




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                     |
| Core Processor             | ARM7®                                                                        |
| Core Size                  | 16/32-Bit                                                                    |
| Speed                      | 33MHz                                                                        |
| Connectivity               | EBI/EMI, SPI, UART/USART                                                     |
| Peripherals                | POR, WDT                                                                     |
| Number of I/O              | 58                                                                           |
| Program Memory Size        | -                                                                            |
| Program Memory Type        | ROMIess                                                                      |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 8K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                                  |
| Data Converters            | A/D 8x10b; D/A 2x10b                                                         |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 176-LFBGA                                                                    |
| Supplier Device Package    | 176-BGA (13x13)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at91m55800a-33cj-t |
|                            |                                                                              |



## 5. Architectural Overview

The AT91M55800A microcontroller integrates an ARM7TDMI with its EmbeddedICE interface, memories and peripherals. Its architecture consists of two main buses, the Advanced System Bus (ASB) and the Advanced Peripheral Bus (APB). Designed for maximum performance and controlled by the memory controller, the ASB interfaces the ARM7TDMI processor with the onchip 32-bit memories, the External Bus Interface (EBI) and the AMBA<sup>™</sup> Bridge. The AMBA Bridge drives the APB, which is designed for accesses to on-chip peripherals and optimized for low power consumption.

The AT91M55800A microcontroller implements the ICE port of the ARM7TDMI processor on dedicated pins, offering a complete, low cost and easy-to-use debug solution for target debugging.

## 5.1 Memory

The AT91M55800A microcontroller embeds 8K bytes of internal SRAM. The internal memory is directly connected to the 32-bit data bus and is single-cycle accessible.

The AT91M55800A microcontroller features an External Bus Interface (EBI), which enables connection of external memories and application-specific peripherals. The EBI supports 8- or 16-bit devices and can use two 8-bit devices to emulate a single 16-bit device. The EBI implements the early read protocol, enabling faster memory accesses than standard memory interfaces.

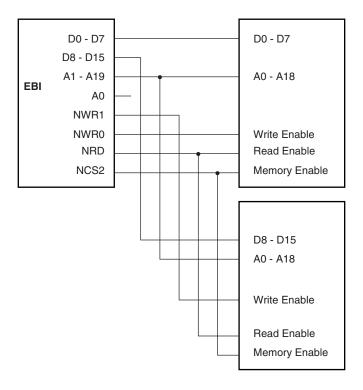
# 5.2 Peripherals

The AT91M55800A microcontroller integrates several peripherals, which are classified as system or user peripherals. All on-chip peripherals are 32-bit accessible by the AMBA Bridge, and can be programmed with a minimum number of instructions. The peripheral register set is composed of control, mode, data, status and enable/disable/status registers.

An on-chip, 8-channel Peripheral Data Controller (PDC) transfers data between the on-chip USARTs/SPI and the on and off-chip memories without processor intervention. One PDC channel is connected to the receiving channel and one to the transmitting channel of each USART and of the SPI.

Most importantly, the PDC removes the processor interrupt handling overhead and significantly reduces the number of clock cycles required for a data transfer. It can transfer up to 64K contiguous bytes. As a result, the performance of the microcontroller is increased and the power consumption reduced.

### 5.2.1 System Peripherals


The External Bus Interface (EBI) controls the external memory and peripheral devices via an 8or 16-bit data bus and is programmed through the APB. Each chip select line has its own programming register.

The Advanced Power Management Controller (APMC) optimizes power consumption of the product by controlling the clocking elements such as the oscillators and the PLL, system and user peripheral clocks, and the power supplies.

The Advanced Interrupt Controller (AIC) controls the internal interrupt sources from the internal peripherals and the eight external interrupt lines (including the FIQ), to provide an interrupt and/or fast interrupt request to the ARM7TDMI. It integrates an 8-level priority controller and, using the Auto-vectoring feature, reduces the interrupt latency time.



Figure 11-4. Memory Connection for 2 x 8-bit Data Busses



Byte-select Access is used to connect 16-bit devices in a memory page.

- The signal A0/NLB is used as NLB and enables the lower byte for both read and write operations.
- The signal NWR1/NUB is used as NUB and enables the upper byte for both read and write operations.
- The signal NWR0/NWE is used as NWE and enables writing for byte or half word.
- The signal NRD/NOE is used as NOE and enables reading for byte or half word.

Figure 11-5 shows how to connect a 16-bit device with byte and half-word access (e.g. 16-bit SRAM) on NCS2.

Figure 11-5. Connection for a 16-bit Data Bus with Byte and Half-word Access

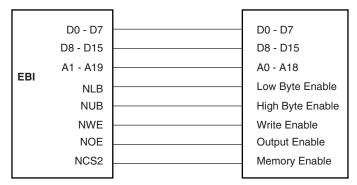
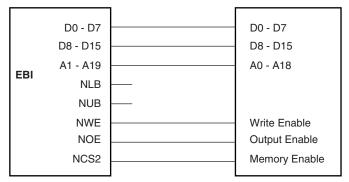




Figure 11-6 shows how to connect a 16-bit device without byte access (e.g. Flash) on NCS2.

Figure 11-6. Connection for a 16-bit Data Bus Without Byte-write Capability.



## 11.5 Boot on NCS0

Depending on the device and the BMS pin level during the reset, the user can select either an 8-bit or 16-bit external memory device connected on NCS0 as the Boot Memory. In this case, EBI\_CSR0 (Chip-select Register 0) is reset at the following configuration for chip select 0:

- 8 wait states (WSE = 1, NWS = 7)
- 8-bit or 16-bit data bus width, depending on BMS

Byte access type and number of data float time are respectively set to Byte-write Access and 0. With a nonvolatile memory interface, any value can be programmed for these parameters.

Before the remap command, the user can modify the chip select 0 configuration, programming the EBI\_CSR0 with exact boot memory characteristics. The base address becomes effective after the remap command, but the new number of wait states can be changed immediately. This is useful if a boot sequence needs to be faster.





# 12.9.3 APMC System Clock Status Register

Register Name: APMC\_SCSR

Access Type: Read-only

Reset Value: 0x1
Offset: 0x08

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  |
|----|----|----|----|----|----|----|-----|
| _  | ı  | I  | _  |    |    |    | _   |
| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
| _  | ı  | I  | _  | -  | -  | ı  | _   |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   |
| _  | ı  | I  | _  | -  | -  | ı  | _   |
| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
| _  | _  | _  | _  | _  | _  | _  | CPU |

# • CPU: System Clock Status Bit

0 = System Clock is disabled.

1 = System Clock is enabled.

# 12.9.4 APMC Peripheral Clock Enable Register

Register Name: APMC\_PCER

Access Type: Write-only

Offset: 0x10

| 31   | 30   | 29   | 28  | 27  | 26   | 25   | 24   |
|------|------|------|-----|-----|------|------|------|
| _    | 1    | -    | _   | _   | -    | 1    | _    |
| 23   | 22   | 21   | 20  | 19  | 18   | 17   | 16   |
| _    | ı    | ı    | _   | _   | DAC1 | DAC0 | ADC1 |
| 15   | 14   | 13   | 12  | 11  | 10   | 9    | 8    |
| ADC0 | PIOB | PIOA | _   | TC5 | TC4  | TC3  | TC2  |
| 7    | 6    | 5    | 4   | 3   | 2    | 1    | 0    |
| TC1  | TC0  | SPI  | US2 | US1 | US0  | _    | _    |

# • Peripheral Clock Enable (per peripheral)

0 = No effect.

1 = Enables the peripheral clock.



## 13.3.1 RTC Mode Register

Register Name: RTC\_MR

Access: Read/Write

Offset: 0x00

| 31 | 30 | 29 | 28 | 27 | 26 | 25     | 24     |
|----|----|----|----|----|----|--------|--------|
| _  | _  | _  | _  | _  | _  | -      | _      |
| 23 | 22 | 21 | 20 | 19 | 18 | 17     | 16     |
| _  | -  | ı  | ı  | _  | -  | CEVSEL |        |
| 15 | 14 | 13 | 12 | 11 | 10 | 9      | 8      |
| _  | -  | ı  | ı  | _  | -  | TEVSEL |        |
| 7  | 6  | 5  | 4  | 3  | 2  | 1      | 0      |
| _  | _  | _  | _  | _  | _  | UPDCAL | UPDTIM |

# • UPDTIM: Update Request Time Register (Code Label RTC UPDTIM)

0 = Enables the RTC time counting.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set.

## • UPDCAL: Update Request Calendar Register (Code Label RTC UPDCAL)

0 = Disables the RTC calendar counting.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this bit is set.

### • TEVSEL: Time Event Selection

The event which generates the flag TIMEV in RTC\_SR (Status Register) depends on the value of TEVSEL.

| TEVSEL |   | Event                 | Code Label            |  |
|--------|---|-----------------------|-----------------------|--|
| 0      | 0 | Minute change         | RTC_TEVSEL_MN_CHG     |  |
| 0 1    |   | Hour change           | RTC_TEVSEL_HR_CHG     |  |
| 1 0    |   | Every day at midnight | RTC_TEVSEL_EVDAY_MD   |  |
| 1 1    |   | Every day at noon     | RTC_TEVSEL_EVDAY_NOON |  |

### • CEVSEL: Calendar Event Selection

The event which generates the flag CALEV in RTC\_SR depends on the value of CEVSEL.

| CEVSEL                                   |  | Event                                                  | Code Label           |
|------------------------------------------|--|--------------------------------------------------------|----------------------|
| 0 Week change (every Monday at time 00:0 |  | Week change (every Monday at time 00:00:00)            | RTC_CEVSEL_WEEK_CHG  |
| 0 1                                      |  | Month change (every 01 of each month at time 00:00:00) | RTC_CEVSEL_MONTH_CHG |
| 1 0                                      |  | Year change (every January 1st at time 00:00:00)       | RTC_CEVSEL_YEAR_CHG  |
| 1 1                                      |  | Reserved                                               | -                    |

### 13.3.10 RTC Interrupt Disable Register

Register Name: RTC\_IDR

Access Type: Write-only

Offset: 0x24

| 31 | 30 | 29 | 28    | 27    | 26  | 25    | 24     |
|----|----|----|-------|-------|-----|-------|--------|
| _  | _  | I  | ı     | -     | -   | ı     | _      |
| 23 | 22 | 21 | 20    | 19    | 18  | 17    | 16     |
| _  | _  | 1  | _     | _     | _   | -     | _      |
| 15 | 14 | 13 | 12    | 11    | 10  | 9     | 8      |
| _  | _  | 1  | _     | -     | _   | -     | _      |
| 7  | 6  | 5  | 4     | 3     | 2   | 1     | 0      |
| _  | _  | _  | CALEV | TIMEV | SEC | ALARM | ACKUPD |

# • ACKUPD: Acknowledge Update Interrupt Disable (Code Label RTC ACKUPD)

0 = No effect.

1 = The acknowledge for update interrupt is disabled.

## • ALARM: Alarm Interrupt Disable (Code Label RTC\_ALARM)

0 = No effect.

1 = The alarm interrupt is disabled.

## • SEC: Second Event Interrupt Disable (Code Label RTC SEC)

0 = No effect.

1 = The second periodic interrupt is disabled.

## • TIMEV: Time Event Interrupt Disable (Code Label RTC TIMEV)

0 = No effect.

1 = The selected time event interrupt is disabled.

## • CALEV: Calendar Event Interrupt Disable (Code Label RTC CALEV)

0 = No effect.

1 = The selected calendar event interrupt is disabled.





Note: The I bit in the SPSR is significant. If it is set, it indicates that the ARM Core was just about to mask IRQ interrupts when the mask instruction was interrupted. Hence, when the SPSR is restored, the mask instruction is completed (IRQ is masked).



# 16.8 PIO Connection Tables

Table 16-1. PIO Controller A Connection Table

| PIO Controller |              |           | Peripheral                   |                     |                             |             |               |
|----------------|--------------|-----------|------------------------------|---------------------|-----------------------------|-------------|---------------|
| Bit<br>Number  | Port<br>Name | Port Name | Signal Description           | Signal<br>Direction | OFF<br>Value <sup>(1)</sup> | Reset State | Pin<br>Number |
| 0              | PA0          | TCLK3     | Timer 3 Clock signal         | Input               | 0                           | PIO Input   | 66            |
| 1              | PA1          | TIOA3     | Timer 3 Signal A             | Bi-directional      | 0                           | PIO Input   | 67            |
| 2              | PA2          | TIOB3     | Timer 3 Signal B             | Bi-directional      | 0                           | PIO Input   | 68            |
| 3              | PA3          | TCLK4     | Timer 4 Clock signal         | Input               | 0                           | PIO Input   | 69            |
| 4              | PA4          | TIOA4     | Timer 4 Signal A             | Bi-directional      | 0                           | PIO Input   | 70            |
| 5              | PA5          | TIOB4     | Timer 4 Signal B             | Bi-directional      | 0                           | PIO Input   | 71            |
| 6              | PA6          | TCLK5     | Timer 5 Clock signal         | Input               | 0                           | PIO Input   | 72            |
| 7              | PA7          | TIOA5     | Timer 5 Signal A             | Bi-directional      | 0                           | PIO Input   | 75            |
| 8              | PA8          | TIOB5     | Timer 5 Signal B             | Bi-directional      | 0                           | PIO Input   | 76            |
| 9              | PA9          | IRQ0      | External Interrupt 0         | Input               | 0                           | PIO Input   | 77            |
| 10             | PA10         | IRQ1      | External Interrupt 1         | Input               | 0                           | PIO Input   | 78            |
| 11             | PA11         | IRQ2      | External Interrupt 2         | Input               | 0                           | PIO Input   | 79            |
| 12             | PA12         | IRQ3      | External Interrupt 3         | Input               | 0                           | PIO Input   | 80            |
| 13             | PA13         | FIQ       | Fast Interrupt               | Input               | 0                           | PIO Input   | 81            |
| 14             | PA14         | SCK0      | USART 0 Clock signal         | Bi-directional      | 0                           | PIO Input   | 82            |
| 15             | PA15         | TXD0      | USART 0 transmit data        | Output              | _                           | PIO Input   | 83            |
| 16             | PA16         | RXD0      | USART 0 receive data         | Input               | 0                           | PIO Input   | 84            |
| 17             | PA17         | SCK1      | USART 1 Clock signal         | Bi-directional      | 0                           | PIO Input   | 85            |
| 18             | PA18         | TXD1      | USART 1 transmit data        | Output              | _                           | PIO Input   | 86            |
| 19             | PA19         | RXD1      | USART 1 receive data         | Input 0             |                             | PIO Input   | 91            |
| 20             | PA20         | SCK2      | USART 2 Clock signal         | Bi-directional      | 0                           | PIO Input   | 92            |
| 21             | PA21         | TXD2      | USART 2 transmit data        | Output              | _                           | PIO Input   | 93            |
| 22             | PA22         | RXD2      | USART 2 receive data         | Input               | 0                           | PIO Input   | 94            |
| 23             | PA23         | SPCK      | SPI Clock signal             | Bi-directional      | 0                           | PIO Input   | 95            |
| 24             | PA24         | MISO      | SPI Master In Slave Out      | Bi-directional      | 0                           | PIO Input   | 96            |
| 25             | PA25         | MOSI      | SPI Master Out Slave In      | Bi-directional      | 0                           | PIO Input   | 97            |
| 26             | PA26         | NPCS0     | SPI Peripheral Chip Select 0 | Bi-directional      | 1                           | PIO Input   | 98            |
| 27             | PA27         | NPCS1     | SPI Peripheral Chip Select 1 | Output              | _                           | PIO Input   | 99            |
| 28             | PA28         | NPCS2     | SPI Peripheral Chip Select 2 | Output              | _                           | PIO Input   | 100           |
| 29             | PA29         | NPCS3     | SPI Peripheral Chip Select 3 | Output              | _                           | PIO Input   | 101           |
| 30             |              | _         | -                            | _                   |                             |             | _             |
| 31             | _            |           | _                            | _                   | _                           | _           | _             |

Note: 1. The OFF value is the default level seen on the peripheral input when the PIO line is enabled.

## • ARCH: Chip Architecture

Code of Architecture: Two BCD digits

| ARCH      | Selected ARCH | Code Label: SF_ARCH |
|-----------|---------------|---------------------|
| 0110 0011 | AT91x63yyy    | SF_ARCH_AT91x63     |
| 0100 0000 | AT91x40yyy    | SF_ARCH_AT91x40     |
| 0101 0101 | AT91x55yyy    | SF_ARCH_AT91x55     |

## • NVPTYP: Nonvolatile Program Memory Type

| NVPTYP |   |   | Туре                     | Code Label: SF_NVPTYP |  |  |
|--------|---|---|--------------------------|-----------------------|--|--|
| 0 0 1  |   | 1 | "M" Series or "F" Series | SF_NVPTYP_M           |  |  |
| 1      | 0 | 0 | "R" Series               | SF_NVPTYP_R           |  |  |

Note: All other codes are reserved.

# • EXT: Extension Flag (Code Label SF\_EXT)

0 = Chip ID has a single-register definition without extensions

1 = An extended Chip ID exists (to be defined in the future).

# 17.2.2 Chip ID Extension Register

Register Name: SF\_EXID

Access Type: Read-only

Offset: 0x04

This register is reserved for future use. It will be defined when needed.





- TIMEOUT: Enable Time-out Interrupt (Code Label US\_TIMEOUT)
- 0 = No effect.
- 1 = Enables Reception Time-out Interrupt.
- TXEMPTY: Enable TXEMPTY Interrupt (Code Label US\_TXEMPTY)
- 0 = No effect.
- 1 = Enables TXEMPTY Interrupt.

### 18.10.6 USART Channel Status Register

Name: US\_CSR
Access Type: Read-only
Reset: 0x18
Offset: 0x14

| 31   | 30    | 29   | 28    | 27    | 26    | 25      | 24      |
|------|-------|------|-------|-------|-------|---------|---------|
| _    | _     | ı    | _     | -     | -     | ı       | _       |
| 23   | 22    | 21   | 20    | 19    | 18    | 17      | 16      |
| _    | _     | _    | _     | -     | -     | -       | _       |
| 15   | 14    | 13   | 12    | 11    | 10    | 9       | 8       |
| _    | _     | ı    | _     | -     | -     | TXEMPTY | TIMEOUT |
| 7    | 6     | 5    | 4     | 3     | 2     | 1       | 0       |
| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY   | RXRDY   |

### • RXRDY: Receiver Ready (Code Label US RXRDY)

0 = No complete character has been received since the last read of the US RHR or the receiver is disabled.

1 = At least one complete character has been received and the US\_RHR has not yet been read.

### • TXRDY: Transmitter Ready (Code Label US TXRDY)

0 = US\_THR contains a character waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been requested.

1 = US\_THR is empty and there is no Break request pending TSR availability.

Equal to zero when the USART is disabled or at reset. Transmitter Enable command (in US CR) sets this bit to one.

### • RXBRK: Break Received/End of Break (Code Label US RXBRK)

0 = No Break Received nor End of Break detected since the last "Reset Status Bits" command in the Control Register.

1 = Break Received or End of Break detected since the last "Reset Status Bits" command in the Control Register.

#### ENDRX: End of Receive Transfer (Code Label US ENDRX)

0 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the receiver is inactive.

1 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the receiver is active.

### • ENDTX: End of Transmit Transfer (Code Label US ENDTX)

0 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the transmitter is inactive.

1 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the transmitter is active.

### OVRE: Overrun Error (Code Label US OVRE)

0 = No byte has been transferred from the Receive Shift Register to the US\_RHR when RxRDY was asserted since the last "Reset Status Bits" command.

1 = At least one byte has been transferred from the Receive Shift Register to the US\_RHR when RxRDY was asserted since the last "Reset Status Bits" command.

### FRAME: Framing Error (Code Label US FRAME)

0 = No stop bit has been detected low since the last "Reset Status Bits" command.

1 = At least one stop bit has been detected low since the last "Reset Status Bits" command.





## 18.10.12 USART Receive Pointer Register

Name: US\_RPR Access Type: Read/Write

Reset State: 0 Offset: 0x30

| 31 | 30                      | 29 | 28  | 27  | 26 | 25 | 24 |  |  |  |  |
|----|-------------------------|----|-----|-----|----|----|----|--|--|--|--|
|    | RXPTR                   |    |     |     |    |    |    |  |  |  |  |
| 23 | 23 22 21 20 19 18 17 16 |    |     |     |    |    |    |  |  |  |  |
|    |                         |    | RXF | PTR |    |    |    |  |  |  |  |
| 15 | 14                      | 13 | 12  | 11  | 10 | 9  | 8  |  |  |  |  |
|    |                         |    | RXF | PTR |    |    |    |  |  |  |  |
| 7  | 6                       | 5  | 4   | 3   | 2  | 1  | 0  |  |  |  |  |
|    | RXPTR                   |    |     |     |    |    |    |  |  |  |  |

### • RXPTR: Receive Pointer

RXPTR must be loaded with the address of the receive buffer.

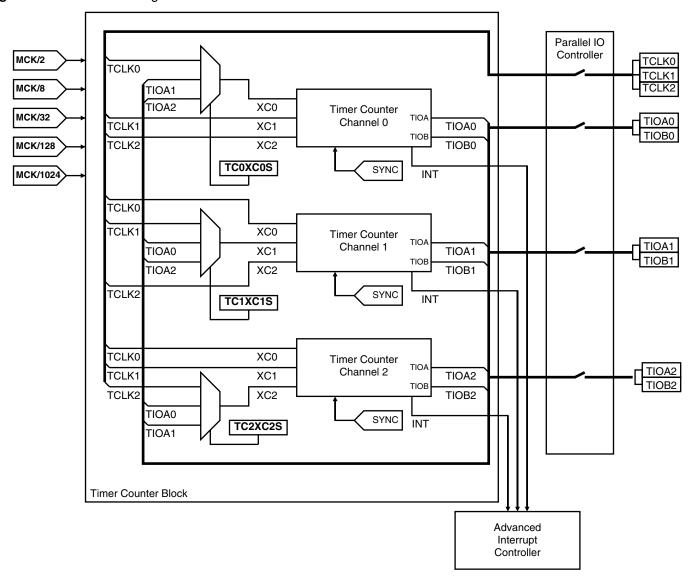
## 18.10.13 USART Receive Counter Register

Name: US\_RCR Access Type: Read/Write

 Reset State:
 0

 Offset:
 0x34

| 31    | 30    | 29 | 28 | 27 | 26 | 25 | 24 |
|-------|-------|----|----|----|----|----|----|
| _     | _     | 1  | 1  | 1  | 1  | 1  | _  |
| 23    | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
| _     | _     |    |    |    | 1  | I  | _  |
| 15    | 14    | 13 | 12 | 11 | 10 | 9  | 8  |
|       | RXCTR |    |    |    |    |    |    |
| 7     | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
| RXCTR |       |    |    |    |    |    |    |


### • RXCTR: Receive Counter

RXCTR must be loaded with the size of the receive buffer.

0 = Stop Peripheral Data Transfer dedicated to the receiver.

1 - 65535 = Start Peripheral Data transfer if RXRDY is active.

Figure 19-1. TC Block Diagram



## 19.5 TC User Interface

TC Block 0 Base Address: 0xFFFD0000 (Code Label TCB0\_BASE)
TC Block 1 Base Address: 0xFFFD4000 (Code Label TCB1\_BASE)

Table 19-2. TC Global Register Mapping

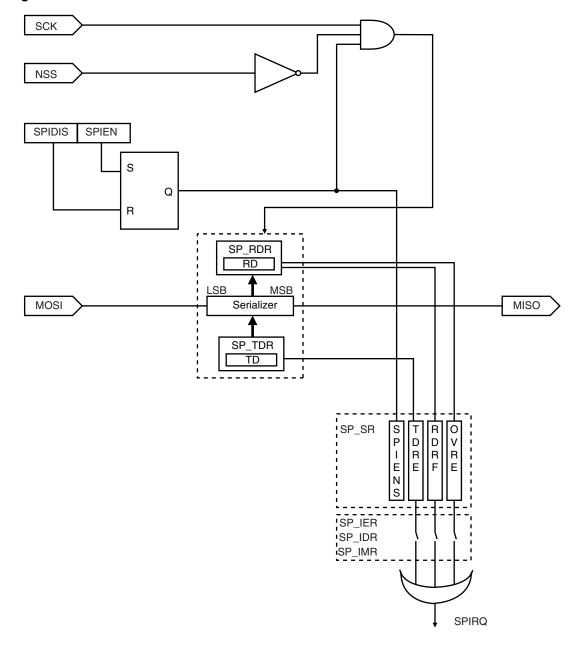
| Offset | Channel/Register          | Name   | Access         | Reset State |
|--------|---------------------------|--------|----------------|-------------|
| 0x00   | TC Channel 0              |        | See Table 19-3 |             |
| 0x40   | TC Channel 1              |        | See Table 19-3 |             |
| 0x80   | TC Channel 2              |        | See Table 19-3 |             |
| 0xC0   | TC Block Control Register | TC_BCR | Write-only     | _           |
| 0xC4   | TC Block Mode Register    | TC_BMR | Read/Write     | 0           |

TC\_BCR (Block Control Register) and TC\_BMR (Block Mode Register) control the TC block. TC Channels are controlled by the registers listed in Table 19-3. The offset of each of the Channel registers in Table 19-3 is in relation to the offset of the corresponding channel as mentioned in Table 19-2.

Table 19-3. TC Channel Register Mapping

| Offset | Register                   | Name   | Access                    | Reset State |
|--------|----------------------------|--------|---------------------------|-------------|
| 0x00   | Channel Control Register   | TC_CCR | Write-only                | _           |
| 0x04   | Channel Mode Register      | TC_CMR | Read/Write                | 0           |
| 0x08   | Reserved                   |        |                           | _           |
| 0x0C   | Reserved                   |        |                           | _           |
| 0x10   | Counter Value              | TC_CV  | Read/Write                | 0           |
| 0x14   | Register A                 | TC_RA  | Read/Write <sup>(1)</sup> | 0           |
| 0x18   | Register B                 | TC_RB  | Read/Write <sup>(1)</sup> | 0           |
| 0x1C   | Register C                 | TC_RC  | Read/Write                | 0           |
| 0x20   | Status Register            | TC_SR  | Read-only                 | _           |
| 0x24   | Interrupt Enable Register  | TC_IER | Write-only                | _           |
| 0x28   | Interrupt Disable Register | TC_IDR | Write-only                | _           |
| 0x2C   | Interrupt Mask Register    | TC_IMR | Read-only                 | 0           |

Note: 1. Read-only if WAVE = 0




# 20.3 Slave Mode

In Slave Mode, the SPI waits for NSS to go active low before receiving the serial clock from an external master.

In slave mode CPOL, NCPHA and BITS fields of SP\_CSR0 are used to define the transfer characteristics. The other Chip Select Registers are not used in slave mode.

Figure 2. SPI in Slave Mode





## 20.7.3 SPI Receive Data Register

Register Name: SP\_RDR
Access Type: Read-only

**Reset State**: 0 **Offset**: 0x08

| 31 | 30 | 29 | 28 | 27  | 26 | 25 | 24 |
|----|----|----|----|-----|----|----|----|
| _  | _  | I  | _  |     | 1  | ı  | _  |
| 23 | 22 | 21 | 20 | 19  | 18 | 17 | 16 |
| _  | _  | I  |    | PCS |    |    |    |
| 15 | 14 | 13 | 12 | 11  | 10 | 9  | 8  |
|    | RD |    |    |     |    |    |    |
| 7  | 6  | 5  | 4  | 3   | 2  | 1  | 0  |
| RD |    |    |    |     |    |    |    |

# • RD: Receive Data (Code Label SP\_RD)

Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

## • PCS: Peripheral Chip Select Status

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read zero.



## • SLEEP: Sleep Mode

| SLEEP | Selected SLEEP | Code Label      |
|-------|----------------|-----------------|
| 0     | Normal Mode    | ADC_NORMAL_MODE |
| 1     | Sleep Mode     | ADC_SLEEP_MODE  |

## • PRESCAL: Prescaler Rate Selection (ADC PRESCAL)

This field defines the conversion clock in function of the Master Clock (MCK):

$$\mathsf{ADCClock} = \mathsf{MCK}/((\mathsf{PRESCAL} + 1) \times 2)$$

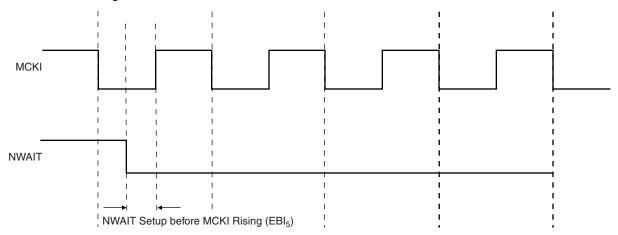
The ADC clock range is between MCK/2 (PRESCAL = 0) and MCK /128 (PRESCAL = 63). PRESCAL must be programmed in order to provide an ADC clock frequency according to the parameters given in the AT91M55800A Electrical Datasheet, literature number 1727.

Table 23-1. JTAG Boundary-scan Register (Continued)

| Bit<br>Number | Pin Name   | Pin Type | Associated BSR<br>Cells |
|---------------|------------|----------|-------------------------|
| 129           |            |          | OUTPUT                  |
| 128           | PA9/IRQ0   | IN/OUT   | INPUT                   |
| 127           |            |          | CTRL                    |
| 126           |            |          | OUTPUT                  |
| 125           | PA8/TIOB5  | IN/OUT   | INPUT                   |
| 124           |            |          | CTRL                    |
| 123           |            |          | OUTPUT                  |
| 122           | PA7/TIOA5  | IN/OUT   | INPUT                   |
| 121           |            |          | CTRL                    |
| 120           |            |          | OUTPUT                  |
| 119           | PA6/CLK5   | IN/OUT   | INPUT                   |
| 118           |            |          | CTRL                    |
| 117           |            |          | OUTPUT                  |
| 116           | PA5/TIOB4  | IN/OUT   | INPUT                   |
| 115           |            |          | CTRL                    |
| 114           |            |          | OUTPUT                  |
| 113           | PA4/TIOA4  | IN/OUT   | INPUT                   |
| 112           |            |          | CTRL                    |
| 111           |            |          | OUTPUT                  |
| 110           | PA3/TCLK4  | IN/OUT   | INPUT                   |
| 109           |            |          | CTRL                    |
| 108           |            |          | OUTPUT                  |
| 107           | PA2/TIOB3  | IN/OUT   | INPUT                   |
| 106           |            |          | CTRL                    |
| 105           |            |          | OUTPUT                  |
| 104           | PA1/TIOA3  | IN/OUT   | INPUT                   |
| 103           |            |          | CTRL                    |
| 102           |            |          | OUTPUT                  |
| 101           | PA0/TCLK3  | IN/OUT   | INPUT                   |
| 100           |            |          | CTRL                    |
| 99            |            |          | OUTPUT                  |
| 98            | PB27/TIOB2 | IN/OUT   | INPUT                   |
| 97            |            |          | CTRL                    |
| 96            | PB26/TIOA2 | IN/OUT   | OUTPUT                  |



In other cases, the following erroneous behavior occurs:


- 32-bit read accesses are not managed correctly and the first 16-bit data sampling takes into account only the standard wait states. 16- and 8-bit accesses are not affected.
- During write accesses of any type, the NWE rises on the rising edge of the last cycle
  as defined by the programmed number of wait states. However, NWAIT assertion
  does affect the length of the total access. Only the NWE pulse length is inaccurate.

At maximum speed, asserting the NWAIT in the first access cycle is not possible, as the sum of the timings "MCKI Falling to Chip Select" and "NWAIT setup to MCKI rising" are generally higher than one half of a clock period. This leads to using at least one standard wait state. However, this is not sufficient except to perform byte or half-word read accesses. Word and write accesses require at least two standard wait states.

The following waveforms further explain the issue:

If the NWAIT setup time is satisfied on the first rising edge of MCKI, the behavior is accurate. The EBI operations are not affected when the NWAIT rises.

Figure 27-1. NWAIT Rising



If the NWAIT setup time is satisfied on the following edges of MCKI and if at least one standard wait state remains to be executed, the behavior is accurate. In the following example, the number of standard wait states is two. The NWAIT setup time on the second rising edge of MCKI must be met.





|    | 20.5Clock Generation                                                            | .197 |
|----|---------------------------------------------------------------------------------|------|
|    | 20.6Peripheral Data Controller                                                  | .197 |
|    | 20.7SPI User Interface                                                          | .198 |
| 21 | ADC: Analog-to-digital Converter                                                | 212  |
| 22 | DAC: Digital-to-Analog Converter                                                | 224  |
|    | 22.1Conversion Details                                                          | .224 |
|    | 22.2DAC User Interface                                                          | .226 |
| 23 | JTAG Boundary-scan Register                                                     | 233  |
| 24 | Packaging Information                                                           | 241  |
| 25 | Soldering Profile                                                               | 244  |
|    | 25.1LQFP Soldering Profile (Green)                                              | .244 |
|    | 25.2BGA Soldering Profile (RoHS-compliant)                                      | .244 |
| 26 | Ordering Information                                                            | 245  |
| 27 | Errata                                                                          | 246  |
|    | 27.1ADC Characteristics and Behavior                                            | .246 |
|    | 27.2Warning: Additional NWAIT Constraints                                       | .246 |
|    | 27.3Unpredictable Result in APMC State Machine on Switch from Oscillator to PLL | 249  |
|    | 27.4Clock Switching with the Prescaler in the APMC is not Permitted             | .249 |
|    | 27.5Initializing SPI in Master Mode May Cause a Mode Fault Detection            | .249 |
|    | 27.6SPI in Slave Mode does not Work                                             | .250 |
|    | 27.7VDDBU Consumption is not Guaranteed                                         | .250 |
|    | 27.8VDDCORE Current Consumption when PLL is not Used                            | .250 |
|    | Revision History                                                                | 251  |
|    | Table of Contents                                                               | İ    |