

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	33MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	58
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91m55800a-33ai

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.9.11 APMC Interrupt Enable Register

Register Name	: APMC_	APMC_IER						
Access Type:	Write-or	nly						
Offset:	0x34							
31	30	29	28	27	26	25	24	
-	_	_	-	-	_	—	-	
23	22	21	20	19	18	17	16	
-	_	_	-	-	_	—	-	
15	14	13	12	11	10	9	8	
-	_	_	-	-	_	—	-	
7	6	5	4	3	2	1	0	
_	_	_	_	-	_	LOCK	MOSCS	

• MOSCS: Main Oscillator Interrupt Enable (Code Label APMC_MOSCS)

0 = No effect.

1 = Enables the Main Oscillator Stabilized Interrupt.

• LOCK: PLL Lock Interrupt Enable (Code Label APMC_PLL_LOCK)

0 = No effect.

1 = Enables the PLL Lock Interrupt.

12.9.12 APMC Interrupt Disable Register

Register Name: APMC_IDR

Access Type: Write-only

Offset: 0x38

31	30	29	28	27	26	25	24
-	-	_	-	-	_	-	—
23	22	21	20	19	18	17	16
_	-	-	Ι	-	-	Ι	_
15	14	13	12	11	10	9	8
-	-	_	-	-	_	-	_
7	6	5	4	3	2	1	0
_	_	_	_	_	_	LOCK	MOSCS

• MOSCS: Main Oscillator Interrupt Disable (Code Label APMC_MOSCS)

0 = No effect.

1 = Disables the Main Oscillator Stabilized Interrupt.

• LOCK: PLL Lock Interrupt Disable (Code Label APMC_PLL_LOCK)

0 = No effect.

1 = Disables the PLL Lock Interrupt.

72 AT91M5880A

13.3.12 RTC Valid Entry Register

Register Name:	RTC_VER
Access Type:	Read-only

Reset State: 0x0

Offset: 0x2C

31	30	29	28	27	26	25	24
_	_	_	_	_	_	_	_
23	22	21	20	19	18	17	16
-	_	-	-	—	_	-	_
15	14	13	12	11	10	9	8
_	_	-	-	—	_	-	_
7	6	5	4	3	2	1	0
_	_	_	_	NVCAL	NVTAL	NVC	NVT

• NVT: Non-Valid Time (Code Label RTC_NVT)

0 = No invalid data has been detected in RTC_TIMR.

1 = RTC_TIMR has contained invalid data since it was last programmed.

• NVC: Non-Valid Calendar (Code Label RTC_NVC)

0 = No invalid data has been detected in RTC_CALR.

1 = RTC_CALR has contained invalid data since it was last programmed.

• NVTAL: Non-Valid Time Alarm (Code Label RTC_NVTAL)

0 = No invalid data has been detected in RTC_TAR.

1 = RTC_TAR has contained invalid data since it was last programmed.

• NVCAL: Non-Valid Calendar Alarm (Code Label RTC_NVCAL)

0 = No invalid data has been detected in RTC_CAR.

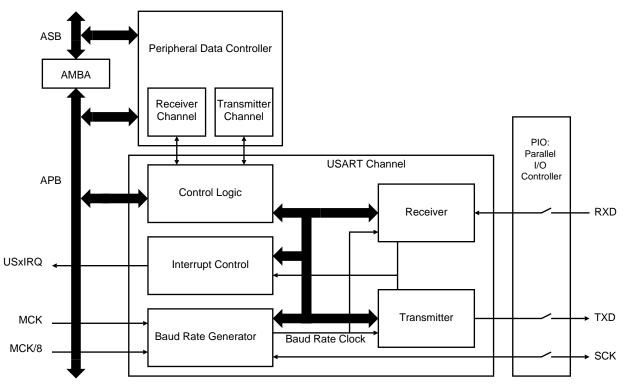
1 = RTC_CAR has contained invalid data since it was last programmed.

14.1.3 Name:	WD Control Registe WD_CR						
Access:	Write-on	ly					
Offset:	0x08						
31	30	29	28	27	26	25	24
_	-	_	-	-	_	_	-
23	22	21	20	19	18	17	16
_	_	—	-	-	_	_	-
15	14	13	12	11	10	9	8
	RSTKEY						
7	6	5	4	3	2	1	0
			RST	KEY			

• RSTKEY: Restart Key (Code Label WD_RSTKEY)

0xC071 = Watch Dog counter is restarted.

Other value = No effect.


18. USART: Universal Synchronous/ Asynchronous Receiver/Transmitter

The AT91M55800AA provides three identical, full-duplex, universal synchronous/asynchronous receiver/transmitters which are connected to the Peripheral Data Controller.

The main features are:

- Programmable Baud Rate Generator
- Parity, Framing and Overrun Error Detection
- Line Break Generation and Detection
- Automatic Echo, Local Loopback and Remote Loopback channel modes
- Multi-drop Mode: Address Detection and Generation
- Interrupt Generation
- Two Dedicated Peripheral Data Controller channels
- 5-, 6-, 7-, 8- and 9-bit character length

Figure 18-1. USART Block Diagram

- Software Trigger: Each channel has a software trigger, available by setting SWTRG in TC_CCR.
- SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the same effect as a software trigger. The SYNC signals of all channels are asserted simultaneously by writing TC_BCR (Block Control) with SYNC set.
- Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the counter value matches the RC value if CPCTRG is set in TC_CMR.

The Timer Counter channel can also be configured to have an external trigger. In Capture Mode, the external trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the system clock (MCK) period in order to be detected.

22.2.2 DAC	Mode Register						
Register Name:	DAC_MR						
Access Type:	Read/Writ	е					
Reset State:	0						
Offset:	0x04						
31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
			RES		TTRGSEL		TTRGEN

TTRGEN: Timer Trigger Enable (Code Label **DAC_TTRGEN_EN**)

TTRGEN	Selected TTRGEN	Code Label
0	The data written into the Data Holding Register (DAC_DHR) is transformed one main clock cycle later to the data output register (DAC_DOR).	erred DAC_TTRGEN_DIS
1	The data transfer from the DAC_DHR the DAC_DOR is synchronized by the timer trigger.	DAC_TTRGEN_EN

TTRGSEL: Timer Trigger Selection Only used if TTRGEN = 1

				Code Label
	TTRGSEL		Selected Timer Trigger	DAC_TTRGSEL
0	0	0	TIOAO	DAC_TRG_TIOA0
0	0	1	TIOA1	DAC_TRG_TIOA1
0	1	0	TIOA2	DAC_TRG_TIOA2
0	1	1	TIOA3	DAC_TRG_TIOA3
1	0	0	TIOA4	DAC_TRG_TIOA4
1	0	1	TIOA5	DAC_TRG_TIOA5
1	1	Х	Reserved	

RES: Resolution

RES	Selected RES	Code Label
0	10-bit resolution	DAC_10_BIT_RES
1	8-bit resolution	DAC_8_BIT_RES