
E: Lattice Semiconductor Corporation - LFE3-95EA-8LFN672I Datasheet

Welcome to E-XFL.COM

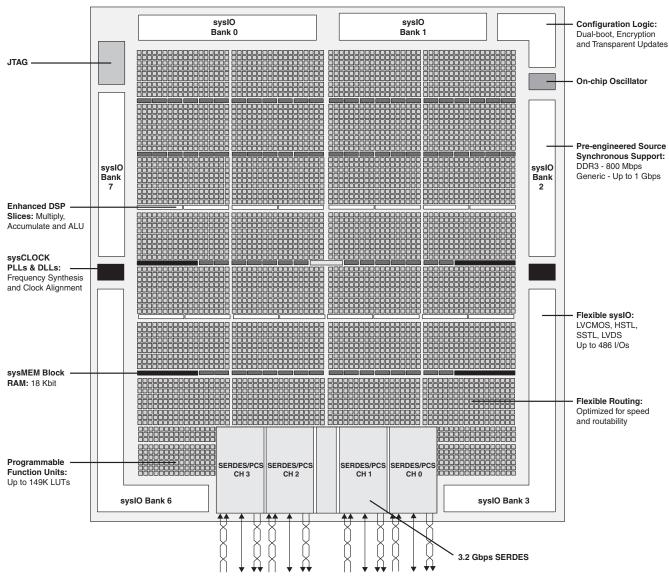
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details


Product Status	Active
Number of LABs/CLBs	11500
Number of Logic Elements/Cells	92000
Total RAM Bits	4526080
Number of I/O	380
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe3-95ea-8lfn672i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: There is no Bank 4 or Bank 5 in LatticeECP3 devices.

PFU Blocks

The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information about using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM

	SPR 16X4	PDPR 16X4
Number of slices	3	3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

The edge clocks on the top, left, and right sides of the device can drive the secondary clocks or general routing resources of the device. The left and right side edge clocks also can drive the primary clock network through the clock dividers (CLKDIV).

sysMEM Memory

LatticeECP3 devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18-Kbit RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers (via external PFUs).

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-7. FIFOs can be implemented in sysMEM EBR blocks by implementing support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths. For more information, please see TN1179, LatticeECP3 Memory Usage Guide.

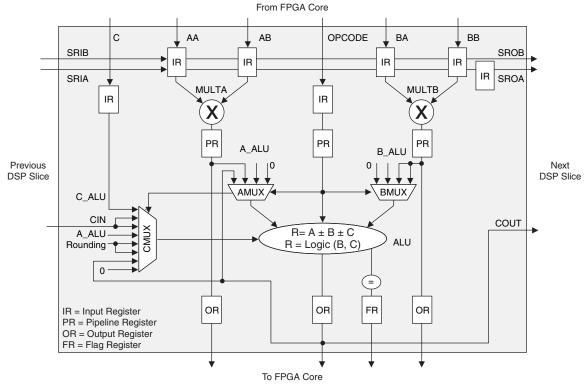
Table 2-7. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation


If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Figure 2-25. Detailed sysDSP Slice Diagram

Note: A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

The LatticeECP2 sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

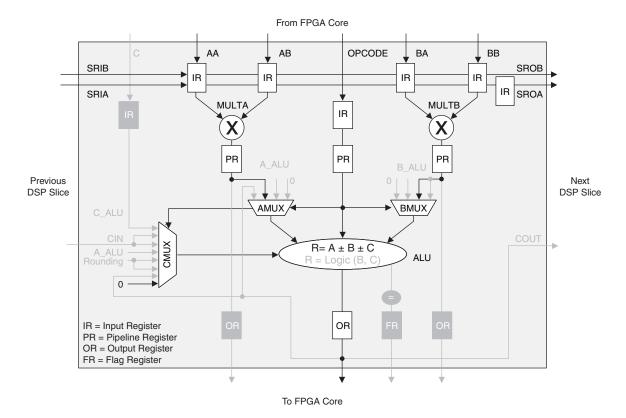
Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

 Table 2-8. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	_
MULTADDSUB	2	1	_
MULTADDSUBSUM	1 ¹	1/2	_

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

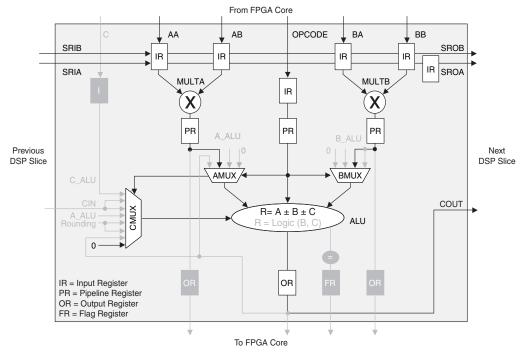
Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:


- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MULTADDSUB DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-29 shows the MULTADDSUB sysDSP element.

Figure 2-29. MULTADDSUB



MULTADDSUBSUM DSP Element

In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP element.

Figure 2-30. MULTADDSUBSUM Slice 0

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges

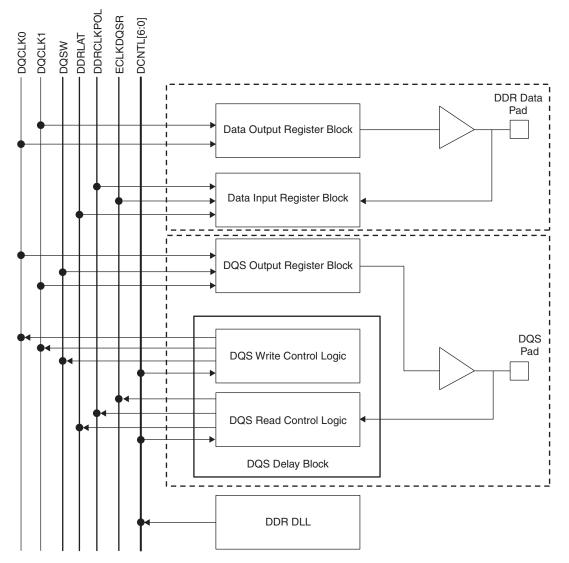
The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory interfaces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-35 shows the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS control logic block.

Bottom Edge

PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces.

Top Edge

PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.


The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR memories that support 10 bits of data.

PIO A	→	PADA "T" LVDS Pair
PIO B	·	PADB "C"
PIO A		PADA "T"
PIO B	· · ·	
PIO A		PADA "T"
PIO B	·	PADB "C"
PIO A	syslO Buffer Delay ◀	PADA "T" LVDS Pair
PIO B	 +	PADB "C"
PIO A		PADA "T" LVDS Pair
 PIO B	·	PADB "C"
PIO A		PADA "T" LVDS Pair
PIO B		PADB "C"

Figure 2-35. DQS Grouping on the Left, Right and Top Edges

Figure 2-37. DQS Local Bus

Polarity Control Logic

In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeECP3 family contains dedicated circuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the preamble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support

LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input register block.

Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter

Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a DQS-12 group.

Hot Socketing

LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)

LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express 1.1
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- Serial RapidIO
- SMPTE SDI (3G, HD, SD)
- CPRI
- SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad with the use of dedicated, per channel \div 1, \div 2 and \div 11 rate dividers. Additionally, multiple quads can be arranged together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage Guide.

LatticeECP3 Supply Current (Standby)^{1, 2, 3, 4, 5, 6}

			Турі	ical	
Symbol	Parameter	Device	-6L, -7L, -8L	-6, -7, -8	Units
		ECP-17EA	29.8	49.4	mA
		ECP3-35EA	53.7	89.4	mA
I _{CC}	Core Power Supply Current	ECP3-70EA	137.3	230.7	mA
		ECP3-95EA	137.3	230.7	mA
		ECP3-150EA	219.5	370.9	mA
		ECP-17EA	18.3	19.4	mA
		ECP3-35EA	19.6	23.1	mA
I _{CCAUX}	Auxiliary Power Supply Current	ECP3-70EA	26.5	32.4	mA
		ECP3-95EA	26.5	32.4	mA
		ECP3-150EA	37.0	45.7	mA
		ECP-17EA	0.0	0.0	mA
	CPLL PLL Power Supply Current (Per PLL)	ECP3-35EA	0.1	0.1	mA
I _{CCPLL}		ECP3-70EA	0.1	0.1	mA
		ECP3-95EA	0.1	0.1	mA
		ECP3-150EA	0.1	0.1	mA
		ECP-17EA	1.3	1.4	mA
		ECP3-35EA	1.3	1.4	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	ECP3-70EA	1.4	1.5	mA
		ECP3-95EA	1.4	1.5	mA
		ECP3-150EA	1.4	1.5	mA
I _{CCJ}	JTAG Power Supply Current	All Devices	2.5	2.5	mA
		ECP-17EA	6.1	6.1	mA
		ECP3-35EA	6.1	6.1	mA
I _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	ECP3-70EA	18.3	18.3	mA
		ECP3-95EA	18.3	18.3	mA
		ECP3-150EA	24.4	24.4	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see the list of technical documentation at the end of this data sheet.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the $V_{\mbox{CCIO}}$ or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

5. $T_J = 85$ °C, power supplies at nominal voltage.

6. To determine the LatticeECP3 peak start-up current data, use the Power Calculator tool.

Register-to-Register Performance^{1, 2, 3}

Function	–8 Timing	Units
18x18 Multiply/Accumulate (Input & Output Registers)	200	MHz
18x18 Multiply-Add/Sub (All Registers)	400	MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond or ispLEVER software.

3. For details on -9 speed grade devices, please contact your Lattice Sales Representative.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond and ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond and ispLEVER design tools can provide logic timing numbers at a particular temperature and voltage.

LatticeECP3 Maximum I/O Buffer Speed (Continued)^{1, 2, 3, 4, 5, 6}

Over Recommended Operating Conditions

Buffer	Description	Max.	Units
PCI33	PCI, V _{CCIO} = 3.3 V	66	MHz

1. These maximum speeds are characterized but not tested on every device.

2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.

3. LVCMOS timing is measured with the load specified in the Switching Test Conditions table of this document.

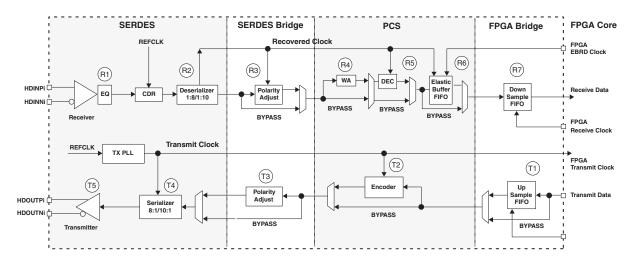
4. All speeds are measured at fast slew.

5. Actual system operation may vary depending on user logic implementation.

6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

SERDES/PCS Block Latency

Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3-12 shows the location of each block.


Table 3-8. SERDES/PCS Latency Breakdown

Item	Description	Min.	Avg.	Max.	Fixed	Bypass	Units
Transmi	it Data Latency ¹						1
	FPGA Bridge - Gearing disabled with different clocks	1	3	5	—	1	word clk
T1	FPGA Bridge - Gearing disabled with same clocks	_			3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk
T2	8b10b Encoder	_			2	1	word clk
Т3	SERDES Bridge transmit	_			2	1	word clk
T4	Serializer: 8-bit mode	_			15 + Δ1	—	UI + ps
14	Serializer: 10-bit mode				18 + ∆1	—	UI + ps
T5	Pre-emphasis ON	_			1 + ∆2	—	UI + ps
15	Pre-emphasis OFF				0 + ∆3	—	UI + ps
Receive	Data Latency ²				•	•	
R1	Equalization ON	_			Δ1	—	UI + ps
ΠI	Equalization OFF				Δ2	—	UI + ps
R2	Deserializer: 8-bit mode				10 + ∆3	—	UI + ps
ΠZ	Deserializer: 10-bit mode				12 + ∆3	—	UI + ps
R3	SERDES Bridge receive	_	—	—	2	—	word clk
R4	Word alignment	3.1		4	—	—	word clk
R5	8b10b decoder				1	—	word clk
R6	Clock Tolerance Compensation	7	15	23	1	1	word clk
	FPGA Bridge - Gearing disabled with different clocks	1	3	5	—	1	word clk
R7	FPGA Bridge - Gearing disabled with same clocks	—	—	—	3	1	word clk
	FPGA Bridge - Gearing enabled	1	3	5	—	—	word clk

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118$ ps, $\Delta 2 = +132$ ps, $\Delta 3 = +700$ ps.

Figure 3-16. Jitter Transfer – 1.25 Gbps

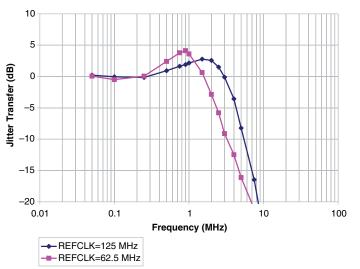
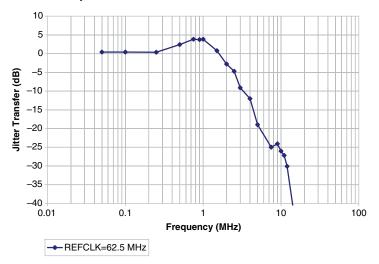



Figure 3-17. Jitter Transfer – 622 Mbps

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-15. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%		80	—	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter			—	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter		_	—	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-Ohm impedance (100-Ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-16. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	_	_	dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	_	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	_	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	_	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-Ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

5. Values are measured at 2.5 Gbps.

HDMI (High-Definition Multimedia Interface) Electrical and Timing Characteristics

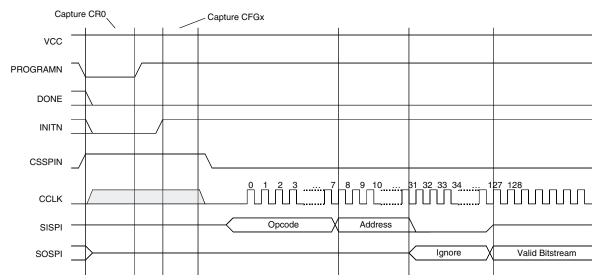
AC and DC Characteristics

Table 3-22. Transmit and Receive^{1, 2}

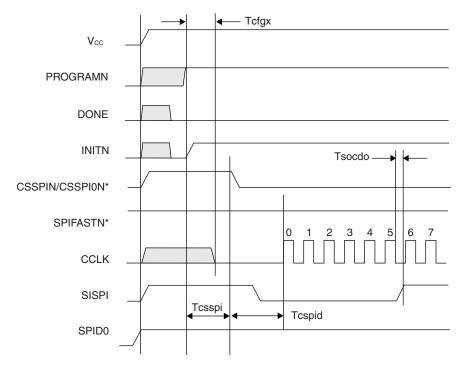
		Spec. Co		
Symbol	Description	Min. Spec.	Max. Spec.	Units
Transmit		•	•	
Intra-pair Skew		—	75	ps
Inter-pair Skew		—	800	ps
TMDS Differential Clock Jitter		—	0.25	UI
Receive		•	•	
R _T	Termination Resistance	40	60	Ohms
V _{ICM}	Input AC Common Mode Voltage (50-Ohm Set- ting)	—	50	mV
TMDS Clock Jitter	Clock Jitter Tolerance	—	0.25	UI

1. Output buffers must drive a translation device. Max. speed is 2 Gbps. If translation device does not modify rise/fall time, the maximum speed is 1.5 Gbps.

2. Input buffers must be AC coupled in order to support the 3.3 V common mode. Generally, HDMI inputs are terminated by an external cable equalizer before data/clock is forwarded to the LatticeECP3 device.


LatticeECP3 sysCONFIG Port Timing Specifications

Parameter	Description	Min.	Max.	Units	
	guration Initialization, and Wakeup			L	
	Time from the Application of V _{CC} , V _{CCAUX} or V _{CCIO8} * (Whichever Master mode is the Last to Cross the POR Trip Point) to the Rising Edge of			23	ms
t _{ICFG}	is the Last to Cross the POR Trip Point) to the Rising Edge of Slave n			6	ms
t _{VMC}	Time from t _{ICFG} to the Valid Master MCLK	•		5	μs
t _{PRGM}	PROGRAMN Low Time to Start Configuration		25	—	ns
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection			10	ns
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low			37	ns
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low			37	ns
t _{DINIT} 1	PROGRAMN High to INITN High Delay			1	ms
t _{MWC}	Additional Wake Master Clock Signals After DONE Pin is High		100	500	cycles
t _{CZ}	MCLK From Active To Low To High-Z			300	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low			100	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequer	nce		100	ns
All Configu	iration Modes				
t _{SUCDI}	Data Setup Time to CCLK/MCLK		5	—	ns
t _{HCDI}	Data Hold Time to CCLK/MCLK		1	—	ns
t _{CODO}	CCLK/MCLK to DOUT in Flowthrough Mode		-0.2	12	ns
Slave Seria	l				
t _{SSCH}	CCLK Minimum High Pulse	5	—	ns	
t _{SSCL}	CCLK Minimum Low Pulse	5	—	ns	
_		Without encryption		33	MHz
fcclk	CCLK Frequency	With encryption	_	20	MHz
Master and	Slave Parallel				
t _{sucs}	CSN[1:0] Setup Time to CCLK/MCLK		7	—	ns
t _{HCS}	CSN[1:0] Hold Time to CCLK/MCLK	1	—	ns	
t _{SUWD}	WRITEN Setup Time to CCLK/MCLK	7	—	ns	
t _{HWD}	WRITEN Hold Time to CCLK/MCLK	1	—	ns	
t _{DCB}	CCLK/MCLK to BUSY Delay Time	_	12	ns	
t _{CORD}	CCLK to Out for Read Data	_	12	ns	
t _{BSCH}	CCLK Minimum High Pulse	6	—	ns	
t _{BSCL}	CCLK Minimum Low Pulse	6	—	ns	
t _{BSCYC}	Byte Slave Cycle Time	30	—	ns	
fcclk	CCLK/MCLK Frequency With encryption With encryption			33 20	MHz MHz
Master and	Slave SPI	,,			
t _{CFGX}	INITN High to MCLK Low				ns
t _{CSSPI}	INITN High to CSSPIN Low	0.2	2	μs	
tSOCDO	MCLK Low to Output Valid		15	ns	
t _{CSPID}	CSSPIN[0:1] Low to First MCLK Edge Setup Time				μs
fcclk		Without encryption		33	MHz
	CCLK Frequency	With encryption	_	20	MHz
t _{SSCH}	CCLK Minimum High Pulse		5	—	ns


Over Recommended Operating Conditions

Pin Information Summary (Cont.)

Pin Information Summary		ECP3-17EA			ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	
	Bank 0	13	10	18	13	21	24	
	Bank 1	7	5	12	7	18	18	
	Bank 2	2	2	4	1	8	8	
Emulated Differential I/O per Bank	Bank 3	4	2	13	5	20	19	
Buint	Bank 6	5	1	13	6	22	20	
	Bank 7	6	9	10	6	11	13	
	Bank 8	12	12	12	12	12	12	
	Bank 0	0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	0	
	Bank 2	2	2	3	3	6	6	
Highspeed Differential I/O per Bank	Bank 3	5	4	9	4	9	12	
Buint	Bank 6	5	4	9	4	11	12	
	Bank 7	5	6	8	5	9	10	
	Bank 8	0	0	0	0	0	0	
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24	
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18	
	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14	
Total Single Ended/ Total Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31	
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32	
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23	
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12	
	Bank 0	2	1	3	2	3	4	
	Bank 1	1	0	2	1	3	3	
	Bank 2	0	0	1	0	2	2	
DDR Groups Bonded per	Bank 3	1	0	3	1	3	4	
Bank ²	Bank 6	1	0	3	1	4	4	
	Bank 7	1	2	2	1	3	3	
	Configuration Bank 8	0	0	0	0	0	0	
SERDES Quads		1	1	1	1	1	1	

These pins must remain floating on the board.
 Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.

Date	Version	Section	Change Summary
September 2009	01.4	Architecture	Corrected link in sysMEM Memory Block section.
			Updated information for On-Chip Programmable Termination and modi- fied corresponding figure.
			Added footnote 2 to On-Chip Programmable Termination Options for Input Modes table.
			Corrected Per Quadrant Primary Clock Selection figure.
		DC and Switching Characteristics	Modified -8 Timing data for 1024x18 True-Dual Port RAM (Read-Before- Write, EBR Output Registers)
			Added ESD Performance table.
			LatticeECP3 External Switching Characteristics table - updated data for t _{DIBGDDR} , t _{W_PRI} , t _{W_EDGE} and t _{SKEW_EDGE_DQS} .
			LatticeECP3 Internal Switching Characteristics table - updated data for $t_{COO\ PIO}$ and added footnote #4.
			sysCLOCK PLL Timing table - updated data for f _{OUT} .
			External Reference Clock Specification (refclkp/refclkn) table - updated data for $V_{REF\text{-}IN\text{-}SE}$ and $V_{REF\text{-}IN\text{-}DIFF}$
			LatticeECP3 sysCONFIG Port Timing Specifications table - updated data for t _{MWC} .
			Added TRLVDS DC Specification table and diagram.
			Updated Mini LVDS table.
August 2009	01.3	DC and Switching Characteristics	Corrected truncated numbers for V_{CCIB} and V_{CCOB} in Recommended Operating Conditions table.
July 2009	01.2	Multiple	Changed references of "multi-boot" to "dual-boot" throughout the data sheet.
		Architecture	Updated On-Chip Programmable Termination bullets.
			Updated On-Chip Termination Options for Input Modes table.
			Updated On-Chip Termination figure.
		DC and Switching Characteristics	Changed min/max data for FREF_PPM and added footnote 4 in SERDES External Reference Clock Specification table.
			Updated SERDES minimum frequency.
		Pinout Information	Corrected MCLK to be I/O and CCLK to be I in Signal Descriptions table
May 2009	01.1	All	Removed references to Parallel burst mode Flash.
		Introduction	Features - Changed 250 Mbps to 230 Mbps in Embedded SERDES bul- leted section and added a footnote to indicate 230 Mbps applies to 8b10b and 10b12b applications.
			Updated data for ECP3-17 in LatticeECP3 Family Selection Guide table.
			Changed embedded memory from 552 to 700 Kbits in LatticeECP3 Family Selection Guide table.
	•	Architecture	Updated description for CLKFB in General Purpose PLL Diagram.
			Corrected Primary Clock Sources text section.
			Corrected Secondary Clock/Control Sources text section.
			Corrected Secondary Clock Regions table.
			Corrected note below Detailed sysDSP Slice Diagram.
			Corrected Clock, Clock Enable, and Reset Resources text section.
			Corrected ECP3-17 EBR number in Embedded SRAM in the LatticeECP3 Family table.
			Added On-Chip Termination Options for Input Modes table.
			Updated Available SERDES Quads per LatticeECP3 Devices table.