Reset signal pulse width high, RSTK			10	_	_	ns
'RST	Reset signal pulse width high, RST			500	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

Figure 3-16. Jitter Transfer – 1.25 Gbps

Figure 3-17. Jitter Transfer – 622 Mbps

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter		_	_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—		dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

Figure 3-21. sysCONFIG Parallel Port Write Cycle

1. In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3-22. sysCONFIG Master Serial Port Timing

Pin Information Summary (Cont.)

Pin Information	n Summary		ECP3-95EA		ECP3-150EA		
Pin Ty	ре	484 fpBGA	672 fpBGA	1156 fpBGA	672 fpBGA	1156 fpBGA	
	Bank 0	21	30	43	30	47	
	Bank 1	18	24	39	24	43	
Emulated	Bank 2	8	12	13	12	18	
Differential I/O	Bank 3	20	23	33	23	37	
per Bank	Bank 6	22	25	33	25	37	
	Bank 7	11	16	18	16	24	
	Bank 8	12	12	12	12	12	
	Bank 0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	
Highspeed	Bank 2	6	9	9	9	15	
Differential I/O	Bank 3	9	12	16	12	21	
per Bank	Bank 6	11	14	16	14	21	
	Bank 7	9	12	13	12	18	
	Bank 8	0	0	0	0	0	
	Bank 0	42/21	60/30	86/43	60/30	94/47	
	Bank 1	36/18	48/24	78/39	48/24	86/43	
Total Single Ended/	Bank 2	28/14	42/21	44/22	42/21	66/33	
Total Differential	Bank 3	58/29	71/35	98/49	71/35	116/58	
I/O per Bank	Bank 6	67/33	78/39	98/49	78/39	116/58	
	Bank 7	40/20	56/28	62/31	56/28	84/42	
	Bank 8	24/12	24/12	24/12	24/12	24/12	
	Bank 0	3	5	7	5	7	
	Bank 1	3	4	7	4	7	
	Bank 2	2	3	3	3	4	
DDR Groups Bonded	Bank 3	3	4	5	4	7	
per Bank	Bank 6	4	4	5	4	7	
	Bank 7	3	4	4	4	6	
	Configuration Bank8	0	0	0	0	0	
SERDES Quads		1	2	3	2	4	

1. These pins must remain floating on the board.

Part Number	Voltage	Grade ¹	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672C	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-7FN672C	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-8FN672C	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-6LFN672C	1.2 V	-6	LOW	Lead-Free fpBGA	672	COM	149
LFE3-150EA-7LFN672C	1.2 V	-7	LOW	Lead-Free fpBGA	672	COM	149
LFE3-150EA-8LFN672C	1.2 V	-8	LOW	Lead-Free fpBGA	672	COM	149
LFE3-150EA-6FN1156C	1.2 V	-6	STD	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-7FN1156C	1.2 V	-7	STD	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-8FN1156C	1.2 V	-8	STD	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-6LFN1156C	1.2 V	-6	LOW	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-7LFN1156C	1.2 V	-7	LOW	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-8LFN1156C	1.2 V	-8	LOW	Lead-Free fpBGA	1156	COM	149

1. For ordering information on -9 speed grade devices, please contact your Lattice Sales Representative.

Part Number	Voltage	Grade	Power	Package	Pins	Temp.	LUTs (K)
LFE3-150EA-6FN672CTW ¹	1.2 V	-6	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-7FN672CTW ¹	1.2 V	-7	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-8FN672CTW ¹	1.2 V	-8	STD	Lead-Free fpBGA	672	COM	149
LFE3-150EA-6FN1156CTW1	1.2 V	-6	STD	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-7FN1156CTW ¹	1.2 V	-7	STD	Lead-Free fpBGA	1156	COM	149
LFE3-150EA-8FN1156CTW1	1.2 V	-8	STD	Lead-Free fpBGA	1156	COM	149

1. Note: Specifications for the LFE3-150EA-*sp*FN*pkg*CTW and LFE3-150EA-*sp*FN*pkg*ITW devices, (where *sp* is the speed and *pkg* is the package), are the same as the LFE3-150EA-*sp*FN*pkg*C and LFE3-150EA-*sp*FN*pkg*I devices respectively, except as specified below.

• The CTC (Clock Tolerance Circuit) inside the SERDES hard PCS in the TW device is not functional but it can be bypassed and implemented in soft IP.

• The SERDES XRES pin on the TW device passes CDM testing at 250 V.