E·XFL Lattice Semiconductor Corporation - <u>LFE3-95EA-8FN484I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11500
Number of Logic Elements/Cells	92000
Total RAM Bits	4526080
Number of I/O	295
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-95ea-8fn484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks.

Table 2-4. PLL Blocks Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI
FDA [3:0]	I	Dynamic fine delay adjustment on CLKOS output
DRPAI[3:0]	I	Dynamic coarse phase shift, rising edge setting
DFPAI[3:0]	I	Dynamic coarse phase shift, falling edge setting

Delay Locked Loops (DLL)

In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device.

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the Delay chain.

The PD produces a binary number proportional to the phase and frequency difference between the reference and feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay

PLL/DLL Cascading

LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are:

- PLL to PLL supported
- PLL to DLL supported

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs.

For further information about the DLL, please see the list of technical documentation at the end of this data sheet.

PLL/DLL PIO Input Pin Connections

All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Note: Not every PLL has an associated DLL.

Clock Dividers

LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows the clock divider connections.

Figure 2-10. Primary Clock Sources for LatticeECP3-35

Note: Clock inputs can be configured in differential or single-ended mode.

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150

Note: Clock inputs can be configured in differential or single-ended mode.

This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation to the mixed parallel and serial implementation.

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features

The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

- Multiply (one 18 x 36, two 18 x 18 or four 9 x 9 Multiplies per Slice)
- Multiply (36 x 36 by cascading across two sysDSP slices)
- Multiply Accumulate (up to 18 x 36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18 x 18 Multiplies feed into an accumulator that can accumulate up to 52 bits)
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such

For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-26 shows the MULT sysDSP element.

Figure 2-26. MULT sysDSP Element

To FPGA Core

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-32. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs.

Table 2-11. PIO Signal List

Name	Туре	Description
INDD	Input Data	Register bypassed input. This is not the same port as INCK.
IPA, INA, IPB, INB	Input Data	Ports to core for input data
OPOSA, ONEGA ¹ , OPOSB, ONEGB ¹	Output Data	Output signals from core. An exception is the ONEGB port, used for tristate logic at the DQS pad.
CE	PIO Control	Clock enables for input and output block flip-flops.
SCLK	PIO Control	System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.
LSR	PIO Control	Local Set/Reset
ECLK1, ECLK2	PIO Control	Edge clock sources. Entire PIO selects one of two sources using mux.
ECLKDQSR ¹	Read Control	From DQS_STROBE, shifted strobe for memory interfaces only.
DDRCLKPOL ¹	Read Control	Ensures transfer from DQS domain to SCLK domain.
DDRLAT ¹	Read Control	Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat- apath.
DEL[3:0]	Read Control	Dynamic input delay control bits.
INCK	To Clock Distribution and PLL	PIO treated as clock PIO, path to distribute to primary clocks and PLL.
TS	Tristate Data	Tristate signal from core (SDR)
DQCLK0 ¹ , DQCLK1 ¹	Write Control	Two clocks edges, 90 degrees out of phase, used in output gearing.
DQSW ²	Write Control	Used for output and tristate logic at DQS only.
DYNDEL[7:0]	Write Control	Shifting of write clocks for specific DQS group, using 6:0 each step is approxi- mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). There is also a static control for this 8-bit setting, enabled with a memory cell.
DCNTL[6:0]	PIO Control	Original delay code from DDR DLL
DATAVALID ¹	Output Data	Status flag from DATAVALID logic, used to indicate when input data is captured in IOLOGIC and valid to core.
READ	For DQS_Strobe	Read signal for DDR memory interface
DQSI	For DQS_Strobe	Unshifted DQS strobe from input pad
PRMBDET	For DQS_Strobe	DQSI biased to go high when DQSI is tristate, goes to input logic block as well as core logic.
GSRN	Control from routing	Global Set/Reset

1. Signals available on left/right/top edges only.

2. Selected PIO.

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and top edges. The input register block for the bottom edge contains one element to register the input signal and no DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges only.

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

Package	ECP3-17	ECP3-35	ECP3-70	ECP3-95	ECP3-150
256 ftBGA	1	1	—	—	—
328 csBGA	2 channels	—	—	—	—
484 fpBGA	1	1	1	1	
672 fpBGA	—	1	2	2	2
1156 fpBGA	—	—	3	3	4

SERDES Block

A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS

As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, selects the polarity and passes the 8/10 bit data to the transmit SERDES channel.

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic.

LatticeECP3 Family Data Sheet DC and Switching Characteristics

April 2014

Data Sheet DS1021

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V_CC
Supply Voltage V_{CCAUX} $\ldots \ldots \ldots \ldots -0.5$ V to 3.75 V
Supply Voltage V_{CCJ}
Output Supply Voltage V_{CCIO} –0.5 V to 3.75 V
Input or I/O Tristate Voltage Applied $^4.$ –0.5 V to 3.75 V
Storage Temperature (Ambient)
Junction Temperature (T_J) +125 °C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and undershoot of -2 V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ²	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage, Terminating Resistor Switching Power Supply (SERDES)	3.135	3.465	V
V _{CCPLL}	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
V_{REF1} and V_{REF2}	Input Reference Voltage	0.5	1.7	V
V _{TT} ⁵	Termination Voltage	0.5	1.3125	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
SERDES External Pow	er Supply ⁶			
V	Input Buffer Power Supply (1.2 V)	1.14	1.26	V
V CCIB	Input Buffer Power Supply (1.5 V)	1.425	1.575	V
V	Output Buffer Power Supply (1.2 V)		1.26	V
V CCOB	Output Buffer Power Supply (1.5 V)	1.425	1.575	V
V _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	1.14	1.26	V

1. For correct operation, all supplies except V_{REF} and V_{TT} must be held in their valid operation range. This is true independent of feature usage.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC.} If V_{CCIO} or V_{CCJ} is set to 3.3 V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3.3 V.

5. If not used, V_{TT} should be left floating.

6. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for information on board considerations for SERDES power supplies.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Hot Socketing Specifications^{1, 2, 3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
IDK_HS⁴	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (Max.)		_	+/—1	mA
IDK⁵	Input or I/O Leakage Current	$0 \le V_{IN} < V_{CCIO}$		_	+/—1	mA
		$V_{CCIO} \le V_{IN} \le V_{CCIO} + 0.5V$	_	18		mA

1. $V_{CC},\,V_{CCAUX}$ and V_{CCIO} should rise/fall monotonically.

2. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} .

3. LVCMOS and LVTTL only.

4. Applicable to general purpose I/O pins located on the top and bottom sides of the device.

5. Applicable to general purpose I/O pins located on the left and right sides of the device.

Hot Socketing Requirements^{1, 2}

Description	Min.	Тур.	Max.	Units
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	-	8	mA

1. Assumes the device is powered down, all supplies grounded, both P and N inputs driven by CML driver with maximum allowed VCCOB (1.575 V), 8b10b data, internal AC coupling.

2. Each P and N input must have less than the specified maximum input current. For a 16-channel device, the total input current would be 8 mA*16 channels *2 input pins per channel = 256 mA

ESD Performance

Please refer to the LatticeECP3 Product Family Qualification Summary for complete qualification data, including ESD performance.

MLVDS25

The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

Table 3-5. MLVDS25 DC Conditions¹

		Тур	ical	
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage	1.52	1.60	V
V _{OL}	Output Low Voltage	0.98	0.90	V
V _{OD}	Output Differential Voltage	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

LatticeECP3 External Switching Characteristics (Continued)^{1, 2, 3, 13}

	-8		-8	-7		-6			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
Generic DDRX2 In	puts with Clock and Data (>10bits	s wide) are Aligned at I	Pin (GDD	RX2_RX	.ECLK.A	ligned)	1		
(No CLKDIV)									
Left and Right Side	es Using DLLCLKPIN for Clock Ir			0.005	1	0.005	1	0.005	
^t DVACLKGDDR	Data Setup Before CLK	ECP3-150EA		0.225		0.225		0.225	
	Data Hold After CLK	ECP3-150EA	0.775	-	0.775		0.775		
^T MAX_GDDR	DDRX2 Clock Frequency	ECP3-150EA	_	460	_	385	_	345	MHZ
^t DVACLKGDDR	Data Setup Before CLK	ECP3-70EA/95EA		0.225		0.225		0.225	UI
^t DVECLKGDDR	Data Hold After CLK	ECP3-70EA/95EA	0.775	—	0.775		0.775	—	UI
fMAX_GDDR	DDRX2 Clock Frequency	ECP3-70EA/95EA		460		385		311	MHZ
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA	_	0.210	—	0.210	—	0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790		0.790	—	0.790	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA	_	460	_	385	_	311	MHz
t _{DVACLKGDDR}	Data Setup Before CLK (Left and Right Sides)	ECP3-17EA	_	0.210	_	0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	—	0.790	—	0.790	—	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA		460		385		311	MHz
Top Side Using PC	LK Pin for Clock Input								
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-150EA		0.225		0.225		0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-150EA	0.775	—	0.775	—	0.775	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-150EA	_	235	—	170		130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-70EA/95EA	_	0.225	_	0.225	_	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-70EA/95EA	0.775	—	0.775	—	0.775	_	UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-70EA/95EA	_	235		170	—	130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-35EA	_	0.210		0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-35EA	0.790	—	0.790	—	0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-35EA		235		170		130	MHz
t _{DVACLKGDDR}	Data Setup Before CLK	ECP3-17EA		0.210		0.210		0.210	UI
t _{DVECLKGDDR}	Data Hold After CLK	ECP3-17EA	0.790	—	0.790		0.790		UI
f _{MAX_GDDR}	DDRX2 Clock Frequency	ECP3-17EA	_	235		170		130	MHz
Generic DDRX2 In Input	puts with Clock and Data (<10 Bit	ts Wide) Centered at P	in (GDDF	RX2_RX.I	DQS.Cen	tered) U	sing DQ	S Pin for	Clock
Left and Right Side	es								
t _{SUGDDR}	Data Setup Before CLK	All ECP3EA Devices	330	_	330		352		ps
t _{HOGDDR}	Data Hold After CLK	All ECP3EA Devices	330	—	330	—	352	_	ps
f _{MAX GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	_	375	MHz
Generic DDRX2 In	puts with Clock and Data (<10 Bit	ts Wide) Aligned at Pin	(GDDR)	(2_RX.D0	QS.Align	ed) Using	g DQS Pi	n for Clo	ck Input
Left and Right Side	es								
t _{DVACLKGDDR}	Data Setup Before CLK	All ECP3EA Devices	—	0.225	_	0.225	—	0.225	UI
t _{DVECLKGDDR}	Data Hold After CLK	All ECP3EA Devices	0.775	—	0.775	_	0.775	_	UI
f _{MAX GDDR}	DDRX2 Clock Frequency	All ECP3EA Devices	_	400	_	400	—	375	MHz
Generic DDRX1 O	utput with Clock and Data (>10 B	its Wide) Centered at P	in (GDD	RX1_TX.	SCLK.Ce	ntered)10)		
t _{DVBGDDR}	Data Valid Before CLK	ECP3-150EA	670	—	670		670		ps
t _{DVAGDDR}	Data Valid After CLK	ECP3-150EA	670	—	670	—	670	—	ps
f _{MAX} GDDR	DDRX1 Clock Frequency	ECP3-150EA	—	250	—	250	—	250	MHz
	Data Valid Before CLK	ECP3-70EA/95EA	666	—	665		664	—	ps
	Data Valid After CLK	ECP3-70EA/95EA	666		665		664		ps
BIAGDDIT	1	1		I		l			· ·

Over Recommended Commercial Operating Conditions

LatticeECP3 Internal Switching Characteristics^{1, 2, 5} (Continued)

		_	8	-7		-6		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units.
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory	0.141		0.145		0.149		ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register	0.087		0.096		0.104		ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register	-0.066		-0.080		-0.094		ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.071		-0.070		-0.068		ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register	0.118	_	0.098	_	0.077	_	ns
DSP Block Tin	ning ³							
t _{SUI_DSP}	Input Register Setup Time	0.32	_	0.36	_	0.39	_	ns
t _{HI_DSP}	Input Register Hold Time	-0.17	_	-0.19	_	-0.21	_	ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.23	_	2.30	_	2.37	_	ns
t _{HP_DSP}	Pipeline Register Hold Time	-1.02	_	-1.09	_	-1.15	_	ns
t _{SUO_DSP}	Output Register Setup Time	3.09	_	3.22	_	3.34	_	ns
t _{HO_DSP}	Output Register Hold Time	-1.67	_	-1.76	_	-1.84	_	ns
t _{COI_DSP}	Input Register Clock to Output Time	_	3.05	_	3.35	_	3.73	ns
t _{COP_DSP}	Pipeline Register Clock to Output Time	_	1.30	_	1.47	_	1.64	ns
t _{COO_DSP}	Output Register Clock to Output Time	—	0.58	—	0.60	—	0.62	ns
t _{SUOPT_DSP}	Opcode Register Setup Time	0.31	_	0.35	_	0.39	_	ns
t _{HOPT_DSP}	Opcode Register Hold Time	-0.20	_	-0.24		-0.27	_	ns
t _{SUDATA_DSP}	Cascade_data through ALU to Output Register Setup Time	1.69		1.94		2.14		ns
t _{HPDATA_DSP}	Cascade_data through ALU to Output Register Hold Time	-0.58		-0.80		-0.97		ns

Over Recommended Commercial Operating Conditions

1. Internal parameters are characterized but not tested on every device.

2. Commercial timing numbers are shown. Industrial timing numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. DSP slice is configured in Multiply Add/Sub 18 x 18 mode.

4. The output register is in Flip-flop mode.

5. For details on –9 speed grade devices, please contact your Lattice Sales Representative.

LatticeECP3 Family Timing Adders^{1, 2, 3, 4, 5, 7}

Buffer Type	Description	-8	-7	-6	Units	
Input Adjusters						
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns	
LVDS25	LVDS, VCCIO = 2.5 V	0.00	-0.04	ns		
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns	
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	0.03	0.00	-0.04	ns	
RSDS25	RSDS, VCCIO = 2.5 V	0.03	-0.01	-0.03	ns	
PPLVDS	Point-to-Point LVDS	0.03	-0.01	-0.03	ns	
TRLVDS	Transition-Reduced LVDS	0.03	0.00	-0.04	ns	
Mini MLVDS	Mini LVDS	0.03	-0.01	-0.03	ns	
LVPECL33	LVPECL, Emulated, VCCIO = 3.3 V	0.17	0.23	0.28	ns	
HSTL18_I	HSTL_18 class I, VCCIO = 1.8 V	0.20	0.17	0.13	ns	
HSTL18_II	HSTL_18 class II, VCCIO = 1.8 V	0.20	0.17	0.13	ns	
HSTL18D_I	Differential HSTL 18 class I	0.20	0.17	0.13	ns	
HSTL18D_II	Differential HSTL 18 class II	0.20	0.17	0.13	ns	
HSTL15_I	HSTL_15 class I, VCCIO = 1.5 V	0.10	0.12	0.13	ns	
HSTL15D_I	Differential HSTL 15 class I	0.10	0.12	0.13	ns	
SSTL33_I	SSTL_3 class I, VCCIO = 3.3 V	0.17	0.23	0.28	ns	
SSTL33_II	SSTL_3 class II, VCCIO = 3.3 V	0.17	0.23	0.28	ns	
SSTL33D_I	Differential SSTL_3 class I	0.17	0.23	0.28	ns	
SSTL33D_II	Differential SSTL_3 class II	0.17	0.23	0.28	ns	
SSTL25_I	SSTL_2 class I, VCCIO = 2.5 V	0.12	0.14	0.16	ns	
SSTL25_II	SSTL_2 class II, VCCIO = 2.5 V	0.12	0.14	0.16	ns	
SSTL25D_I	Differential SSTL_2 class I	0.12	0.14	0.16	ns	
SSTL25D_II	Differential SSTL_2 class II	0.12	0.14	0.16	ns	
SSTL18_I	SSTL_18 class I, VCCIO = 1.8 V	0.08	0.06	0.04	ns	
SSTL18_II	SSTL_18 class II, VCCIO = 1.8 V	0.08	0.06	0.04	ns	
SSTL18D_I	Differential SSTL_18 class I	0.08	0.06	0.04	ns	
SSTL18D_II	Differential SSTL_18 class II	0.08	0.06	0.04	ns	
SSTL15	SSTL_15, VCCIO = 1.5 V	0.087	0.059	0.032	ns	
SSTL15D	Differential SSTL_15	0.087	0.059	0.032	ns	
LVTTL33	LVTTL, VCCIO = 3.3 V	0.07	0.07	0.07	ns	
LVCMOS33	LVCMOS, VCCIO = 3.3 V	0.07	0.07	0.07	ns	
LVCMOS25	LVCMOS, VCCIO = 2.5 V	0.00	0.00	0.00	ns	
LVCMOS18	LVCMOS, VCCIO = 1.8 V	-0.13	-0.13	-0.13	ns	
LVCMOS15	LVCMOS, VCCIO = 1.5 V	-0.07	-0.07	-0.07	ns	
LVCMOS12	LVCMOS, VCCIO = 1.2 V	-0.20	-0.19	-0.19	ns	
PCI33	PCI, VCCIO = 3.3 V	0.07	0.07	0.07	ns	
Output Adjusters						
LVDS25E	LVDS, Emulated, VCCIO = 2.5 V	1.02	1.14	1.26	ns	
LVDS25	LVDS, VCCIO = 2.5 V	-0.11	-0.07	-0.03	ns	
BLVDS25	BLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns	
MLVDS25	MLVDS, Emulated, VCCIO = 2.5 V	1.01	1.13	1.25	ns	

Over Recommended Commercial Operating Conditions

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Clock	Min.	Тур.	Max.	Units
£	Input clock frequency (CLKI,		Edge clock	2		500	MHz
'IN	CLKFB)		Primary clock ⁴	2		420	MHz
f	Output clock frequency (CLKOP,		Edge clock	4		500	MHz
OUT	CLKOS)		Primary clock ⁴	4		420	MHz
f _{OUT1}	K-Divider output frequency	CLKOK		0.03125		250	MHz
f _{OUT2}	K2-Divider output frequency	CLKOK2		0.667	_	166	MHz
f _{VCO}	PLL VCO frequency			500	_	1000	MHz
f _{PFD} ³	Phase detector input frequency		Edge clock	2		500	MHz
			Primary clock ⁴	2		420	MHz
AC Charac	teristics					-	
t _{PA}	Programmable delay unit			65	130	260	ps
			Edge clock	45	50	55	%
t _{DT}	Output clock duty cycle (CLKOS, at 50% setting)	$f_{OUT} \le 250 \text{ MHz}$	Primary clock	45	50	55	%
		f _{OUT} > 250 MHz	Primary clock	30	50	70	%
t _{CPA}	Coarse phase shift error (CLKOS, at all settings)			-5	0	+5	% of period
t _{OPW}	Output clock pulse width high or low (CLKOS)			1.8	_	_	ns
	Output clock period jitter	$f_{OUT} \ge 420 \text{ MHz}$		—	_	200	ps
t _{OPJIT} 1		420 MHz > $f_{OUT} \ge 100$ MHz		_	_	250	ps
		f _{OUT} < 100 MHz		—	_	0.025	UIPP
t _{SK}	Input clock to output clock skew when N/M = integer			_		500	ps
+ 2	Lock time	2 to 25 MHz		—	_	200	us
^I LOCK [®]		25 to 500 MHz		—		50	us
t _{UNLOCK}	Reset to PLL unlock time to ensure fast reset			_		50	ns
t _{HI}	Input clock high time	90% to 90%		0.5	_	—	ns
t _{LO}	Input clock low time	10% to 10%		0.5	_	—	ns
t _{IPJIT}	Input clock period jitter			—	_	400	ps
+	Reset signal pulse width high, RSTK			10	_	_	ns
'RST	Reset signal pulse width high, RST			500	_	_	ns

Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 4$ MHz. For $f_{PFD} < 4$ MHz, the jitter numbers may not be met in certain conditions. Please contact the factory for $f_{PFD} < 4$ MHz.

4. When using internal feedback, maximum can be up to 500 MHz.

Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37 UIpp of Deterministic jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55 UIpp. Therefore, the sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65 UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	—	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter			_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter			_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—		dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins					
For Left and Right Edges of the Device							
D[Edgo] [n 2]	А	DQ					
	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
D[Edgo] [n 1]	A	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
	В	DQ					
P[Edge] [n 1]	А	DQ					
	В	DQ					
D[Edgo] [n 2]	A	DQ					
r[Euge][II+2]	В	DQ					
For Top Edge of the Devi	ce						
P[Edge] [n-3]	А	DQ					
	В	DQ					
P[Edge] [n-2]	А	DQ					
	В	DQ					
P[Edge] [n-1]	А	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
i [⊏uge] [ii]	В	DQ					
P[Edge] [n+1]	А	DQ					
i [Euge] [iit i]	В	DQ					
P[Edge] [n 2]	А	DQ					
י נבטשכן נוידבן	В	DQ					

Note: "n" is a row PIC number.

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-70EA			
Pin Type		484 fpBGA	672 fpBGA	1156 fpBGA	
	Bank 0	21	30	43	
	Bank 1	18	24	39	
	Bank 2	8	12	13	
Emulated Differential	Bank 3	20	23	33	
	Bank 6	22	25	33	
	Bank 7	11	16	18	
	Bank 8	12	12	12	
	Bank 0	0	0	0	
	Bank 1	0	0	0	
	Bank 2	6	9	9	
High-Speed Differential I/	Bank 3	9	12	16	
	Bank 6	11	14	16	
	Bank 7	9	12	13	
	Bank 8	0	0	0	
	Bank 0	42/21	60/30	86/43	
	Bank 1	36/18	48/24	78/39	
Total Single-Ended/	Bank 2	28/14	42/21	44/22	
Total Differential I/O	Bank 3	58/29	71/35	98/49	
per Bank	Bank 6	67/33	78/39	98/49	
	Bank 7	40/20	56/28	62/31	
	Bank 8	24/12	24/12	24/12	
	Bank 0	3	5	7	
	Bank 1	3	4	7	
DDR Groups Bonded per Bank ¹	Bank 2	2	3	3	
	Bank 3	3	4	5	
	Bank 6	4	4	5	
	Bank 7	3	4	4	
	Configuration Bank 8	0	0	0	
SERDES Quads		1	2	3	

1. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Date	Version	Section	Change Summary
			LatticeECP3 Maximum I/O Buffer Speed table – Description column, references to VCCIO = 3.0V changed to 3.3V.
			Updated SERDES External Reference Clock Waveforms.
			Transmitter and Receiver Latency Block Diagram – Updated sections of the diagram to match descriptions on the SERDES/PCS Latency Break- down table.
		Pinout Information	"Logic Signal Connections" section heading renamed "Package Pinout Information". Software menu selections within this section have been updated.
			Signal Descriptions table – Updated description for V _{CCA} signal.
April 2012	02.2EA	Architecture	Updated first paragraph of Output Register Block section.
			Updated the information about sysIO buffer pairs below Figure 2-38.
			Updated the information relating to migration between devices in the Density Shifting section.
		DC and Switching Characteristics	Corrected the Definitions in the sysCLOCK PLL Timing table for $\ensuremath{t_{RST}}$
		Ordering Information	Updated topside marks with new logos in the Ordering Information sec- tion.
February 2012	02.1EA	All	Updated document with new corporate logo.
November 2011	02.0EA	Introduction	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Architecture	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		DC and Switching Characteristics	Updated LatticeECP3 Supply Current table power numbers.
			Typical Building Block Function Performance table, LatticeECP3 Exter- nal Switching Characteristics table, LatticeECP3 Internal Switching Characteristics table and LatticeECP3 Family Timing Adders: Added speed grade -9 and updated speed grade -8, -7 and -6 timing numbers.
		Pinout Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
		Ordering Information	Added information for LatticeECP3-17EA, 328-ball csBGA package.
			Added ordering information for low power devices and -9 speed grade devices.
July 2011	01.9EA	DC and Switching Characteristics	Removed ESD Performance table and added reference to LatticeECP3 Product Family Qualification Summary document.
			sysCLOCK PLL TIming table, added footnote 4.
			External Reference Clock Specification table – removed reference to VREF-CM-AC and removed footnote for VREF-CM-AC.
		Pinout Information	Pin Information Summary table: Corrected VCCIO Bank8 data for LatticeECP3-17EA 256-ball ftBGA package and LatticeECP-35EA 256-ball ftBGA package.
April 2011	01.8EA	Architecture	Updated Secondary Clock/Control Sources text section.
		DC and Switching Characteristics	Added data for 150 Mbps to SERDES Power Supply Requirements table.
			Updated Frequencies in Table 3-6 Serial Output Timing and Levels
			Added Data for 150 Mbps to Table 3-7 Channel Output Jitter
			Corrected External Switching Characteristics table, Description for DDR3 Clock Timing, $t_{J T}\!.$
			Corrected Internal Switching Characteristics table, Description for EBR Timing, t _{SUWBEN EBB} and t _{HWBEN EBB} .
			Added footnote 1 to sysConfig Port Timing Specifications table.
			Updated description for RX-CIDs to 150M in Table 3-9 Serial Input Data Specifications