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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Number of Logic Elements/Cells 92000
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Number of I/O 295

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 484-BBGA

Supplier Device Package 484-FPBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-95ea-7fn484i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/lfe3-95ea-7fn484i-4485125
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


2-3

Architecture
LatticeECP3 Family Data Sheet

Figure 2-2. PFU Diagram

Slice 
Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For 
PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. 
Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they 
enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as 
LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/
asynchronous), clock select, chip-select and wider RAM/ROM functions. 

Table 2-1. Resources and Modes Available per Slice

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for posi-
tive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent 
slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 
input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Slice

PFU BLock PFF Block

Resources Modes Resources Modes

Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 1 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 3 2 LUT4s Logic, ROM 2 LUT4s Logic, ROM

Slice 0

LUT4 &
CARRY

LUT4 &
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D D

Slice 1

LUT4 &
CARRY

LUT4 &
CARRY

Slice 2
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From
 Routing

To
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LUT4 LUT4

D D D D

FF FF FF FF FF FF
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond and 
ispLEVER design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125 ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The pri-
mary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources 
are connected to these muxes. Figure 2-12 shows the clock routing for one quadrant. Each quadrant mux is identi-
cal. If desired, any clock can be routed globally.

Figure 2-12. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-12).

Figure 2-13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-13. DCS Waveforms

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7

63:1 63:1 63:1 63:1 58:1 58:1 58:1 58:163:1 63:1

DCC DCC DCC DCC DCS DCSDCC DCC

8 Primary Clocks (CLK0 to CLK7) per Quadrant
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in 
Figure 2-19.

Figure 2-19. Edge Clock Sources

Edge Clock Routing
LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the 
implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, 
left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the 
device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge 
clock muxes on the left and right sides of the device. Figure 2-20 shows the selection muxes for these clocks.
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This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP perfor-
mance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation 
to the mixed parallel and serial implementation. 

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features
The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)

• Multiply (36 x 36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
—  Minimizes fabric use for common DSP and ALU functions
—  Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
—  Provides matching pipeline registers
—  Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
—  Dynamically selectable ALU OPCODE
—  Ternary arithmetic (addition/subtraction of three inputs)
—  Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
—  Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 
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ALU Flags
The sysDSP slice provides a number of flags from the ALU including:

• Equal to zero (EQZ)

• Equal to zero with mask (EQZM)

• Equal to one with mask (EQOM)

• Equal to pattern with mask (EQPAT)

• Equal to bit inverted pattern with mask (EQPATB)

• Accumulator Overflow (OVER)

• Accumulator Underflow (UNDER)

• Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock 
sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output 
register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and out-
put register.

Resources Available in the LatticeECP3 Family 
Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP3 family. Table 2-10 shows 
the maximum available EBR RAM Blocks in each LatticeECP3 device. EBR blocks, together with Distributed RAM 
can be used to store variables locally for fast DSP operations. 

Table 2-9. Maximum Number of DSP Slices in the LatticeECP3 Family 

Table 2-10. Embedded SRAM in the LatticeECP3 Family

Device DSP Slices 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

ECP3-17 12 48 24 6

ECP3-35 32 128 64 16

ECP3-70 64 256 128 32

ECP3-95 64 256 128 32

ECP3-150 160 640 320 80

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 

ECP3-17 38 700

ECP3-35 72 1327

ECP3-70 240 4420

ECP3-95 240 4420

ECP3-150 372 6850
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Input signals are fed from the sysI/O buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system 
clock by one of the registers in the single data rate sync register block. 

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS 
(ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data 
streams. Before entering the core, these two data streams are synchronized to the system clock to generate two 
data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox func-
tion takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. 
The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system 
clock before entering the core. Figure 2-30 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures ade-
quate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface 
mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchroni-
zation registers to the clock transfer and gearbox registers. 

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See 
Figure 2-37 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high 
speed DDR data from and to the DDR3 Memory. 

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more information, 
refer to the sysIO section of this data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on the 
bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank (Config-
uration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is 
not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. 
Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration Bank, 
has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. Figure 2-38 
shows the seven banks and their associated supplies. 

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter
Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential 
inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of 
sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input 
DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with 
settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 
1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set 
uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a 
DQS-12 group.

Hot Socketing
LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is 
high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. 
Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)
LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the 
devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-
150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

• PCI Express 1.1

• Ethernet (XAUI, GbE - 1000 Base CS/SX/LX and SGMII)

• Serial RapidIO

• SMPTE SDI (3G, HD, SD)

• CPRI

• SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a 
PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the stan-
dards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated pro-
tocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad 
with the use of dedicated, per channel 1, 2 and 11 rate dividers. Additionally, multiple quads can be arranged 
together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine 
multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage 
Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard
Data Rate 

(Mbps)
Number of 

General/Link Width Encoding Style

PCI Express 1.1 2500 x1, x2, x4 8b10b

Gigabit Ethernet 1250, 2500 x1 8b10b

SGMII 1250 x1 8b10b

XAUI 3125 x4 8b10b

Serial RapidIO Type I,
Serial RapidIO Type II,
Serial RapidIO Type III

1250,
2500,
3125

x1, x4 8b10b

CPRI-1,
CPRI-2,
CPRI-3,
CPRI-4

614.4,
1228.8,
2457.6,
3072.0

x1 8b10b

SD-SDI
(259M, 344M)

1431,
1771, 
270,
360,
540

x1 NRZI/Scrambled

HD-SDI
(292M)

1483.5,
1485 x1 NRZI/Scrambled

3G-SDI
(424M)

2967,
2970 x1 NRZI/Scrambled

SONET-STS-32 155.52 x1 N/A

SONET-STS-122 622.08 x1 N/A

SONET-STS-482 2488 x1 N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.
2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.
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LVDS25E
The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS 
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one 
possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

LVCMOS33D
All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external 
resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V 
VCCIO. The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 
4 mA, 8 mA, 16 mA or 20 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/–5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/–1%) 158 

RP Driver Parallel Resistor (+/–1%) 140 

RT Receiver Termination (+/–1%) 100 

VOH Output High Voltage 1.43 V

VOL Output Low Voltage 1.07 V

VOD Output Differential Voltage 0.35 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 6.03 mA

+ 
- 

RS=158 Ohms
(±1%)

RS=158 Ohms
(±1%)

RP = 140 Ohms
(±1%)

RT = 100 Ohms
(±1%)

OFF-chip 

Transmission line, Zo = 100 Ohm differential 

VCCIO = 2.5 V (±5%)

8 mA

VCCIO = 2.5 V (±5%)

ON-chip OFF-chip ON-chip

8 mA
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fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-35EA 683 — 688 — 690 — ps

tDVAGDDR Data Valid After CLK ECP3-35EA 683 — 688 — 690 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-17EA 683 — 688 — 690 — ps

tDVAGDDR Data Valid After CLK ECP3-17EA 683 — 688 — 690 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data Aligned at Pin (GDDRX1_TX.SCLK.Aligned)10 

tDIBGDDR Data Invalid Before Clock ECP3-150EA — 335 — 338 — 341 ps

tDIAGDDR Data Invalid After Clock ECP3-150EA — 335 — 338 — 341 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-70EA/95EA — 339 — 343 — 347 ps

tDIAGDDR Data Invalid After Clock ECP3-70EA/95EA — 339 — 343 — 347 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-35EA — 322 — 320 — 321 ps

tDIAGDDR Data Invalid After Clock ECP3-35EA — 322 — 320 — 321 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDIBGDDR Data Invalid Before Clock ECP3-17EA — 322 — 320 — 321 ps

tDIAGDDR Data Invalid After Clock ECP3-17EA — 322 — 320 — 321 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)10 

Left and Right Sides

tDVBGDDR Data Valid Before CLK ECP3-150EA 670 — 670 — 670 — ps

tDVAGDDR Data Valid After CLK ECP3-150EA 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-70EA/95EA 657 — 652 — 650 — ps

tDVAGDDR Data Valid After CLK ECP3-70EA/95EA 657 — 652 — 650 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70EA/95EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-35EA 670 — 675 — 676 — ps

tDVAGDDR Data Valid After CLK ECP3-35EA 670 — 675 — 676 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-35EA — 250 — 250 — 250 MHz

tDVBGDDR Data Valid Before CLK ECP3-17EA 670 — 670 — 670 — ps

tDVAGDDR Data Valid After CLK ECP3-17EA 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-17EA — 250 — 250 — 250 MHz

Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX2_TX.Aligned)

Left and Right Sides

tDIBGDDR Data Invalid Before Clock All ECP3EA Devices — 200 — 210 — 220 ps

tDIAGDDR Data Invalid After Clock All ECP3EA Devices — 200 — 210 — 220 ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 500 — 420 — 375 MHz

Generic DDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin  Using DQSDLL (GDDRX2_TX.DQSDLL.Centered)11

Left and Right Sides 

tDVBGDDR Data Valid Before CLK All ECP3EA Devices 400 — 400 — 431 — ps

tDVAGDDR Data Valid After CLK All ECP3EA Devices 400 — 400 — 432 — ps

fMAX_GDDR DDRX2 Clock Frequency All ECP3EA Devices — 400 — 400 — 375 MHz

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1

D4

tSU

tACCESS tACCESS tACCESS

tH

D2 D3 D4

D0 D1 D2Data from Prev Read
or Write

Three consecutive writes to A0

D3DOA

DIA

ADA

WEA

CSA

CLKA

tACCESS



3-39

DC and Switching Characteristics
LatticeECP3 Family Data Sheet

SERDES High Speed Data Receiver 
Table 3-9. Serial Input Data Specifications

Input Data Jitter Tolerance
A receiver’s ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface stan-
dards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for differ-
ent jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type. 

Table 3-10. Receiver Total Jitter Tolerance Specification

Symbol Description Min. Typ. Max. Units

RX-CIDS
Stream of nontransitions1 
(CID = Consecutive Identical Digits) @ 10-12 BER

3.125 G — — 136

Bits 

2.5 G — — 144

1.485 G — — 160

622 M — — 204

270 M — — 228

150 M — — 296

VRX-DIFF-S Differential input sensitivity 150 — 1760 mV, p-p 

VRX-IN Input levels 0 — VCCA +0.54 V

VRX-CM-DC Input common mode range (DC coupled) 0.6 — VCCA V 

VRX-CM-AC Input common mode range (AC coupled)3 0.1 — VCCA +0.2 V

TRX-RELOCK SCDR re-lock time2 — 1000 — Bits

ZRX-TERM Input termination 50/75 Ohm/High Z –20% 50/75/HiZ +20% Ohms

RLRX-RL Return loss (without package) 10 — — dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.
2. This is the typical number of bit times to re-lock to a new phase or frequency within +/– 300 ppm, assuming 8b10b encoded data.
3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS inter-

faces are generally found in 622 Mbps SERDES devices.
4. Up to 1.76 V.

Description Frequency Condition Min. Typ. Max. Units

Deterministic

3.125 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

2.5 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

1.25 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

622 Mbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, 
room temperature.
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals3

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. These pins are dedicated inputs or can be used as general purpose I/O.
3. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 
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March 2010 01.6 Architecture Added Read-Before-Write information.

DC and Switching 
Characteristics

Added footnote #6 to Maximum I/O Buffer Speed table.

Corrected minimum operating conditions for input and output differential 
voltages in the Point-to-Point LVDS table.

Pinout Information Added pin information for the LatticeECP3-70EA and LatticeECP3-
95EA devices.

Ordering Information Added ordering part numbers for the LatticeECP3-70EA and 
LatticeECP3-95EA devices.

Removed dual mark information.

November 2009 01.5 Introduction Updated Embedded SERDES features.

Added SONET/SDH to Embedded SERDES protocols.

Architecture Updated Figure 2-4, General Purpose PLL Diagram.

Updated SONET/SDH to SERDES and PCS protocols.

Updated Table 2-13, SERDES Standard Support to include SONET/
SDH and updated footnote 2.

DC and Switching
Characterisitcs

Added footnote to ESD Performance table.

Updated SERDES Power Supply Requirements table and footnotes.

Updated Maximum I/O Buffer Speed table.

Updated Pin-to-Pin Peformance table.

Updated sysCLOCK PLL Timing table.

Updated DLL timing table.

Updated High-Speed Data Transmitter tables.

Updated High-Speed Data Receiver table.

Updated footnote for Receiver Total Jitter Tolerance Specification table.

Updated Periodic Receiver Jitter Tolerance Specification table.

Updated SERDES External Reference Clock Specification table.

Updated PCI Express Electrical and Timing AC and DC Characteristics.

Deleted Reference Clock table for PCI Express Electrical and Timing 
AC and DC Characteristics.

Updated SMPTE AC/DC Characteristics Transmit table.

Updated Mini LVDS table.

Updated RSDS table.

Added Supply Current (Standby) table for EA devices.

Updated Internal Switching Characteristics table.

Updated Register-to-Register Performance table.

Added HDMI Electrical and Timing Characteristics data.

Updated Family Timing Adders table.

Updated sysCONFIG Port Timing Specifications table.

Updated Recommended Operating Conditions table.

Updated Hot Socket Specifications table.

Updated Single-Ended DC table.

Updated TRLVDS table and figure.

Updated Serial Data Input Specifications table.

Updated HDMI Transmit and Receive table.

Ordering Information Added LFE3-150EA “TW” devices and footnotes to the Commercial and 
Industrial tables.
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