
Lattice Semiconductor Corporation - LFE3-95EA-8LFN1156C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Features
 Higher Logic Density for Increased System 

Integration
• 17K to 149K LUTs
• 116 to 586 I/Os

 Embedded SERDES 
• 150 Mbps to 3.2 Gbps for Generic 8b10b, 10-bit 

SERDES, and 8-bit SERDES modes
• Data Rates 230 Mbps to 3.2 Gbps per channel 

for all other protocols
• Up to 16 channels per device: PCI Express, 

SONET/SDH, Ethernet (1GbE, SGMII, XAUI), 
CPRI, SMPTE 3G and Serial RapidIO

 sysDSP™
• Fully cascadable slice architecture
• 12 to 160 slices for high performance multiply 

and accumulate
• Powerful 54-bit ALU operations
• Time Division Multiplexing MAC Sharing
• Rounding and truncation
• Each slice supports

— Half 36x36, two 18x18 or four 9x9 multipliers
— Advanced 18x36 MAC and 18x18 Multiply-

Multiply-Accumulate (MMAC) operations
 Flexible Memory Resources

• Up to 6.85Mbits sysMEM™ Embedded Block 
RAM (EBR) 

• 36K to 303K bits distributed RAM
 sysCLOCK Analog PLLs and DLLs

• Two DLLs and up to ten PLLs per device
 Pre-Engineered Source Synchronous I/O

• DDR registers in I/O cells

• Dedicated read/write levelling functionality
• Dedicated gearing logic
• Source synchronous standards support

— ADC/DAC, 7:1 LVDS, XGMII
— High Speed ADC/DAC devices

• Dedicated DDR/DDR2/DDR3 memory with DQS 
support

• Optional Inter-Symbol Interference (ISI) 
correction on outputs

 Programmable sysI/O™ Buffer Supports 
Wide Range of Interfaces

• On-chip termination
• Optional equalization filter on inputs
• LVTTL and LVCMOS 33/25/18/15/12
• SSTL 33/25/18/15 I, II
• HSTL15 I and HSTL18 I, II
• PCI and Differential HSTL, SSTL
• LVDS, Bus-LVDS, LVPECL, RSDS, MLVDS

 Flexible Device Configuration 
• Dedicated bank for configuration I/Os
• SPI boot flash interface
• Dual-boot images supported
• Slave SPI
• TransFR™ I/O for simple field updates
• Soft Error Detect embedded macro

 System Level Support
• IEEE 1149.1 and IEEE 1532 compliant
• Reveal Logic Analyzer
• ORCAstra FPGA configuration utility
• On-chip oscillator for initialization & general use
• 1.2 V core power supply

Table 1-1. LatticeECP3™ Family Selection Guide
Device ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

LUTs (K) 17 33 67 92 149
sysMEM Blocks (18 Kbits) 38 72 240 240 372
Embedded Memory (Kbits) 700 1327 4420 4420 6850
Distributed RAM Bits (Kbits) 36 68 145 188 303
18 x 18 Multipliers 24 64 128 128 320
SERDES (Quad) 1 1 3 3 4
PLLs/DLLs 2 / 2 4 / 2 10 / 2 10 / 2 10 / 2
Packages and SERDES Channels/ I/O Combinations
328 csBGA (10 x 10 mm) 2 / 116
256 ftBGA (17 x 17 mm) 4 / 133 4 / 133   
484 fpBGA (23 x 23 mm) 4 / 222 4 / 295 4 / 295 4 / 295  
672 fpBGA (27 x 27 mm) 4 / 310 8 / 380 8 / 380 8 / 380
1156 fpBGA (35 x 35 mm)   12 / 490 12 / 490 16 / 586

LatticeECP3 Family Data Sheet
Introduction
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 
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Secondary Clock/Control Sources 
LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads 
and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are 
defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and 
SC4-SC7 are for the clock.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an 
input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7.

Figure 2-14. Secondary Clock Sources

Secondary Clock/Control Routing
Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock 
routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the 
LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the 
secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP 
slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 
20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight 
secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control 
signals. 
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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Figure 2-25. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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MMAC DSP Element
The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this 
case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and 
with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. 
The user can enable the input and pipeline registers, but the output register is always enabled. The output register 
is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered 
overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the 
MMAC sysDSP element. 

Figure 2-28. MMAC sysDSP Element
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MULTADDSUB DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-29 
shows the MULTADDSUB sysDSP element.

Figure 2-29. MULTADDSUB
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Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-32. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 
1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer to 
support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

Package ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

256 ftBGA 1 1 — — —

328 csBGA 2 channels — — — —

484 fpBGA 1 1 1 1

672 fpBGA — 1 2 2 2

1156 fpBGA — — 3 3 4

HDOUTP

HDOUTN

* 1/8 or 1/10 line rate

Deserializer
1:8/1:10

Word Alignment
8b10b Decoder

Serializer
8:1/10:1

8b10b
Encoder

SERDES PCS

Bypass

BypassBypassBypass

Transmitter

Receiver

Recovered Clock*

SERDES Transmit Clock*

Receive Clock

Transmit Clock

SERDES Transmit Clock

Receive Data

Transmit Data

Clock/Data
Recovery Clock

Data

RX_REFCLK

HDINP

HDINN
Equalizer

Bypass

Downsample
FIFO

Upsample
FIFO

Recovered Clock

TX PLLTX REFCLK

Polarity
Adjust

Polarity
Adjust

CTC

FPGA Core



2-47

Architecture
LatticeECP3 Family Data Sheet

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

The Diamond and ispLEVER design tools support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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tHPLL
Clock to Data Hold - PIO Input 
Register ECP3-70EA/95EA 0.7 — 0.7 — 0.8 — ns

tSU_DELPLL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-70EA/95EA 1.6 — 1.8 — 2.0 — ns

tH_DELPLL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-70EA/95EA 0.0 — 0.0 — 0.0 — ns

tCOPLL
Clock to Output - PIO Output 
Register ECP3-35EA — 3.2 — 3.4 — 3.6 ns

tSUPLL
Clock to Data Setup - PIO Input 
Register ECP3-35EA 0.6 — 0.7 — 0.8 — ns

tHPLL
Clock to Data Hold - PIO Input 
Register ECP3-35EA 0.3 — 0.3 — 0.4 — ns

tSU_DELPLL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-35EA 1.6 — 1.7 — 1.8 — ns

tH_DELPLL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-35EA 0.0 — 0.0 — 0.0 — ns

tCOPLL
Clock to Output - PIO Output 
Register ECP3-17EA — 3.0 — 3.3 — 3.5 ns

tSUPLL
Clock to Data Setup - PIO Input 
Register ECP3-17EA 0.6 — 0.7 — 0.8 — ns

tHPLL
Clock to Data Hold - PIO Input 
Register ECP3-17EA 0.3 — 0.3 — 0.4 — ns

tSU_DELPLL
Clock to Data Setup - PIO Input 
Register with Data Input Delay ECP3-17EA 1.6 — 1.7 — 1.8 — ns

tH_DELPLL
Clock to Data Hold - PIO Input 
Register with Input Data Delay ECP3-17EA 0.0 — 0.0 — 0.0 — ns

Generic DDR12

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_RX.SCLK.Centered) Using PCLK Pin for Clock 
Input

tSUGDDR Data Setup Before CLK All ECP3EA Devices 480 — 480 — 480 — ps

tHOGDDR Data Hold After CLK All ECP3EA Devices 480 — 480  — 480 — ps

fMAX_GDDR DDRX1 Clock Frequency All ECP3EA Devices — 250 — 250 — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.PLL.Aligned) Using PLLCLKIN Pin for 
Clock Input

Data Left, Right, and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All ECP3EA Devices — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK All ECP3EA Devices 0.775 — 0.775 — 0.775 — UI

fMAX_GDDR DDRX1 Clock Frequency All ECP3EA Devices — 250 — 250 — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.Aligned) Using DLL - CLKIN Pin for 
Clock Input

Data Left, Right and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All ECP3EA Devices — 0.225 — 0.225 — 0.225 UI

tDVECLKGDDR Data Hold After CLK All ECP3EA Devices 0.775 — 0.775  — 0.775 — UI

fMAX_GDDR DDRX1 Clock Frequency All ECP3EA Devices — 250 — 250 — 250 MHz

Generic DDRX1 Inputs with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_RX.DQS.Centered)  Using DQS Pin for Clock 
Input

tSUGDDR Data Setup After CLK All ECP3EA Devices 535 — 535 — 535 — ps

tHOGDDR Data Hold After CLK All ECP3EA Devices 535 — 535  — 535 — ps

fMAX_GDDR DDRX1 Clock Frequency All ECP3EA Devices — 250 — 250 — 250 MHz

Generic DDRX1 Inputs with Clock and Data (<10bits wide) Aligned at Pin (GDDRX1_RX.DQS.Aligned) Using DQS Pin for Clock Input

Data and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All ECP3EA Devices — 0.225 — 0.225 — 0.225 UI

LatticeECP3 External Switching Characteristics (Continued)1, 2, 3, 13

Over Recommended Commercial Operating Conditions

Parameter Description Device

–8 –7 –6

UnitsMin. Max. Min. Max. Min. Max.
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Timing Diagrams
Figure 3-9. Read/Write Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-10. Read/Write Mode with Input and Output Registers
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RSDS25 RSDS, VCCIO = 2.5 V –0.07 –0.04 –0.01 ns

PPLVDS Point-to-Point LVDS, True LVDS, VCCIO = 2.5 V or 3.3 V –0.22 –0.19 –0.16 ns

LVPECL33 LVPECL, Emulated, VCCIO = 3.3 V 0.67 0.76 0.86 ns

HSTL18_I HSTL_18 class I 8mA drive, VCCIO = 1.8 V 1.20 1.34 1.47 ns

HSTL18_II HSTL_18 class II, VCCIO = 1.8 V 0.89 1.00 1.11 ns

HSTL18D_I Differential HSTL 18 class I 8 mA drive 1.20 1.34 1.47 ns

HSTL18D_II Differential HSTL 18 class II 0.89 1.00 1.11 ns

HSTL15_I HSTL_15 class I 4 mA drive, VCCIO = 1.5 V 1.67 1.83 1.99 ns

HSTL15D_I Differential HSTL 15 class I 4 mA drive 1.67 1.83 1.99 ns

SSTL33_I SSTL_3 class I, VCCIO = 3.3 V 1.12 1.17 1.21 ns

SSTL33_II SSTL_3 class II, VCCIO = 3.3 V 1.08 1.12 1.15 ns

SSTL33D_I Differential SSTL_3 class I 1.12 1.17 1.21 ns

SSTL33D_II Differential SSTL_3 class II 1.08 1.12 1.15 ns

SSTL25_I SSTL_2 class I 8 mA drive, VCCIO = 2.5 V 1.06 1.19 1.31 ns

SSTL25_II SSTL_2 class II 16 mA drive, VCCIO = 2.5 V 1.04 1.17 1.31 ns

SSTL25D_I Differential SSTL_2 class I 8 mA drive 1.06 1.19 1.31 ns

SSTL25D_II Differential SSTL_2 class II 16 mA drive 1.04 1.17 1.31 ns

SSTL18_I SSTL_1.8 class I, VCCIO = 1.8 V 0.70 0.84 0.97 ns

SSTL18_II SSTL_1.8 class II 8 mA drive, VCCIO = 1.8 V 0.70 0.84 0.97 ns

SSTL18D_I Differential SSTL_1.8 class I 0.70 0.84 0.97 ns

SSTL18D_II Differential SSTL_1.8 class II 8 mA drive 0.70 0.84 0.97 ns

SSTL15 SSTL_1.5, VCCIO = 1.5 V 1.22 1.35 1.48 ns

SSTL15D Differential SSTL_15 1.22 1.35 1.48 ns

LVTTL33_4mA LVTTL 4 mA drive, VCCIO = 3.3V 0.25 0.24 0.23 ns

LVTTL33_8mA LVTTL 8 mA drive, VCCIO = 3.3V –0.06 –0.06 –0.07 ns

LVTTL33_12mA LVTTL 12 mA drive, VCCIO = 3.3V –0.01 –0.02 –0.02 ns

LVTTL33_16mA LVTTL 16 mA drive, VCCIO = 3.3V –0.07 –0.07 –0.08 ns

LVTTL33_20mA LVTTL 20 mA drive, VCCIO = 3.3V –0.12 –0.13 –0.14 ns

LVCMOS33_4mA LVCMOS 3.3 4 mA drive, fast slew rate 0.25 0.24 0.23 ns

LVCMOS33_8mA LVCMOS 3.3 8 mA drive, fast slew rate –0.06 –0.06 –0.07 ns

LVCMOS33_12mA LVCMOS 3.3 12 mA drive, fast slew rate –0.01 –0.02 –0.02 ns

LVCMOS33_16mA LVCMOS 3.3 16 mA drive, fast slew rate –0.07 –0.07 –0.08 ns

LVCMOS33_20mA LVCMOS 3.3 20 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS25_4mA LVCMOS 2.5 4 mA drive, fast slew rate 0.12 0.10 0.09 ns

LVCMOS25_8mA LVCMOS 2.5 8 mA drive, fast slew rate –0.05 –0.06 –0.07 ns

LVCMOS25_12mA LVCMOS 2.5 12 mA drive, fast slew rate 0.00 0.00 0.00 ns

LVCMOS25_16mA LVCMOS 2.5 16 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS25_20mA LVCMOS 2.5 20 mA drive, fast slew rate –0.12 –0.13 –0.14 ns

LVCMOS18_4mA LVCMOS 1.8 4 mA drive, fast slew rate 0.11 0.12 0.14 ns

LVCMOS18_8mA LVCMOS 1.8 8 mA drive, fast slew rate 0.11 0.12 0.14 ns

LVCMOS18_12mA LVCMOS 1.8 12 mA drive, fast slew rate –0.04 –0.03 –0.03 ns

LVCMOS18_16mA LVCMOS 1.8 16 mA drive, fast slew rate –0.04 –0.03 –0.03 ns

LatticeECP3 Family Timing Adders1, 2, 3, 4, 5, 7 (Continued)
Over Recommended Commercial Operating Conditions

Buffer Type Description –8 –7 –6 Units
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SERDES/PCS Block Latency
Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel 
clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

Figure 3-12. Transmitter and Receiver Latency Block Diagram

Item Description Min. Avg. Max. Fixed Bypass Units

Transmit Data Latency1

T1

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

T2 8b10b Encoder — — — 2 1 word clk

T3 SERDES Bridge transmit — — — 2 1 word clk

T4
Serializer: 8-bit mode — — — 15 + 1 — UI + ps

Serializer: 10-bit mode — — — 18 + 1 — UI + ps

T5
Pre-emphasis ON — — — 1 + 2 — UI + ps

Pre-emphasis OFF — — — 0 + 3 — UI + ps

Receive Data Latency2

R1
Equalization ON — — — 1 — UI + ps

Equalization OFF — — — 2 — UI + ps

R2
Deserializer: 8-bit mode — — — 10 + 3 — UI + ps

Deserializer: 10-bit mode — — — 12 + 3 — UI + ps

R3 SERDES Bridge receive — — — 2 — word clk

R4 Word alignment 3.1 — 4 — — word clk

R5 8b10b decoder — — — 1 — word clk

R6 Clock Tolerance Compensation 7 15 23 1 1 word clk

R7

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

1. 1 = –245 ps, 2 = +88 ps, 3 = +112 ps. 
2. 1 = +118 ps, 2 = +132 ps, 3 = +700 ps. 
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HDMI (High-Definition Multimedia Interface) Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-22. Transmit and Receive1, 2

Symbol Description

Spec. Compliance

UnitsMin. Spec. Max. Spec.

Transmit

Intra-pair Skew — 75 ps

Inter-pair Skew — 800 ps

TMDS Differential Clock Jitter — 0.25 UI

Receive

RT Termination Resistance 40 60 Ohms

VICM
Input AC Common Mode Voltage (50-Ohm Set-
ting) — 50 mV

TMDS Clock Jitter Clock Jitter Tolerance — 0.25 UI

1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum 
speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable 
equalizer before data/clock is forwarded to the LatticeECP3 device.
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Figure 3-30. SPI Configuration Waveforms

Figure 3-31. Slave SPI HOLDN Waveforms
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Switching Test Conditions
Figure 3-33 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-23. 

Figure 3-33. Output Test Load, LVTTL and LVCMOS Standards

Table 3-23. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0 pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M 0 pF VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1 M  0 pF VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 0 pF VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  0 pF VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT 

VT

R1

R2

 

CL* 

Test Point

*CL Includes Test Fixture and Probe Capacitance
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95EA ECP3-150EA

Pin Type 484 fpBGA 672 fpBGA 1156 fpBGA
672 

fpBGA
1156

fpBGA

Emulated 
Differential I/O 
per Bank

Bank 0 21 30 43 30 47

Bank 1 18 24 39 24 43

Bank 2 8 12 13 12 18

Bank 3 20 23 33 23 37

Bank 6 22 25 33 25 37

Bank 7 11 16 18 16 24

Bank 8 12 12 12 12 12

Highspeed 
Differential I/O 
per Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 6 9 9 9 15

Bank 3 9 12 16 12 21

Bank 6 11 14 16 14 21

Bank 7 9 12 13 12 18

Bank 8 0 0 0 0 0

Total Single Ended/ 
Total Differential
I/O per Bank

Bank 0 42/21 60/30 86/43 60/30 94/47

Bank 1 36/18 48/24 78/39 48/24 86/43

Bank 2 28/14 42/21 44/22 42/21 66/33

Bank 3 58/29 71/35 98/49 71/35 116/58

Bank 6 67/33 78/39 98/49 78/39 116/58

Bank 7 40/20 56/28 62/31 56/28 84/42

Bank 8 24/12 24/12 24/12 24/12 24/12

DDR Groups 
Bonded 
per Bank

Bank 0 3 5 7 5 7

Bank 1 3 4 7 4 7

Bank 2 2 3 3 3 4

Bank 3 3 4 5 4 7

Bank 6 4 4 5 4 7

Bank 7 3 4 4 4 6

Configuration 
Bank8 0 0 0 0 0

SERDES Quads 1 2 3 2 4

1.These pins must remain floating on the board.
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March 2010 01.6 Architecture Added Read-Before-Write information.

DC and Switching 
Characteristics

Added footnote #6 to Maximum I/O Buffer Speed table.

Corrected minimum operating conditions for input and output differential 
voltages in the Point-to-Point LVDS table.

Pinout Information Added pin information for the LatticeECP3-70EA and LatticeECP3-
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LatticeECP3-95EA devices.

Removed dual mark information.
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Architecture Updated Figure 2-4, General Purpose PLL Diagram.

Updated SONET/SDH to SERDES and PCS protocols.
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Updated SERDES Power Supply Requirements table and footnotes.

Updated Maximum I/O Buffer Speed table.

Updated Pin-to-Pin Peformance table.

Updated sysCLOCK PLL Timing table.

Updated DLL timing table.

Updated High-Speed Data Transmitter tables.

Updated High-Speed Data Receiver table.

Updated footnote for Receiver Total Jitter Tolerance Specification table.

Updated Periodic Receiver Jitter Tolerance Specification table.

Updated SERDES External Reference Clock Specification table.
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Deleted Reference Clock table for PCI Express Electrical and Timing 
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Updated SMPTE AC/DC Characteristics Transmit table.
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