

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	33MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	58
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-BGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91m55800a-33cj-999

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Description

Table 3-1. Pin Description

Module	Name	Function	Туре	Active Level	Comments
	A0 - A23	Address bus	Output	_	
	D0 - D15	Data bus	I/O	_	
	NCS0 - NCS7	Chip select	Output	Low	
	NWR0	Lower byte 0 write signal	Output	Low	Used in Byte-write option
	NWR1	Lower byte 1 write signal	Output	Low	Used in Byte-write option
	NRD	Read signal	Output	Low	Used in Byte-write option
EBI	NWE	Write enable	Output	Low	Used in Byte-select option
	NOE	Output enable	Output	Low	Used in Byte-select option
	NUB	Upper byte-select	Output	Low	Used in Byte-select option
	NLB	Lower byte-select	Output	Low	Used in Byte-select option
	NWAIT	Wait input	Input	Low	
	BMS	Boot mode select	Input	_	Sampled during reset
410	IRQ0 - IRQ5	External interrupt request	Input	_	PIO-controlled after reset
AIC	FIQ	Fast external interrupt request	Input	_	PIO-controlled after reset
	TCLK0 - TCLK5	Timer external clock	Input	_	PIO-controlled after reset
Timer	TIOA0 - TIOA5	Multipurpose timer I/O pin A	I/O	_	PIO-controlled after reset
	TIOB0 - TIOB5	Multipurpose timer I/O pin B	I/O	_	PIO-controlled after reset
	SCK0 - SCK2	External serial clock	I/O	-	PIO-controlled after reset
USART	TXD0 - TXD2	Transmit data output	Output	_	PIO-controlled after reset
	RXD0 - RXD2	Receive data input	Input	_	PIO-controlled after reset
	SPCK	SPI clock	I/O	_	PIO-controlled after reset
	MISO	Master in slave out	I/O	_	PIO-controlled after reset
SPI	MOSI	Master out slave in	I/O	_	PIO-controlled after reset
	NSS	Slave select	Input	Low	PIO-controlled after reset
	NPCS0 - NPCS3	Peripheral chip select	Output	Low	PIO-controlled after reset
	PA0 - PA29	Parallel I/O port A	I/O	_	Input after reset
PIO	PB0 - PB27	Parallel I/O port B	I/O	_	Input after reset
WD	NWDOVF	Watchdog timer overflow	Output	Low	Open drain
	AD0-AD7	Analog input channels 0 - 7	Analog in	_	
400	AD0TRIG	ADC0 external trigger	Input	_	PIO-controlled after reset
ADC	AD1TRIG	ADC1 external trigger	Input	_	PIO-controlled after reset
	ADVREF	Analog reference	Analog ref	_	

Figure 11-6 shows how to connect a 16-bit device without byte access (e.g. Flash) on NCS2.

Figure 11-6. Connection for a 16-bit Data Bus Without Byte-write Capability.

11.5 Boot on NCS0

Depending on the device and the BMS pin level during the reset, the user can select either an 8bit or 16-bit external memory device connected on NCS0 as the Boot Memory. In this case, EBI_CSR0 (Chip-select Register 0) is reset at the following configuration for chip select 0:

- 8 wait states (WSE = 1, NWS = 7)
- 8-bit or 16-bit data bus width, depending on BMS

Byte access type and number of data float time are respectively set to Byte-write Access and 0. With a nonvolatile memory interface, any value can be programmed for these parameters.

Before the remap command, the user can modify the chip select 0 configuration, programming the EBI_CSR0 with exact boot memory characteristics. The base address becomes effective after the remap command, but the new number of wait states can be changed immediately. This is useful if a boot sequence needs to be faster.

12.9.7 APMC Clock Generator Mode Register

Register Name	APMC_	CGMR					
Access Type:	Read/W	rite					
Reset Value:	0x0						
Offset:	0x20						
31	30	29	28	27	26	25	24
-	-			PLLC	OUNT		
23	22	21	20	19	18	17	16
			OSC	OUNT			
15	14	13	12	11	10	9	8
CS	SS	MUL					
7	6	5	4	3	2	1	0
_		PRES		_	MCKODS	MOSCEN	MOSCBYP

• MOSCBYP: Main Oscillator Bypass (Code Label APMC_MOSC_BYP)

0 = Crystal must be connected between XIN and XOUT.

1 = External clock must be provided on XIN.

• MOSCEN: Main Oscillator Enable (Code Label APMC_MOSC_EN)

0 = Main Oscillator is disabled.

1 = Main Oscillator is enabled.

• MCKODS: Master Clock Output Disable (Code Label APMC_MCKO_DIS)

0 = The MCKO pin is driven with the Master Clock (MCK).

1 = The MCKO pin is tri-stated.

• PRES: Prescaler Selection

PRES			Prescaler Selected	Code Label
0	0	0	None. Prescaler Output is the selected clock.	APMC_PRES_NONE
0	0	1	Selected clock is divided by 2	APMC_PRES_DIV2
0	1	0	Selected clock is divided by 4	APMC_PRES_DIV4
0	1	1	Selected clock is divided by 8	APMC_PRES_DIV8
1	0	0	Selected clock is divided by 16	APMC_PRES_DIV16
1	0	1	Selected clock is divided by 32	APMC_PRES_DIV32
1	1	0	Selected clock is divided by 64	APMC_PRES_DIV64
1	1	1	Reserved	-

Note: When operating in Bypass Mode, the Main Oscillator must be disabled. MOSCEN and MOSCBYP bits must never be set together.

13.3.5 RTC Time Alarm Register

Register Name:	RTC_TAR
Access Type:	Read/Write

0x10

Reset State: 0x0

Offset:

31	30	29	28	27	26	25	24
_	—	-	—	Ι	—	-	-
23	22	21	20	19	18	17	16
HOUREN	AMPM			HO	UR		
15	14	13	12	11	10	9	8
MINEN				MIN			
7	6	5	4	3	2	1	0
SECEN				SEC			

• SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable

SECEN	Selected SECEN	Code Label
0	The second matching alarm is disabled.	RTC_SEC_ALARM_DIS
1	The second matching alarm is enabled.	RTC_SEC_ALARM_EN

• MIN: Minute Alarm

This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable

MINEN	Selected MINEN	Code Label	
0	The minute matching alarm is disabled.	RTC_MIN_ALARM_DIS	
1	The minute matching alarm is enabled.	RTC_MIN_ALARM_EN	

• HOUR: Hour Alarm

This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator

This bit is the AM/PM indicator in 12-Hour mode. It must be written at 0 if HRMOD in RTC_HMR defines 24-Hour mode.

• HOUREN: Hour Alarm Enable

HOUREN	Selected HOUREN	Code Label
0	The hour matching alarm is disabled.	RTC_HOUR_ALARM_DIS
1	The hour matching alarm is enabled.	RTC_HOUR_ALARM_EN

16. PIO: Parallel I/O Controller

The AT91M55800A has 58 programmable I/O lines. 13 pins are dedicated as general-purpose I/O pins. The other I/O lines are multiplexed with an external signal of a peripheral to optimize the use of available package pins. The PIO lines are controlled by two separate and identical PIO Controllers called PIOA and PIOB. The PIO controller enables the generation of an interrupt on input change and insertion of a simple input glitch filter on any of the PIO pins.

16.1 Multiplexed I/O Lines

Some I/O lines are multiplexed with an I/O signal of a peripheral. After reset, the pin is controlled by the PIO Controller and is in input mode.

When a peripheral signal is not used in an application, the corresponding pin can be used as a parallel I/O. Each parallel I/O line is bi-directional, whether the peripheral defines the signal as input or output. Figure 16-1 shows the multiplexing of the peripheral signals with Parallel I/O signals.

If a pin is multiplexed between the PIO Controller and a peripheral, the pin is controlled by the registers PIO_PER (PIO Enable) and PIO_PDR (PIO Disable). The register PIO_PSR (PIO Status) indicates whether the pin is controlled by the corresponding peripheral or by the PIO Controller.

If a pin is a general multi-purpose parallel I/O pin (not multiplexed with a peripheral), PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the bits corresponding to these pins.

When the PIO is selected, the peripheral input line is connected to zero.

16.2 Output Selection

The user can enable each individual I/O signal as an output with the registers PIO_OER (Output Enable) and PIO_ODR (Output Disable). The output status of the I/O signals can be read in the register PIO_OSR (Output Status). The direction defined has effect only if the pin is configured to be controlled by the PIO Controller.

16.3 I/O Levels

Each pin can be configured to be driven high or low. The level is defined in four different ways, according to the following conditions.

If a pin is controlled by the PIO Controller and is defined as an output (see Output Selection above), the level is programmed using the registers PIO_SODR (Set Output Data) and PIO_CODR (Clear Output Data). In this case, the programmed value can be read in PIO_ODSR (Output Data Status).

If a pin is controlled by the PIO Controller and is not defined as an output, the level is determined by the external circuit.

If a pin is not controlled by the PIO Controller, the state of the pin is defined by the peripheral (see peripheral datasheets).

In all cases, the level on the pin can be read in the register PIO_PDSR (Pin Data Status).

16.4 Filters

Optional input glitch filtering is available on each pin and is controlled by the registers PIO_IFER (Input Filter Enable) and PIO_IFDR (Input Filter Disable). The input glitch filtering can be

Note: 1. See "Section 16.8 "PIO Connection Tables" ."

16.9.1 PIO Enable Register

Register Name	PIO_PE	ĸ					
Access Type:	Write-on	lly					
Offset:	0x00						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register is used to enable individual pins to be controlled by the PIO Controller instead of the associated peripheral. When the PIO is enabled, the associated peripheral (if any) is held at logic zero.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

0 = No effect.

16.9.2 PIO Disable Register

PIO_PDR

0x04

Access Ty	pe:	Write-only

~ ~ ~			
()tte	ot.		
Ulia	σι.		

Register Name:

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register is used to disable PIO control of individual pins. When the PIO control is disabled, the normal peripheral function is enabled on the corresponding pin.

1 = Disables PIO control (enables peripheral control) on the corresponding pin.

0 = No effect.

16.9.13 PIO Pin Data Status Register

Register Name:	PIO_PDSR
Access Type:	Read-only
Offset:	0x3C

Reset Value: Undefined

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register shows the state of the physical pin of the chip. The pin values are always valid, regardless of whether the pins are enabled as PIO, peripheral, input or output. The register reads as follows:

1 = The corresponding pin is at logic 1.

0 = The corresponding pin is at logic 0.

16.9.14 PIO I Register Name	Interrupt Enable: PIO_IER	e Register					
Access Type:	Write-on	ly					
Offset:	0x40						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register is used to enable PIO interrupts on the corresponding pin. It has effect whether PIO is enabled or not.

1 = Enables an interrupt when a change of logic level is detected on the corresponding pin.

0 = No effect.

17.2.4 SF Protect Mode Register

Register Name	SF_PMI	7							
Access Type:	Read/W	Read/Write							
Reset Value:	0x0								
Offset:	0x18								
31	30	29	28	27	26	25	24		
			PMF	RKEY					
23	22	21	20	19	18	17	16		
			PMF	RKEY					
15	14	13	12	. 11	10	9	8		
-	-	-	-	-	-	—	-		
7	6	5	4	3	2	1	0		
-	_	AIC	_	_	_	_	_		

• PMRKEY: Protect Mode Register Key

Used only when writing SF_PMR. PMRKEY is reads 0.

0x27A8: Write access in SF_PMR is allowed.

Other value: Write access in SF_PMR is prohibited.

• AIC: AIC Protect Mode Enable (Code Label SF_AIC)

0 = The Advanced Interrupt Controller runs in Normal Mode.

1 = The Advanced Interrupt Controller runs in Protect Mode.

18.10 USART User Interface

Base Address USART0:	0xFFFC0000 (Code Label USARTO_BASE)
Base Address USART1:	0xFFFC4000 (Code Label USART1_BASE)
Base Address USART2:	0xFFFC8000 (Code Label USART2_BASE)

Table 18-2. Register Mapping

Offset	Register	Name	Access	Reset
0x00	Control Register	US_CR	Write-only	-
0x04	Mode Register	US_MR	Read/Write	0
0x08	Interrupt Enable Register	US_IER	Write-only	_
0x0C	Interrupt Disable Register	US_IDR	Write-only	_
0x10	Interrupt Mask Register	US_IMR	Read-only	0
0x14	Channel Status Register	US_CSR	Read-only	0x18
0x18	Receiver Holding Register	US_RHR	US_RHR Read-only	
0x1C	Transmitter Holding Register	US_THR	Write-only	_
0x20	Baud Rate Generator Register	US_BRGR	Read/Write	0
0x24	Receiver Time-out Register	US_RTOR	Read/Write	0
0x28	Transmitter Time-guard Register	US_TTGR	Read/Write	0
0x2C	Reserved	_	_	_
0x30	Receive Pointer Register	US_RPR	Read/Write	0
0x34	Receive Counter Register	US_RCR	US_RCR Read/Write	
0x38	Transmit Pointer Register	US_TPR	Read/Write	0
0x3C	Transmit Counter Register	US_TCR	Read/Write	0

• TIMEOUT: Enable Time-out Interrupt (Code Label US_TIMEOUT)

0 = No effect.

1 = Enables Reception Time-out Interrupt.

• TXEMPTY: Enable TXEMPTY Interrupt (Code Label US_TXEMPTY)

0 = No effect.

1 = Enables TXEMPTY Interrupt.

Name: Access Type: Reset State: Offset:	US_RHR Read-onl 0 0x18	y					
31	30	29	28	27	26	25	24
_	_	_	-	-	_	_	_
23	22	21	20	19	18	17	16
-	-	_	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	_	-	-	-	-	RXCHR
7	6	5	4	3	2	1	0
			RX	CHR			

18.10.7 USART Receiver Holding Register

• RXCHR: Received Character

Last character received if RXRDY is set. When number of data bits is less than 9 bits, the bits are right-aligned.

All unused bits read zero.

18.10.8 USA Name: Access Type: Offset:	RT Transmitter US_THR Write-onl 0x1C	y	ister				
31	30	29	28	27	26	25	24
—	-	_	-	-	—	-	-
23	22	21	20	19	18	17	16
_	-	_	-	-	-	-	-
15	14	13	12	11	10	9	8
_	_	—	-	-	_	-	TXCHR
7	6	5	4	3	2	1	0
			ТХС	CHR			

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set. When number of data bits is less than 9 bits, the bits are right-aligned.

19.5.10 TC Status Register

Register Name Access Type: Offset:	e: TC_SR Read/Wi 0x20	rite					
31	30	29	28	27	26	25	24
_	-	_	-	-	—	—	-
23	22	21	20	19	18	17	16
—	Ι	—	-	-	MTIOB	MTIOA	CLKSTA
15	14	13	12	11	10	9	8
_	Ι	—	-	-	-	—	-
7	6	5	4	3	2	1	0
ETRGS	LDRBS	LDRAS	CPCS	CPBS	CPAS	LOVRS	COVFS

• COVFS: Counter Overflow Status (Code Label TC_COVFS)

0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status (Code Label TC_LOVRS)

0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Status Register, if WAVE = 0.

• CPAS: RA Compare Status (Code Label TC_CPAS)

0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status (Code Label TC_CPBS)

0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPCS: RC Compare Status (Code Label TC_CPCS)

0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status (Code Label TC_LDRAS)

0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status (Code Label TC_LDRBS)

0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

• ETRGS: External Trigger Status (Code Label TC_ETRGS)

0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

20. SPI: Serial Peripheral Interface

The AT91M55800A includes an SPI which provides communication with external devices in master or slave mode.

The SPI has four external chip selects which can be connected to up to 15 devices. The data length is programmable, from 8- to 16-bit.

As for the USART, a 2-channel PDC can be used to move data between memory and the SPI without CPU intervention.

20.1 Pin Description

Seven pins are associated with the SPI Interface. When not needed for the SPI function, each of these pins can be configured as a PIO.

Support for an external master is provided by the PIO Controller Multi-driver option. To configure an SPI pin as open-drain to support external drivers, set the corresponding bits in the PIO_MDSR register.

An input filter can be enabled on the SPI input pins by setting the corresponding bits in the PIO_IFSR.

The NPCS0/NSS pin can function as a peripheral chip select output or slave select input. Refer to Table 20-1 for a description of the SPI pins.

Figure 20-1. SPI Block Diagram

20.3 Slave Mode

In Slave Mode, the SPI waits for NSS to go active low before receiving the serial clock from an external master.

In slave mode CPOL, NCPHA and BITS fields of SP_CSR0 are used to define the transfer characteristics. The other Chip Select Registers are not used in slave mode.

20.7.2 **SPI Mode Register** SP MR **Register Name:** Read/Write Access Type: **Reset State:** 0 0x04 Offset: 31 30 29 28 27 26 25 DLYBCS 23 22 21 20 19 18 17 PCS _ _ _ _ 13 12 10 9 15 14 11 _ _ _ _ _ 7 5 4 3 2 6 1 LLB _ _ _ MCK32 PCSDEC PS MSTR

MSTR: Master/Slave Mode (Code Label SP MSTR)

0 = SPI is in Slave mode.

1 = SPI is in Master mode.

MSTR configures the SPI Interface for either master or slave mode operation.

• PS: Peripheral Select

PS	Selected PS	Code Label: SP_PS		
0	Fixed Peripheral Select	SP_PS_FIXED		
1	Variable Peripheral Select	SP_PS_VARIABLE		

• PCSDEC: Chip Select Decode (Code Label SP_PCSDEC)

0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 16 Chip Select signals can be generated with the four lines using an external 4- to 16-bit decoder.

The Chip Select Registers define the characteristics of the 16 chip selects according to the following rules:

SP CSR0defines peripheral chip select signals 0 to 3.

SP_CSR1defines peripheral chip select signals 4 to 7.

SP_CSR2defines peripheral chip select signals 8 to 11.

SP_CSR3defines peripheral chip select signals 12 to 15⁽¹⁾.

1. The 16th state corresponds to a state in which all chip selects are inactive. This allows a different clock configuration to be Note: defined by each chip select register.

MCK32: Clock Selection (Code Label SP DIV32)

0 = SPI Master Clock equals MCK.

1 = SPI Master Clock equals MCK/32.

24

16

8

_

0

AT91M5880A

• SCBR: Serial Clock Baud Rate (Code Label SP SCBR)

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the SPI Master Clock (selected between MCK and MCK/32). The Baud rate is selected by writing a value from 2 to 255 in the field SCBR. The following equation determines the SPCK baud rate:

SPCK_Baud_Rate = SPCK_Baud_Rate = 2 x SCBR

Giving SCBR a value of zero or one disables the baud rate generator. SPCK is disabled and assumes its inactive state value. No serial transfers may occur. At reset, baud rate is disabled.

• DLYBS: Delay Before SPCK (Code Label SP_DLYBS)

This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equation determines the delay:

NPCS_to_SPCK_Delay = DLYBS * SPI_Master_Clock_period

• DLYBCT: Delay Between Consecutive Transfers (Code Label SP_DLYBCT)

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, a delay of four SPI Master Clock periods are inserted.

Otherwise, the following equation determines the delay:

Delay_After_Transfer = 32 * DLYBCT * SPI_Master_Clock_period

21.0.14 ADC Interrupt Mask Register

Register Name Access Type: Reset State: Offset:	e: ADC_IM Read-on 0 0x2C	IR ıly					
31	30	29	28	27	26	25	24
-	-	_	—	_	-	—	-
23	22	21	20	19	18	17	16
-	-	—	—	—	-	—	-
15	14	13	12	11	10	9	8
-	-	-	-	OVRE3	OVRE2	OVRE1	OVRE0
7	6	5	4	3	2	1	0
_	_	_	_	EOC3	EOC2	EOC1	EOC0

• EOC: End of Conversion Interrupt Mask (Code Label ADC_EOCx)

0 = End of Conversion Interrupt is disabled.

1 = End of Conversion Interrupt is enabled.

• OVRE: Overrun Error Interrupt Mask (Code Label ADC_OVREx)

0 = Overrun Error Interrupt is disabled.

1 = Overrun Error Interrupt is enabled.

21.0.15 ADC Convert Data Register

Register Name Access Type: Reset State: Offset:	e: ADC_CE Read-on 0 0x30 to 0	DR0 to ADC_CI hly 0x3C	DR3				
31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
_	-	-	-	-	—	-	-
15	14	13	12	11	10	9	8
_	-	-	-	-	-	DATA	
7	6	5	4	3	2	1	0
DATA							

• DATA: Converted Data

The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed. The Convert Data Register (CDR) is only loaded if the corresponding analog channel is enabled.

DATA	Selected DATA	Code Label: ADC_CDRx
0 or 1	10-bits Data	ADC_DATA_10BITS
0 or 1	8-bits Data	ADC_DATA_8BITS

AT91M5880A

	16.1Multiplexed I/O Lines	113
	16.2Output Selection	113
	16.3I/O Levels	113
	16.4Filters	113
	16.5Interrupts	114
	16.6User Interface	114
	16.7Multi-driver (Open Drain)	114
	16.8PIO Connection Tables	116
	16.9PIO User Interface	118
17	SF: Special Function Registers	129
	17.1Chip Identifier	
	17.2SF User Interface	129
18	USART: Universal Synchronous/ Asynchronous Rece	eiver/Transmitter
	18.1Pin Description	135
	18.2Baud Rate Generator	136
	18.3Receiver	137
	18.4Transmitter	139
	18.5Multi-drop Mode	139
	18.6Break	140
	18.7Peripheral Data Controller	142
	18.8Interrupt Generation	142
	18.9Channel Modes	142
	18.10USART User Interface	144
19	TC: Timer Counter	162
	19.1Signal Name Description	
	19.2Timer Counter Description	
	19.3Capture Operating Mode	
	19.4Waveform Operating Mode	170
	19.5TC User Interface	173
20	SPI: Serial Peripheral Interface	190
	20.1Pin Description	190
	20.2Master Mode	191
	20.3Slave Mode	195
	20.4Data Transfer	

