

Welcome to E-XFL.COM

### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

### Details

E·XFl

| Product Status          | Active                                                               |
|-------------------------|----------------------------------------------------------------------|
| Туре                    | Sigma                                                                |
| Interface               | I <sup>2</sup> C, SPI                                                |
| Clock Rate              | 294.912MHz                                                           |
| Non-Volatile Memory     | ROM (64kB)                                                           |
| On-Chip RAM             | 192kB                                                                |
| Voltage - I/O           | 3.30V                                                                |
| Voltage - Core          | 1.20V                                                                |
| Operating Temperature   | -40°C ~ 105°C (TA)                                                   |
| Mounting Type           | Surface Mount                                                        |
| Package / Case          | 88-VFQFN Exposed Pad, CSP                                            |
| Supplier Device Package | 88-LFCSP (12x12)                                                     |
| Purchase URL            | https://www.e-xfl.com/product-detail/analog-devices/adau1463wbcpz300 |
|                         |                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **ELECTRICAL CHARACTERISTICS**

## Digital Input/Output

## Table 4.

| Parameter                         | Min  | Тур | Max  | Unit | Test Conditions/Comments                                                                                          |
|-----------------------------------|------|-----|------|------|-------------------------------------------------------------------------------------------------------------------|
| DIGITAL INPUT                     |      |     |      |      |                                                                                                                   |
| Input Voltage                     |      |     |      |      | Excluding SPDIFIN, which is not a standard digital input                                                          |
| IOVDD = 3.3 V                     |      |     |      |      |                                                                                                                   |
| High Level (V <sub>⊮</sub> )      | 1.71 |     | 3.3  | V    |                                                                                                                   |
| Low Level (VIL)                   | 0    |     | 1.71 | V    |                                                                                                                   |
| IOVDD = 1.8 V                     |      |     |      |      |                                                                                                                   |
| High Level (V <sub>H</sub> )      | 0.92 |     | 1.8  | V    |                                                                                                                   |
| Low Level (V <sub>IL</sub> )      | 0    |     | 0.89 | V    |                                                                                                                   |
| Input Leakage                     |      |     |      |      |                                                                                                                   |
| High Level (I⊮)                   |      |     | 2    | μA   | Digital input pins with pull-up resistor                                                                          |
|                                   |      |     | 14   | μA   | Digital input pins with pull-down resistor                                                                        |
|                                   |      |     | 2    | μA   | Digital input pins with no pull resistor                                                                          |
|                                   |      |     | 8    | μA   | MCLK                                                                                                              |
|                                   |      |     | 120  | μΑ   | SPDIFIN                                                                                                           |
| Low Level ( $I_{IL}$ ) at 0 V     | -14  |     |      | μA   | Digital input pins with pull-up resistor                                                                          |
|                                   | -2   |     |      | μA   | Digital input pins with pull-down resistor                                                                        |
|                                   | -2   |     |      | μA   | Digital input pins with no pull resistor                                                                          |
|                                   | -8   |     |      | μA   | MCLK                                                                                                              |
|                                   | -120 |     |      | μA   | SPDIFIN                                                                                                           |
| Input Capacitance (Cı)            |      | 2   |      | рF   |                                                                                                                   |
| DIGITAL OUTPUT                    |      |     |      |      |                                                                                                                   |
| Output Voltage                    |      |     |      |      |                                                                                                                   |
| IOVDD = 3.3 V                     |      |     |      |      |                                                                                                                   |
| High Level (V <sub>он</sub> )     | 3.09 |     | 3.3  | V    | $I_{OH} = 1 \text{ mA}$                                                                                           |
| Low Level (V <sub>OL</sub> )      | 0    |     | 0.26 | V    | $I_{OL} = 1 \text{ mA}$                                                                                           |
| IOVDD = 1.8 V                     |      |     |      |      |                                                                                                                   |
| High Level (V <sub>он</sub> )     | 1.45 |     | 1.8  | V    |                                                                                                                   |
| Low Level (V <sub>OL</sub> )      | 0    |     | 0.33 | V    |                                                                                                                   |
| Digital Output Pins, Output Drive |      |     |      |      | The digital output pins are driving low impedance PCB traces to a high impedance digital input buffer             |
| IOVDD = 1.8 V                     |      |     |      |      |                                                                                                                   |
| Drive Strength Setting            |      |     |      |      |                                                                                                                   |
| Lowest                            |      |     | 1    | mA   | The digital output pins are not designed for static current draw;<br>do not use these pins to drive LEDs directly |
| Low                               |      |     | 2    | mA   | The digital output pins are not designed for static current draw;<br>do not use these pins to drive LEDs directly |
| High                              |      |     | 3    | mA   | The digital output pins are not designed for static current draw;<br>do not use these pins to drive LEDs directly |
| Highest                           |      |     | 5    | mA   | The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly    |
| IOVDD = 3.3 V                     |      |     |      |      |                                                                                                                   |
| Drive Strength Setting            |      |     |      |      |                                                                                                                   |
| Lowest                            |      |     | 2    | mA   | The digital output pins are not designed for static current draw;                                                 |
|                                   |      |     |      |      | do not use these pins to drive LEDs directly                                                                      |
| Low                               |      |     | 5    | mA   | The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly    |
| High                              |      |     | 10   | mA   | The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly    |
| Highest                           |      |     | 15   | mA   | The digital output pins are not designed for static current draw; do not use these pins to drive LEDs directly    |

## I<sup>2</sup>C Interface—Slave

 $T_A = -40^{\circ}C$  to  $+105^{\circ}C$ , DVDD  $= 1.2 V \pm 5\%$ , IOVDD = 1.8 V - 5% to 3.3 V + 10%.

## Table 11.

| Parameter         | Min  | Тур | Max  | Unit | Description                                   |
|-------------------|------|-----|------|------|-----------------------------------------------|
| f <sub>SCL</sub>  |      |     | 1000 | kHz  | SCL clock frequency                           |
| t <sub>sCLH</sub> | 0.26 |     |      | μs   | SCL pulse width high                          |
| tscll             | 0.5  |     |      | μs   | SCL pulse width low                           |
| t <sub>scs</sub>  | 0.26 |     |      | μs   | Start and repeated start condition setup time |
| tscн              | 0.26 |     |      | μs   | Start condition hold time                     |
| t <sub>DS</sub>   | 50   |     |      | ns   | Data setup time                               |
| t <sub>DH</sub>   |      |     | 0.45 | μs   | Data hold time                                |
| t <sub>SCLR</sub> |      |     | 120  | ns   | SCL rise time                                 |
| tsclf             |      |     | 120  | ns   | SCL fall time                                 |
| t <sub>sDR</sub>  |      |     | 120  | ns   | SDA rise time                                 |
| t <sub>sDF</sub>  |      |     | 120  | ns   | SDA fall time                                 |
| t <sub>BFT</sub>  | 0.5  |     |      | μs   | Bus free time between stop and start          |
| <b>t</b> susto    | 0.26 |     |      | μs   | Stop condition setup time                     |



Figure 6. I<sup>2</sup>C Slave Port Timing Specifications

## **Example PLL Settings**

Depending on the input clock frequency, there are several possible configurations for the PLL. Setting the PLL to generate the highest possible system clock, without exceeding the maximum, allows the execution of more DSP program instructions for each audio frame. Alternatively, setting the PLL to generate a lower frequency system clock allows fewer instructions to be executed and lowers overall power consumption of the device. Table 20 shows several example MCLK frequencies and the corresponding PLL settings that allow the highest number of program instructions to be executed for each audio frame. The settings provide the highest possible system clock without exceeding the 294.912 MHz upper limit.

| Table 20. Optimal Predivider and Feedback Divider Settings for Varying Input MCLK Frequencie |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| Input MCLK<br>Frequency (MHz) | Predivider<br>Setting | PLL Input<br>Clock (MHz) | Feedback<br>Divider Setting | ADAU1463/ADAU1467 Fast<br>Grade System Clock (MHz) | ADAU1463 Slow Grade<br>System Clock (MHz) |
|-------------------------------|-----------------------|--------------------------|-----------------------------|----------------------------------------------------|-------------------------------------------|
| 2.8224                        | 1                     | 2.8224                   | 104                         | 293.5296                                           | 146.7648                                  |
| 3                             | 1                     | 3                        | 98                          | 294                                                | 147                                       |
| 3.072                         | 1                     | 3.072                    | 96                          | 294.912                                            | 147.456                                   |
| 3.5                           | 1                     | 3.5                      | 84                          | 294                                                | 147                                       |
| 4                             | 1                     | 4                        | 73                          | 292                                                | 146                                       |
| 4.5                           | 1                     | 4.5                      | 65                          | 292.5                                              | 146.25                                    |
| 5                             | 2                     | 2.5                      | 117                         | 292.5                                              | 146.25                                    |
| 5.5                           | 2                     | 2.75                     | 107                         | 294.25                                             | 147.125                                   |
| 5.6448                        | 2                     | 2.8224                   | 104                         | 293.5296                                           | 146.7648                                  |
| 6                             | 2                     | 3                        | 98                          | 294                                                | 147                                       |
| 6.144                         | 2                     | 3.072                    | 96                          | 294.912                                            | 147.456                                   |
| 6.5                           | 2                     | 3.25                     | 90                          | 292.5                                              | 146.25                                    |
| 7                             | 2                     | 3.5                      | 84                          | 294                                                | 147                                       |
| 7.5                           | 2                     | 3.75                     | 78                          | 292.5                                              | 146.25                                    |
| 8                             | 2                     | 4                        | 73                          | 292                                                | 146                                       |
| 8.5                           | 2                     | 4.25                     | 69                          | 293.25                                             | 146.625                                   |
| 9                             | 2                     | 4.5                      | 65                          | 292.5                                              | 146.25                                    |
| 9.5                           | 4                     | 2.375                    | 124                         | 294.5                                              | 147.25                                    |
| 10                            | 4                     | 2.5                      | 117                         | 292.5                                              | 146.25                                    |
| 10.5                          | 4                     | 2.625                    | 112                         | 294                                                | 147                                       |
| 11                            | 4                     | 2.75                     | 107                         | 294.25                                             | 147.125                                   |
| 11.2896                       | 4                     | 2.8224                   | 104                         | 293.5296                                           | 146.7648                                  |
| 11.5                          | 4                     | 2.875                    | 102                         | 293.25                                             | 146.625                                   |
| 12                            | 4                     | 3                        | 98                          | 294                                                | 147                                       |
| 12.288                        | 4                     | 3.072                    | 96                          | 294.912                                            | 147.456                                   |
| 12.5                          | 4                     | 3.125                    | 94                          | 293.75                                             | 146.875                                   |
| 13                            | 4                     | 3.25                     | 90                          | 292.5                                              | 146.25                                    |
| 13.5                          | 4                     | 3.375                    | 87                          | 293.625                                            | 146.8125                                  |
| 14                            | 4                     | 3.5                      | 84                          | 294                                                | 147                                       |
| 14.5                          | 4                     | 3.625                    | 81                          | 293.625                                            | 146.8125                                  |
| 15                            | 4                     | 3.75                     | 78                          | 292.5                                              | 146.25                                    |
| 15.5                          | 4                     | 3.875                    | 76                          | 294.5                                              | 147.25                                    |
| 16                            | 4                     | 4                        | 73                          | 292                                                | 146                                       |
| 16.5                          | 4                     | 4.125                    | 71                          | 292.875                                            | 146.4375                                  |
| 17                            | 4                     | 4.25                     | 69                          | 293.25                                             | 146.625                                   |
| 17.5                          | 4                     | 4.375                    | 67                          | 293.125                                            | 146.5625                                  |
| 18                            | 4                     | 4.5                      | 65                          | 292.5                                              | 146.25                                    |
| 18.5                          | 8                     | 2.3125                   | 127                         | 293.6875                                           | 146.84375                                 |
| 19                            | 8                     | 2.375                    | 124                         | 294.5                                              | 147.25                                    |
| 19.5                          | 8                     | 2.4375                   | 120                         | 292.5                                              | 146.25                                    |
| 20                            | 8                     | 2.5                      | 117                         | 292.5                                              | 146.25                                    |
| 20.5                          | 8                     | 2.5625                   | 115                         | 294.6875                                           | 147.34375                                 |
| 21                            | 8                     | 2.625                    | 112                         | 294                                                | 147                                       |
| 21.5                          | 8                     | 2.6875                   | 109                         | 292.9375                                           | 146.46875                                 |



Figure 22. Simplified Block Diagram of Regulator Internal Structure, Including External Components

### **Power Reduction Modes**

All sections of the IC have clock gating functionality that allows individual functional blocks to be disabled for power savings. Functional blocks that can optionally be powered down include the following:

- Clock Generator 1, Clock Generator 2, and Clock Generator 3
- S/PDIF receiver
- S/PDIF transmitter
- Serial data input and output ports
- Auxiliary ADC
- ASRCs (in two banks of eight channels each)
- PDM microphone inputs and decimation filters

### **Overview of Power Reduction Registers**

An overview of the registers related to power reduction is shown in Table 24. For a more detailed description, see the Power Reduction Registers section.

### Table 24. Power Reduction Registers

|         | 0             |                                                                             |  |  |  |  |
|---------|---------------|-----------------------------------------------------------------------------|--|--|--|--|
| Address | Register      | Description                                                                 |  |  |  |  |
| 0xF050  | POWER_ENABLE0 | Disables clock generators, serial ports, and ASRCs                          |  |  |  |  |
| 0xF051  | POWER_ENABLE1 | Disables PDM microphone inputs,<br>S/PDIF interfaces, and auxiliary<br>ADCs |  |  |  |  |

### Hardware Reset

An active low hardware reset pin ( $\overline{\text{RESET}}$ ) is available for externally triggering a reset of the device. When this pin is tied to ground, all functional blocks in the device are disabled, and the current consumption decreases dramatically. The amount of current drawn depends on the leakage current of the silicon, which depends greatly on the ambient temperature and the properties of the die. When the  $\overline{\text{RESET}}$  pin is connected to IOVDD, all control registers are reset to their power-on default values. The state of the RAM is not guaranteed to be cleared after a reset; therefore, the memory must be manually cleared by the DSP program.

The default program generated by SigmaStudio includes code that automatically clears the memory. To ensure that no chatter exists on the RESET signal line, implement an external reset generation circuit in the system hardware design. Figure 23 shows an example of the ADM811 microprocessor supervisory

circuit with a push-button connected, providing a method for manually generating a clean  $\overrightarrow{\text{RESET}}$  signal. For reliability purposes on the application level, place a weak pull-down resistor on the  $\overrightarrow{\text{RESET}}$  line to guarantee that the device is held in reset in the event that the reset supervisory circuitry fails.



Figure 23. Example Manual Reset Generation Circuit

If the hardware reset function is not required in a system, pull the  $\overline{\text{RESET}}$  pin high to the IOVDD supply using a weak pull-up resistor (in the range of several k $\Omega$ ). The device is designed to boot properly even when the  $\overline{\text{RESET}}$  pin is permanently pulled high.

## **TEMPERATURE SENSOR DIODE**

The chip includes an on-board temperature sensor diode with an approximate range of 0°C to 120°C. The temperature sensor function is enabled by the two sides of a diode connected to the THD\_P and THD\_M pins. Value processing (calculating the actual temperature based on the current through the diode) is handled off chip by an external controller IC. The temperature value is not stored in an internal register; it is available only in the external controller IC. The temperature sensor requires an external IC to operate properly. See the Engineer-to-Engineer Note EE-346 for more information and instructions for using the temperature sensor diode.



Figure 24. Example External Temperature Sensor Circuit

## **SLAVE CONTROL PORTS**

A total of four control ports are available: two slave ports and two master ports. The slave I<sup>2</sup>C port and slave SPI port allow an external master device to modify the contents of the memory and registers. The master I<sup>2</sup>C port and master SPI port allow the device to self boot and to send control messages to slave devices on the same bus.

| Output Channel<br>in <mark>SigmaStudio</mark> | Serial Output<br>Pin | Position in I <sup>2</sup> S Stream<br>(2-Channel) | Position in<br>TDM4 Stream | Position in<br>TDM8 Stream | Position in<br>TDM16 Stream |
|-----------------------------------------------|----------------------|----------------------------------------------------|----------------------------|----------------------------|-----------------------------|
| 0                                             | SDATA_OUT0           | Left                                               | 0                          | 0                          | 0                           |
| 1                                             | SDATA_OUT0           | Right                                              | 1                          | 1                          | 1                           |
| 2                                             | SDATA_OUT0           | Not applicable                                     | 2                          | 2                          | 2                           |
| 3                                             | SDATA_OUT0           | Not applicable                                     | 3                          | 3                          | 3                           |
| 4                                             | SDATA_OUT0           | First SDATAIOx left                                | First SDATAIOx             | 4                          | 4                           |
| 5                                             | SDATA_OUT0           | First SDATAIOx right                               | First SDATAIOx             | 5                          | 5                           |
| 6                                             | SDATA_OUT0           | Not applicable                                     | First SDATAIOx             | 6                          | 6                           |
| 7                                             | SDATA_OUT0           | Not applicable                                     | First SDATAIOx             | 7                          | 7                           |
| 8                                             | SDATA_OUT0           | Second SDATAIOx left                               | Second SDATAIOx            | First SDATAIOx             | 8                           |
| 9                                             | SDATA_OUT0           | Second SDATAIOx right                              | Second SDATAIOx            | First SDATAIOx             | 9                           |
| 10                                            | SDATA_OUT0           | Not applicable                                     | Second SDATAIOx            | First SDATAIOx             | 10                          |
| 11                                            | SDATA_OUT0           | Not applicable                                     | Second SDATAIOx            | First SDATAIOx             | 11                          |
| 12                                            | SDATA_OUT0           | Third SDATAIOx left                                | Third SDATAIOx             | First SDATAIOx             | 12                          |
| 13                                            | SDATA_OUT0           | Third SDATAIOx right                               | Third SDATAIOx             | First SDATAIOx             | 13                          |
| 14                                            | SDATA_OUT0           | Not applicable                                     | Third SDATAIOx             | First SDATAIOx             | 14                          |
| 15                                            | SDATA_OUT0           | Not applicable                                     | Third SDATAIOx             | First SDATAIOx             | 15                          |
| 16                                            | SDATA_OUT1           | Left                                               | 0                          | 0                          | 0                           |
| 17                                            | SDATA_OUT1           | Right                                              | 1                          | 1                          | 1                           |
| 18                                            | SDATA_OUT1           | Not applicable                                     | 2                          | 2                          | 2                           |
| 19                                            | SDATA_OUT1           | Not applicable                                     | 3                          | 3                          | 3                           |
| 20                                            | SDATA_OUT1           | First SDATAIOx left                                | First SDATAIOx             | 4                          | 4                           |
| 21                                            | SDATA_OUT1           | First SDATAIOx right                               | First SDATAIOx             | 5                          | 5                           |
| 22                                            | SDATA_OUT1           | Not applicable                                     | First SDATAIOx             | 6                          | 6                           |
| 23                                            | SDATA_OUT1           | Not applicable                                     | First SDATAIOx             | 7                          | 7                           |
| 24                                            | SDATA_OUT1           | Second SDATAIOx left                               | Second SDATAIOx            | First SDATAIOx             | 8                           |
| 25                                            | SDATA_OUT1           | Second SDATAIOx right                              | Second SDATAIOx            | First SDATAIOx             | 9                           |
| 26                                            | SDATA_OUT1           | Not applicable                                     | Second SDATAIOx            | First SDATAIOx             | 10                          |
| 27                                            | SDATA_OUT1           | Not applicable                                     | Second SDATAIOx            | First SDATAIOx             | 11                          |
| 28                                            | SDATA_OUT1           | Third SDATAIOx left                                | Third SDATAIOx             | First SDATAIOx             | 12                          |
| 29                                            | SDATA_OUT1           | Third SDATAIOx right                               | Third SDATAIOx             | First SDATAIOx             | 13                          |
| 30                                            | SDATA_OUT1           | Not applicable                                     | Third SDATAIOx             | First SDATAIOx             | 14                          |
| 31                                            | SDATA_OUT1           | Not applicable                                     | Third SDATAIOx             | First SDATAIOx             | 15                          |
| 32                                            | SDATA_OUT2           | Left                                               | 0                          | 0                          | Not applicable              |
| 33                                            | SDATA_OUT2           | Right                                              | 1                          | 1                          | Not applicable              |
| 34                                            | SDATA_OUT2           | Not applicable                                     | 2                          | 2                          | Not applicable              |
| 35                                            | SDATA_OUT2           | Not applicable                                     | 3                          | 3                          | Not applicable              |
| 36                                            | SDATA_OUT2           | SDATAIOx left                                      | First SDATAIOx             | 4                          | Not applicable              |
| 37                                            | SDATA_OUT2           | SDATAIOx right                                     | First SDATAIOx             | 5                          | Not applicable              |
| 38                                            | SDATA_OUT2           | Not applicable                                     | First SDATAIOx             | 6                          | Not applicable              |
| 39                                            | SDATA_OUT2           | Not applicable                                     | First SDATAIOx             | 7                          | Not applicable              |
| 40                                            | SDATA_OUT3           | Left                                               | 0                          | 0                          | Not applicable              |
| 41                                            | SDATA_OUT3           | Right                                              | 1                          | 1                          | Not applicable              |
| 42                                            | SDATA_OUT3           | Not applicable                                     | 2                          | 2                          | Not applicable              |
| 43                                            | SDATA_OUT3           | Not applicable                                     | 3                          | 3                          | Not applicable              |
| 44                                            | SDATA_OUT3           | SDATAIOx left                                      | First SDATAIOx             | 4                          | Not applicable              |
| 45                                            | SDATA_OUT3           | SDATAIOx right                                     | First SDATAIOx             | 5                          | Not applicable              |
| 46                                            | SDATA_OUT3           | Not applicable                                     | First SDATAIOx             | 6                          | Not applicable              |
| 47                                            | SDATA_OUT3           | Not applicable                                     | First SDATAIOx             | 7                          | Not applicable              |

## Table 36. Serial Output Pin Mapping from SigmaStudio Channels<sup>1</sup>

<sup>1</sup> Any of the eight SDATAIOx pins can be assigned to any output.

Figure 53 shows timing diagrams for possible serial port configurations in 4-channel mode, with 16 bit clock cycles per channel, for a total of 64 bit clock cycles per frame (refer to the SERIAL\_BYTE\_x\_0 registers, Bits[2:0] (TDM\_MODE) = 0b100). Different bit clock polarities are shown (refer to the SERIAL\_ BYTE\_x\_0 registers, Bit 7 (BCLK\_POL)). The audio word length is fixed at 16 bits (refer to the SERIAL\_BYTE\_x\_0 registers, Bits[6:5] (WORD\_LEN) = 0b01), and there are four possible configurations for MSB position (SERIAL\_BYTE\_x\_0, Bits[4:3] (DATA\_FMT)), all of which are shown in Figure 53.



Figure 53. Serial Audio Data Formats; Four Channels, 16 Bits per Channel

| Address | Register   | Description                                                          |
|---------|------------|----------------------------------------------------------------------|
| 0xF3A5  | FTDM_OUT37 | FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[23:16]) |
| 0xF3A6  | FTDM_OUT38 | FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[15:8])  |
| 0xF3A7  | FTDM_OUT39 | FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[7:0])   |
| 0xF3A8  | FTDM_OUT40 | FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[31:24]) |
| 0xF3A9  | FTDM_OUT41 | FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[23:16]) |
| 0xF3AA  | FTDM_OUT42 | FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[15:8])  |
| 0xF3AB  | FTDM_OUT43 | FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[7:0])   |
| 0xF3AC  | FTDM_OUT44 | FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[31:24]) |
| 0xF3AD  | FTDM_OUT45 | FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[23:16]) |
| 0xF3AE  | FTDM_OUT46 | FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[15:8])  |
| 0xF3AF  | FTDM_OUT47 | FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[7:0])   |
| 0xF3B0  | FTDM_OUT48 | FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[31:24]) |
| 0xF3B1  | FTDM_OUT49 | FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[23:16]) |
| 0xF3B2  | FTDM_OUT50 | FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[15:8])  |
| 0xF3B3  | FTDM_OUT51 | FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[7:0])   |
| 0xF3B4  | FTDM_OUT52 | FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[31:24]) |
| 0xF3B5  | FTDM_OUT53 | FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[23:16]) |
| 0xF3B6  | FTDM_OUT54 | FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[15:8])  |
| 0xF3B7  | FTDM_OUT55 | FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[7:0])   |
| 0xF3B8  | FTDM_OUT56 | FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[31:24]) |
| 0xF3B9  | FTDM_OUT57 | FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[23:16]) |
| 0xF3BA  | FTDM_OUT58 | FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[15:8])  |
| 0xF3BB  | FTDM_OUT59 | FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[7:0])   |
| 0xF3BC  | FTDM_OUT60 | FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[31:24]) |
| 0xF3BD  | FTDM_OUT61 | FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[23:16]) |
| 0xF3BE  | FTDM_OUT62 | FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[15:8])  |
| 0xF3BF  | FTDM_OUT63 | FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[7:0])   |

## **S/PDIF INTERFACE**

To simplify interfacing at the system level, wire the on-chip S/PDIF receiver and transmitter data ports directly to other S/PDIF-compatible equipment. The S/PDIF receiver consists of two audio channels input on one hardware pin (SPDIFIN). The clock signal is embedded in the data using biphase mark code. The S/PDIF transmitter consists of two audio channels output on one hardware pin (SPDIFOUT). The clock signal is embedded in the data using biphase mark code. The data using biphase mark code. The S/PDIF transmitter consists of two audio channels output on one hardware pin (SPDIFOUT). The clock signal is embedded in the data using biphase mark code. The S/PDIF input and output word lengths can be independently set to 16, 20, or 24 bits.

The S/PDIF interface meets the S/PDIF consumer performance specification. It does not meet the AES3 professional specification.

## S/PDIF Receiver

The S/PDIF input port is designed to accept both transistor to transistor logic (TTL) and bipolar signals, provided there is an ac coupling capacitor on the input pin of the chip. Because the S/PDIF input data is most likely asynchronous to the DSP core, it must be routed through an ASRC.

The S/PDIF receiver works over a wide range of sampling frequencies between 18 kHz and 192 kHz. Note that the RX\_MCLKSPEED bit must be set in the SPDIF\_RX\_ MCLKSPEED register and the TX\_MCLKSPEED bit must be set in the SPDIF\_TX\_MCLKSPEED register for receive and transmit rates greater than 96 kHz, respectively.

The S/PDIF receiver input is a comparator that is centered at IOVDD/2 and requires an input signal level of at least 200 mV p-p to operate properly.

In addition to audio data, S/PDIF streams contain user data, channel status, validity bit, virtual LRCLK, and block start information. The receiver decodes audio data and sends it to the corresponding registers in the control register map, where the information can be read over the I<sup>2</sup>C or SPI slave port.

For improved jitter performance, the S/PDIF clock recovery implementation is completely digital. The S/PDIF ports are designed to meet the following Audio Engineering Society (AES) and European Broadcasting Union (EBU) specifications: a jitter of 0.25 UI p-p at 8 kHz and above, a jitter of 10 UI p-p below 200 Hz, and a minimum signal voltage of 200 mV.

### **S/PDIF Transmitter**

The S/PDIF transmitter outputs two channels of audio data directly from the DSP core at the core rate. The extra nonaudio data bits on the transmitted signal can be copied directly from the S/PDIF receiver or programmed manually, using the corresponding registers in the control register map.

## **Auxiliary Output Mode**

The received data on the S/PDIF receiver can be converted to a TDM8 stream, bypass the SigmaDSP core, and be output directly on a serial data output pin. This mode of operation is called auxiliary output mode. Configure this mode using Register 0xF608 (SPDIF\_AUX\_EN). The TDM8 output from the S/PDIF receiver regroups the recovered data in a TDM like format, as shown in Table 46.

The S/PDIF receiver, when operating in auxiliary output mode, also recovers the embedded BCLK\_OUTx and LRCLK\_OUTx signals in the S/PDIF stream and outputs them on the corresponding BCLK\_OUTx and LRCLK\_OUTx pins in master mode when Register 0xF608 (SPDIF\_AUX\_EN), Bits[3:0] (TDMOUT) are configured to enable auxiliary output mode. The selected BCLK\_OUTx signal has a frequency of 256× the recovered sample rate, and the LRCLK\_OUTx signal is a 50% duty cycle square wave that has the same frequency as the audio sample rate (see Table 144).

| Table 46. S/PDIF Auxiliar | y Output Mode, TDM8 Data Format |
|---------------------------|---------------------------------|
|---------------------------|---------------------------------|

| TDM8    |                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel | Description of Data Format                                                                                                                                |
| 0       | 8 zero bits followed by 24 audio bits, recovered from the left audio channel of the S/PDIF stream                                                         |
| 1       | 28 zero bits followed by the left parity bit, left validity bit, left user data, and left channel status                                                  |
| 2       | 30 zero bits followed by the compression type bit<br>(COMPR_TYPE) (0b0 = AC3, 0b1 = DTS) and the audio<br>type bit (AUDIO_TYPE) (0 = PCM, 1 = compressed) |
| 3       | No data                                                                                                                                                   |
| 4       | 8 zero bits followed by 24 audio bits, recovered from the right audio channel of the S/PDIF stream                                                        |
| 5       | 28 zero bits followed by the right parity bit, right validity bit, right user data, and right channel status                                              |
| 6       | No data                                                                                                                                                   |
| 7       | 31 zero bits followed by the block start signal                                                                                                           |

## S/PDIF Receiver Inputs to DSP Core

The S/PDIF receiver input must pass through an ASRC to guarantee that it is synchronous to the DSP core. The two channels from the S/PDIF receiver can be selected as the audio source to ASRCs in the routing matrix. When the source is the S/PDIF receiver, the serial input channel that is specified is ignored.

### Table 47. S/PDIF Input Mapping to SigmaStudio Channels

| Channel in S/PDIF Receiver<br>Data Stream | S/PDIF Input Channels in<br>SigmaStudio |
|-------------------------------------------|-----------------------------------------|
| Left                                      | 0                                       |
| Right                                     | 1                                       |

### S/PDIF Audio Outputs from DSP Core to S/PDIF Transmitter

The output signal of the S/PDIF transmitter can come from the DSP core or directly from the S/PDIF receiver. The selection is controlled by Register 0xF1C0 (SPDIFTX\_INPUT). When the signal comes from the DSP core, use the S/PDIF output cells in SigmaStudio.



Figure 69. S/PDIF Transmitter Source Selection

### Table 48. S/PDIF Output Mapping from SigmaStudio Channels

| Channel in S/PDIF Transmitter<br>Data Stream | S/PDIF Output Channel in<br>SigmaStudio |
|----------------------------------------------|-----------------------------------------|
| Left                                         | 0                                       |
| Right                                        | 1                                       |
|                                              |                                         |

### S/PDIF Interface Registers

An overview of the registers related to the S/PDIF interface is shown in Table 49. For a more detailed description, refer to the S/PDIF Interface Registers section.

## **Hardware Accelerators**

The core includes accelerators like division, square root, barrel shifters, Base 2 logarithm, Base 2 exponential, slew, and a pseudorandom number generator. These hardware accelerators reduce the number of instructions required for complex audio processing algorithms.

The division accelerator enables efficient processing for audio algorithms like compression and limiting. The square root accelerator enables efficient processing for audio algorithms such as loudness, rms envelopes, and filter coefficient calculations. The logarithm and exponent accelerators enable efficient processing for audio algorithms involving decibel conversion. The slew accelerators provide click free updates of parameters that must change slowly over time, allowing audio processing algorithms such as mixers, crossfaders, dynamic filters, and dynamic volume controls. The pseudorandom number generator can efficiently produce white noise, pink noise, and dither.

### Programming the SigmaDSP Core

The SigmaDSP is programmable via the SigmaStudio graphical development tools.

When the SigmaDSP core is running a program and the user needs to reprogram the program and data memories during operation of the device, the core must be stopped while the memory is being updated to avoid undesired noises on the DSP outputs.

The following sequence of steps is appropriate for programming the memories at boot time, or reprogramming the memories during operation:

- 1. Enable soft reset (Register 0xF890 (SOFT\_RESET), Bit 0 (SOFT\_RESET) = 0b0), then disable soft reset (Register 0xF890 (SOFT\_RESET), Bit 0 (SOFT\_RESET) = 0b1).
- 2. If the DSP is in the process of executing a program, wait for the current sample or block to finish processing. For programs with no block processing elements in the signal flow, use the length of one sample. For example, at a sample rate of 48 kHz, one sample is 1/48000 sec, or 20.83 µs. For programs with block processing elements in the signal flow, use the length

ADAU1463/ADAU1467

of one block. For example, at a sample rate of 48 kHz, with a block size of 256 samples, one block is 256/48,000 sec, or 53.3 ms.

- After waiting the appropriate amount of time, as defined in Step 2, download the new program and data memory contents to the corresponding memory locations using the I<sup>2</sup>C/SPI slave control port.
- 4. Start the DSP core (Register 0xF402 (START\_CORE), Bit 0 (START\_CORE) = 0b1).
- 5. Wait at least two audio samples for the DSP initialization to execute. For example, at a sample rate of 48 kHz, two samples are equal to 2/48,000 sec, or 41.66 μs.

## **Reliability Features**

Several reliability features are controlled by a panic manager subsystem that monitors the state of the SigmaDSP core and memories and generates alerts if error conditions are encountered. The panic manager indicates error conditions to the user via register flags and GPIO outputs. The origin of the error can be traced to different functional blocks such as the watchdog, memory, stack, software program, and core op codes.

Although designed mostly as an aid for software development, the panic manager is also useful in monitoring the state of the memories over long periods of time, such as in applications where the system operates unattended for an extended period, and resets are infrequent. The memories in the device have a built in self test feature that runs automatically while the device is in operation. If a memory corruption is detected, the appropriate flag is signaled in the panic manager. The program running in the DSP core can monitor the state of the panic manager and can mute the audio outputs if an error is encountered, and external devices, such as microcontrollers, can poll the panic manager registers or monitor the multipurpose pins to perform some preprogrammed action, if necessary.

### DSP Core and Reliability Registers

An overview of the registers related to the DSP core is shown in Table 54. For a more detailed description, see the DSP Core Control Registers section and Debug and Reliability Registers section.

## SOFTWARE FEATURES

## Software Safeload

To prevent making the filter unstable during coefficient transitions, the SigmaStudio compiler implements a software safeload mechanism that is enabled by default. The safeload mechanism is also helpful for reducing pops and clicks during parameter updates. SigmaStudio automatically sets up the necessary code and parameters for all new projects. The safeload code, together with other initialization code, fills the beginning section of program RAM. Several data memory locations are reserved by the compiler for use with the software safeload feature. The exact parameter addresses are not fixed; therefore, the addresses must be obtained by reading the log file generated by the compiler. In most cases, the addresses for software safeload parameters match the defaults shown in Table 55.

| Address<br>(Hex) | Parameter          | Function                                                                  |
|------------------|--------------------|---------------------------------------------------------------------------|
| 0x6000           | data_SafeLoad[0]   | Safeload Data Slot 0                                                      |
| 0x6001           | data_SafeLoad[1]   | Safeload Data Slot 1                                                      |
| 0x6002           | data_SafeLoad[2]   | Safeload Data Slot 2                                                      |
| 0x6003           | data_SafeLoad[3]   | Safeload Data Slot 3                                                      |
| 0x6004           | data_SafeLoad[4]   | Safeload Data Slot 4                                                      |
| 0x6005           | address_SafeLoad   | Target address for safeload<br>transfer                                   |
| 0x6006           | num_SafeLoad_Lower | Number of words to<br>write/safeload trigger<br>if on Page 1 lower memory |
| 0x6007           | num_SafeLoad_Upper | Number of words to<br>write/safeload trigger<br>if on Page 2 upper memory |

The first five addresses in Table 55 are the five data\_SafeLoad[x] parameters, which are slots for storing the data to be transferred into another target memory location. The safeload parameter space contains five data slots, by default, because most standard signal processing algorithms have five parameters or fewer.

The address\_SafeLoad parameter is the target address in parameter RAM. This target address designates the first address to be written in the safeload transfer. If more than one word is written, the address increments automatically for each data-word.

The num\_SafeLoad\_Lower and num\_SafeLoad\_Upper parameters designate the number of words to be written. For a biquad filter algorithm, the number of words to be written is five because there are five coefficients in a biquad IIR filter. For a simple, single-gain algorithm, the number of words to be written is one. This parameter also serves as the trigger; when it is written, a safeload write is triggered on the next frame.

Because the slave port cannot access all of the core data memory from a single 16-bit address space, the safeload subroutine needs to know whether to write to the lower (Page 1) or upper (Page 2) section of memory. If the first parameter is to be place on Page 1 (lower memory), write the number of parameters to be automatically written (1 to 5) to num\_SafeLoad\_Lower and write 0 to num\_SafeLoad\_Upper. Conversely, if the first parameter is to be placed on Page 2 (upper memory), write 0 to num\_SafeLoad\_Lower and write the number of parameters to be automatically written (1 to 5) to num\_SafeLoad\_Upper. One of these values passed must always be a number between one and five inclusive, and the other value must be zero. The second write triggers the safeload operation.

The safeload mechanism is software based and executes once per audio frame. Therefore, system designers must take care when designing the communication protocol. A delay that is equal to or greater than the sampling period (the inverse of the sampling frequency) is required between each safeload write. At a sample rate of 48 kHz, the delay is equal to  $\geq 20.83 \ \mu$ s. Not observing this delay corrupts the downloaded data.

Because the compiler has control over the addresses used for software safeload, the addresses assigned to each parameter may differ from the default values in Table 55. The compiler generates a file named compiler\_output.log in the project folder where the SigmaStudio project is stored on the hard drive. In this file, the addresses assigned to the software safeload parameters can be confirmed.

Figure 80 shows an example of the software safeload parameter definitions in an excerpt from the compiler\_output.log file.

The following steps are necessary for executing a software safeload:

- 1. Confirm that no safeload operation has been executed in the span of the last audio sample.
- 2. Write the desired data to the data\_SafeLoad[x], Bit x parameters, starting at data\_SafeLoad[x], Bit 0, and incrementing, as needed, up to a maximum of five parameters.
- 3. Write the desired starting target address to the address\_SafeLoad parameter.
- 4. Write the number of words to be transferred to the num\_ SafeLoad\_Lower and num\_SafeLoad\_Upper parameters. The minimum write length is one word, and the maximum write length is five words.
- 5. Wait one audio frame for the safeload operation to complete.

## **CONTROL REGISTERS**

All control registers store 16 bits (two bytes) of data. The register map is defined in Table 60.

## Table 60. Control Register Summary

| Reg          | Name                | Bits    | Bit 7     | Bit 6     | Bit 5     | Bit 4         | Bit 3          | Bit 2     | Bit 1        | Bit 0              | Reset  | RW   |
|--------------|---------------------|---------|-----------|-----------|-----------|---------------|----------------|-----------|--------------|--------------------|--------|------|
| 0xF000       | PLL_CTRL0           | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0060 | RW   |
|              |                     | [7:0]   | RESERVED  |           |           |               | PLL_FBDIVIDER  |           |              |                    |        |      |
| 0xF001       | PLL_CTRL1           | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | RW   |
|              |                     | [7:0]   |           |           |           | RESERVED      |                |           | PL           | _L_DIV             |        |      |
| 0xF002       | PLL_CLK_SRC         | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | RW   |
|              |                     | [7:0]   |           |           |           | RESERV        | ED             |           |              | CLKSRC             |        |      |
| 0xF003       | PLL_ENABLE          | [15:8]  |           |           |           |               | RESERVED       |           |              | •                  | 0x0000 | RW   |
|              |                     | [7:0]   |           |           |           | RESERV        | ED             |           |              | PLL_ENABLE         |        |      |
| 0xF004       | PLL_LOCK            | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | R    |
|              |                     | [7:0]   |           |           |           | RESERV        | ED             |           |              | PLL_LOCK           |        |      |
| 0xF005       | MCLK_OUT            | [15:8]  |           |           |           |               | RESERVED       |           |              | •                  | 0x0000 | R    |
|              |                     | [7:0]   |           |           | RESE      | ERVED         |                | CLKO      | UT_RATE      | CLKOUT_<br>ENABLE  |        |      |
| 0xF006       | PLL_<br>WATCHDOG    | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0001 | R    |
|              |                     | [7:0]   |           |           |           | RESERV        | ED             |           |              | PLL_               | -      |      |
|              |                     |         |           |           |           |               |                |           |              | WATCHDOG           |        |      |
| 0xF020       | CLK_GEN1_M          | [15:8]  |           |           |           | RESERV        | ED             |           |              | CLOCKGEN1_<br>M[8] | 0x0006 | RW   |
|              |                     | [7:0]   |           |           |           | CLC           | OCKGEN1_M[7:0] |           |              |                    |        |      |
| 0xF021       | CLK_GEN1_N          | [15:8]  |           |           |           | RESERV        | ED             |           |              | CLOCKGEN1_<br>N[8] | 0x0001 | RW   |
|              |                     | [7:0]   |           |           |           | CLC           | OCKGEN1_N[7:0] |           |              |                    |        |      |
| 0xF022       | CLK_GEN2_M          | [15:8]  |           |           |           | RESERV        | ED             |           |              | CLOCKGEN2_<br>M[8] | 0x0009 | RW   |
|              |                     | [7:0]   |           |           |           | CLC           | OCKGEN2_M[7:0] |           |              |                    |        |      |
| 0xF023       | CLK_GEN2_N          | [15:8]  |           |           |           | RESERV        | ED             |           |              | CLOCKGEN2_<br>N[8] | 0x0001 | RW   |
|              |                     | [7:0]   |           |           |           | CLC           | OCKGEN2_N[7:0] |           |              |                    |        |      |
| 0xF024       | CLK_GEN3_M          | [15:8]  |           |           |           | CLO           | CKGEN3_M[15:8] |           |              |                    | 0x0000 | RW   |
| 0 5005       |                     | [/:0]   |           |           |           |               | CKGEN3_M[7:0]  |           |              |                    |        | 014  |
| 0xF025       | CLK_GEN3_N          | [15:8]  |           |           |           | CLO           | CKGEN3_N[15:8] |           |              |                    | 0x0000 | RW   |
| 0.5004       |                     | [/:0]   |           |           |           |               | DCKGEN3_N[7:0] |           |              |                    | 0.0005 | 014  |
| 0xF026       | CLK_GEN3_           | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x000E | RW   |
|              | 5.10                | [7:0]   |           | RESERVED  |           | CLK GEN3 SRC  |                | FREF      | PIN          |                    | -      |      |
| 0xF027       | CLK GEN3            | [15:8]  |           | HEBEITTED |           |               | RESERVED       |           |              |                    | 0x0000 | R    |
|              | LOCK                |         |           |           |           |               |                |           |              |                    |        |      |
|              |                     | [7:0]   |           |           |           | RESERV        | ED             |           |              | GEN3_LOCK          |        |      |
| 0xF050       | POWER_              | [15:8]  |           | RESERVED  |           | CLK_GEN3_PWR  | CLK_GEN2_PWR   | CLK_GEN1_ | ASRCBANK1_   | ASRCBANK0_         | 0x0000 | RW   |
|              |                     | [7:0]   | SOUT3_PWR | SOUT2_    | SOUT1_PWR | SOUT0_PWR     | SIN3_PWR       | SIN2_PWR  | SIN1_PWR     | SIN0_PWR           | -      |      |
| 0xF051       | POWER_              | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | RW   |
|              | ENABLE1             | [7:0]   |           |           |           |               |                |           | RY DW/P      |                    | _      |      |
| 0vE100       |                     | [1.5.9] |           | NEGENVED  |           |               |                | IX_I WI   |              | ADC_I WIN          | 0×0000 | R/W/ |
| to           | ASIC_INFUTX         | [13.0]  |           |           | ASPC SIN  | CHANNEL       | REJERVED       |           |              |                    | 0,0000 | L M  |
| 0xF107       |                     | [7.0]   |           |           | ASINC_SIN |               |                |           | ASIIC_SOURCE |                    | 0×0000 | RW   |
| to           | RATEx               | [10.0]  |           |           |           |               |                |           |              |                    | 0,0000 |      |
| 0xF147       |                     | [7:0]   |           |           | RESERVED  |               |                | ASRC_     | RATE         |                    |        |      |
| 0xF180       | SOUT_               | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | RW   |
| to           | SOURCEx             |         |           |           |           |               |                |           |              |                    |        |      |
| 0xF197       |                     | [7:0]   | RESEF     | RVED      |           | SOUT_ASRC_SEI | ECT            |           | SOUT_SOURCE  |                    |        |      |
| 0xF1C0       | SPDIFTX_            | [15:8]  |           |           |           |               | RESERVED       |           |              |                    | 0x0000 | RW   |
|              | INPUT               | [7, 6]  |           |           |           |               |                |           | 600          |                    | 4      | 1    |
| 0.5057       |                     | [/:0]   |           |           |           | KESERVED      |                |           | SPDIFT.      | X_SOURCE           | 0.0000 |      |
| ux⊦200<br>to | SERIAL_<br>BYTE_x_0 | [15:8]  |           | LKCLK_SRC |           |               | RCTK_2KC       |           | LKCLK_MODE   | LKCLK_POL          | UXUU00 | KW   |
| 0xF21C       |                     | [7:0]   | BCLK_POL  | WO        | RD_LEN    | DAT           | A_FMT          |           | TDM_MODE     |                    | 1      | 1    |
|              |                     |         |           | I         |           | 1             |                | 1         |              |                    |        |      |

# **Data Sheet**

# ADAU1463/ADAU1467

| Reg          | Name              | Bits            | Bit 7 | Bit 6    | Bit 5 | Bit 4       | Bit 3               | Bit 2         | Bit 1  | Bit 0      | Reset  | RW   |
|--------------|-------------------|-----------------|-------|----------|-------|-------------|---------------------|---------------|--------|------------|--------|------|
| 0xF630       | SPDIF_RX_         | [15:8]          |       |          |       |             | SPDIF_RX_UD_LEFT[1  | 5:8]          |        |            | 0x0000 | R    |
| to           | UD_LEFT_x         |                 |       |          |       |             |                     |               |        |            | _      |      |
|              |                   | [7:0]           |       |          |       |             | SPDIF_RX_UD_LEFT[7  | 7:0]          |        |            | 0.0000 |      |
| UXF640<br>to | UD_RIGHT_x        | [15:8]          |       |          |       | :           | SPDIF_RX_UD_RIGH1[  | 15:8]         |        |            | 0x0000 | к    |
| 0xF64B       |                   | [7:0]           |       |          |       |             | SPDIF_RX_UD_RIGHT[  | [7:0]         |        |            | _      |      |
| 0xF650       | SPDIF_RX_VB_      | [15:8]          |       |          |       |             | SPDIF_RX_VB_LEFT[1: | 5:8]          |        |            | 0x0000 | R    |
| to<br>0xF65B | LEFI_X            | [7:0]           |       |          |       |             |                     | 7.0]          |        |            | _      |      |
| 0xE660       | SPDIE RX VR       | [7:0]           |       |          |       |             | SPDIF_RX_VB_LEFT[7  | 15:8]         |        |            | 0x0000 | R    |
| to           | RIGHT_x           | [15.0]          |       |          |       |             |                     | 19.0]         |        |            | 0,0000 |      |
| 0xF66B       |                   | [7:0]           |       |          |       |             | SPDIF_RX_VB_RIGHT[  | 7:0]          |        |            |        |      |
| 0xF670       | SPDIF_RX_PB_      | [15:8]          |       |          |       |             | SPDIF_RX_PB_LEFT[1: | 5:8]          |        |            | 0x0000 | R    |
| 0xF67B       |                   | [7:0]           |       |          |       |             | SPDIF RX PB LEFT[7  | 7:0]          |        |            | -      |      |
| 0xF680       | SPDIF_RX_PB_      | [15:8]          |       |          |       |             | SPDIF_RX_PB_RIGHT[1 | 15:8]         |        |            | 0x0000 | R    |
| to           | RIGHT_x           |                 |       |          |       |             |                     |               |        |            | _      |      |
|              |                   | [7:0]           |       |          |       |             | SPDIF_RX_PB_RIGHT[  | 7:0]          |        |            | 0.0000 | D\4/ |
| UXF690       | SPUIF_IX_EN       | [15:8]<br>[7:0] |       |          |       | B           |                     |               |        | TYEN       | 00000  | RVV  |
| 0xF691       | SPDIF TX          | [15:8]          |       |          |       |             | RESERVED            |               |        | IXEN       | 0x0000 | RW   |
|              | CTRL              |                 |       |          |       |             |                     |               |        |            |        |      |
|              |                   | [7:0]           |       |          |       | RESERVED    | )                   |               | TX_LE  | NGTHCTRL   |        |      |
| 0xF69F       | SPDIF_TX_         | [15:8]          |       |          |       |             | RESERVED            |               |        |            | 0x0000 | RW   |
|              | SOURCE            | [7:0]           |       |          |       | H           | ESERVED             |               |        | SOURCE     |        |      |
| 0xF6A0       | SPDIF_TX_CS_      | [15:8]          |       |          |       |             | SPDIF_TX_CS_LEFT[1: | 5:8]          |        |            | 0x0000 | RW   |
| to<br>0vE6AR | LEFT_x            | [7.0]           |       |          |       |             |                     | 1.01          |        |            | _      |      |
|              |                   | [7:0]           |       |          |       |             | SPDIF_IX_CS_LEFI[7  | /:0]          |        |            | 0.0000 | DW/  |
| to           | RIGHT_x           | [15:8]          |       |          |       |             |                     | [5:8]         |        |            | 0x0000 | RW   |
| 0xF6BB       |                   | [7:0]           |       |          |       |             | SPDIF_TX_CS_RIGHT[  | 7:0]          |        |            | _      |      |
| 0xF6C0       | SPDIF_TX_UD_      | [15:8]          |       |          |       |             | SPDIF_TX_UD_LEFT[1  | 5:8]          |        |            | 0x0000 | RW   |
| to<br>0xF6CB | LEFI_X            | [7:0]           |       |          |       |             |                     | 7•0]          |        |            | _      |      |
| 0xF6D0       | SPDIF TX UD       | [15:8]          |       |          |       |             | SPDIF_TX_UD_RIGHT[  | 15:8]         |        |            | 0x0000 | RW   |
| to           | RIGHT_x           | []              |       |          |       |             |                     | ]             |        |            |        |      |
| 0xF6DB       |                   | [7:0]           |       |          |       |             | SPDIF_TX_UD_RIGHT[  | [7:0]         |        |            |        |      |
| 0xF6E0<br>to | SPDIF_TX_VB_      | [15:8]          |       |          |       |             | SPDIF_TX_VB_LEFT[1: | 5:8]          |        |            | 0x0000 | RW   |
| 0xF6EB       |                   | [7:0]           |       |          |       |             | SPDIF_TX_VB_LEFT[7  | 7:0]          |        |            | -      |      |
| 0xF6F0       | SPDIF_TX_VB_      | [15:8]          |       |          |       |             | SPDIF_TX_VB_RIGHT[1 | 15:8]         |        |            | 0x0000 | RW   |
| to<br>0xF6FB | RIGHT_x           | [7.0]           |       |          |       |             |                     | 7.01          |        |            | _      |      |
| 0xF700       |                   | [/:0]<br>[15·8] |       |          |       |             | SPDIF_IX_VB_RIGHT   | /:0]<br>5-8]  |        |            | 0~0000 | P\// |
| to           | LEFT_x            | [15.0]          |       |          |       |             |                     | 5.6]          |        |            | 0,0000 | 1.00 |
| 0xF70B       |                   | [7:0]           |       |          |       |             | SPDIF_TX_PB_LEFT[7  | 7:0]          |        |            |        |      |
| 0xF710       | SPDIF_TX_PB_      | [15:8]          |       |          |       |             | SPDIF_TX_PB_RIGHT[1 | 15:8]         |        |            | 0x0000 | RW   |
| 0xF71B       |                   | [7:0]           |       |          |       |             | SPDIE TX PB RIGHT   | 7:0]          |        |            | _      |      |
| 0xF780       | BCLK_INx_PIN      | [15:8]          |       |          |       |             | RESERVED            | , 10]         |        |            | 0x0018 | RW   |
| to           |                   | [7:0]           |       | RESERVED |       | BCLK_IN_PUL | L                   | BCLK_IN_SLEW  | BCLK   | _IN_DRIVE  | _      |      |
| 0xF783       |                   | [15.9]          |       |          |       |             |                     |               |        |            | 0v0018 | P\// |
| to           | PIN               | [15.0]          |       |          |       |             | NESERVED            |               |        |            | 0,0010 | 1.00 |
| 0xF787       |                   | [7:0]           |       | RESERVED |       | BCLK_OUT_PL | JLL B               | SCLK_OUT_SLEW | BCLK_  | OUT_DRIVE  |        |      |
| 0xF788       | LRCLK_INx_        | [15:8]          |       |          |       |             | RESERVED            |               |        |            | 0x0018 | RW   |
| 0xF78B       | FIIN              | [7:0]           |       | RESERVED | 1     | LRCLK IN PU |                     | LRCLK IN SLEW | LRCL   | ( IN DRIVE | _      |      |
| 0xF78C       | LRCLK_OUTx_       | [15:8]          |       |          |       |             | RESERVED            |               |        |            | 0x0018 | RW   |
| to           | PIN               |                 |       |          |       |             | -                   |               |        |            | _      |      |
| UXF/8F       |                   | [7:0]           |       | RESERVED |       | LRCLK_OUT_F | PULL LI             | RCLK_OUT_SLEW | LRCLK  | _OUT_DRIVE |        | -    |
| ∪x⊦790<br>to | SDATA_INX_<br>PIN | [15:8]          |       |          |       |             | RESERVED            |               |        |            | Ux0018 | KW   |
| 0xF793       |                   | [7:0]           |       | RESERVED | 1     | SDATA_IN_PU | ILL S               | SDATA_IN_SLEW | SDAT   | A_IN_DRIVE | 1      |      |
| 0xF794       | SDATA_OUTx_       | [15:8]          |       |          |       |             | RESERVED            |               |        |            | 0x0008 | RW   |
| to<br>0xF797 | PIN               | [7,0]           |       |          |       |             |                     |               | CD #74 |            | 4      |      |
|              |                   | [/:0]           |       | RESERVED |       | JUAIA_UUI_  | rull Sl             | DATA_OUT_SLEW | SDATA  | _OUI_DRIVE |        |      |

| Bits  | Bit Name | Settings | Description                          | Reset | Access |
|-------|----------|----------|--------------------------------------|-------|--------|
|       |          | 00       | Port 0.                              |       |        |
|       |          | 01       | Port 1.                              |       |        |
|       |          | 10       | Port 2.                              |       |        |
|       |          | 11       | Port 3.                              |       |        |
| [1:0] | CHAN     |          | For Serial Port 0 in 2-channel mode: | 0x00  | RW     |
|       |          | 00       | Channel 7 to Channel 4.              |       |        |
|       |          | 01       | Channel 11 to Channel 8.             |       |        |
|       |          | 10       | Channel 15 to Channel 12.            |       |        |
|       |          |          | For Serial Port 0 in TDM mode:       | 0x00  |        |
|       |          | 00       | Channel 7 to Channel 4 (TDM-4).      |       |        |
|       |          | 01       | Channel 11 to Channel 8 (TDM-4).     |       |        |
|       |          | 10       | Channel 15 to Channel 12 (TDM-4).    |       |        |
|       |          | 11       | Channel 15 to Channel 8 (TDM-8).     |       |        |
|       |          |          | For Serial Port 1 in 2-channel mode: | 0x00  |        |
|       |          | 00       | Channel 7 and Channel 6.             |       |        |
|       |          | 01       | Channel 11 and Channel 10.           |       |        |
|       |          | 10       | Channel 15 and Channel 14.           |       |        |
|       |          |          | For Serial Port 1 in TDM mode:       | 0x00  |        |
|       |          | 00       | Channel 23 to Channel 20 (TDM-4).    |       |        |
|       |          | 01       | Channel 27 to Channel 24 (TDM-4).    |       |        |
|       |          | 10       | Channel 31 to Channel 28 (TDM-4).    |       |        |
|       |          | 11       | Channel 31 to Channel 27 (TDM-8).    |       |        |
|       |          |          | For Serial Port 2 in 2-channel mode: | 0x00  |        |
|       |          | 00       | Channel 35 and Channel 34.           |       |        |
|       |          |          | For Serial Port 2 in TDM4 mode:      | 0x00  |        |
|       |          | 00       | Channel 39 to Channel 36.            |       |        |
|       |          |          | For Serial Port 3 in 2-channel mode: | 0x00  |        |
|       |          | 00       | Channel 47 to Channel 46.            |       |        |
|       |          |          | For Serial Port 3 in TDM4 mode:      |       |        |
|       |          | 00       | Channel 47 to Channel 44.            | 0x00  |        |

## **DEBUG AND RELIABILITY REGISTERS**

### Clear the Panic Manager Register

### Address: 0xF421, Reset: 0x0000, Name: PANIC\_CLEAR

When Register 0xF427 (PANIC\_FLAG) signals that an error has occurred, use Register 0xF421 (PANIC\_CLEAR) to reset it. Toggle Bit 0 (PANIC\_CLEAR) of this register from 0b0 to 0b1 and then back to 0b0 again to clear the flag and reset the state of the panic manager.



### Table 95. Bit Descriptions for PANIC\_CLEAR

| Bits   | Bit Name    | Settings | Description                                                                                                         | Reset | Access |
|--------|-------------|----------|---------------------------------------------------------------------------------------------------------------------|-------|--------|
| [15:1] | RESERVED    |          |                                                                                                                     | 0x0   | RW     |
| 0      | PANIC_CLEAR |          | Clear the panic manager. To reset the PANIC_FLAG register (Register 0xF427), toggle this bit on and then off again. | 0x0   | RW     |
|        |             | 0        | Panic manager is not cleared.                                                                                       |       |        |
|        |             | 1        | Clear panic manager (on a rising edge of this bit).                                                                 |       |        |

### **Panic Parity Register**

### Address: 0xF422, Reset: 0x0003, Name: PANIC\_PARITY\_MASK

The panic manager checks and reports memory parity mask errors. Register 0xF422 (PANIC\_PARITY\_MASK) allows the user to configure which memories, if any, are subject to error reporting.



## Panic Mask 0 Register

## Address: 0xF423, Reset: 0x0000, Name: PANIC\_SOFTWARE\_MASK

The panic manager checks and reports software errors. Register 0xF423 (PANIC\_SOFTWARE\_MASK) allows the user to configure whether software errors are reported to the panic manager or ignored.



| Bits   | Bit Name       | Settings | Description                  | Reset | Access |
|--------|----------------|----------|------------------------------|-------|--------|
| [15:1] | RESERVED       |          |                              | 0x0   | RW     |
| 0      | PANIC_SOFTWARE |          | Software mask.               | 0x0   | RW     |
|        |                | 0        | Report parity errors.        |       |        |
|        |                | 1        | Do not report parity errors. |       |        |

### Table 97. Bit Descriptions for PANIC\_SOFTWARE\_MASK

### Digital PDM Microphone Control Register

## Address: 0xF560 to 0xF561 (Increments of 0x1), Reset: 0x4000, Name: DMIC\_CTRLx

These registers configure the digital PDM microphone interface. Two registers are used to control up to four PDM microphones: Register 0xF560 (DMIC\_CTRL0) configures PDM Microphone Channel 0 and PDM Microphone Channel 1, and Register 0xF561 (DMIC\_CTRL1) configures PDM Microphone Channel 2 and PDM Microphone Channel 3.



### Table 128. Bit Descriptions for DMIC\_CTRLx

| Bits    | Bit Name     | Settings | Description                                                                                                                                                                                                                        | Reset | Access |
|---------|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 15      | RESERVED     |          |                                                                                                                                                                                                                                    | 0x0   | RW     |
| [14:12] | CUTOFF       |          | High-pass filter cutoff frequency. These bits configure the cutoff frequency of an optional high-pass filter designed to remove dc components from the microphone data signal(s). To use these bits, Bit 3 (HPF), must be enabled. | 0x4   | RW     |
|         |              | 000      | 59.9 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 001      | 29.8 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 010      | 14.9 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 011      | 7.46 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 100      | 3.73 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 101      | 1.86 Hz.                                                                                                                                                                                                                           |       |        |
|         |              | 110      | 0.93 Hz.                                                                                                                                                                                                                           |       |        |
| [11:8]  | MIC_DATA_SRC |          | Digital PDM microphone data source pin. These bits configure which hardware pin acts as a data input from the PDM microphone(s). Up to two microphones can be connected to a single pin.                                           | 0x0   | RW     |
|         |              | 0000     | SS_M/MP0.                                                                                                                                                                                                                          |       |        |
|         |              | 0001     | MOSI_M/MP1.                                                                                                                                                                                                                        |       |        |
|         |              | 0010     | SCL_M/SCLK_M/MP2.                                                                                                                                                                                                                  |       |        |
|         |              | 0011     | SDA_M/MISO_M/MP3.                                                                                                                                                                                                                  |       |        |
|         |              | 0100     | LRCLK_OUT0/MP4.                                                                                                                                                                                                                    |       |        |
|         |              | 0101     | LRCLK_OUT1/MP5.                                                                                                                                                                                                                    |       |        |
|         |              | 0110     | MP6.                                                                                                                                                                                                                               |       |        |

### S/PDIF Receiver Validity Bits (Left) Register

### Address: 0xF650 to 0xF65B (Increments of 0x1), Reset: 0x0000, Name: SPDIF\_RX\_VB\_LEFT\_x

These 12 registers store the 192 validity bits decoded from the left channel of the S/PDIF input stream on the ADAU1463 and ADAU1467.

|   | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | В4 | B3                                    | B2 | B1 | В0 |
|---|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|---------------------------------------|----|----|----|
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0                                     | 0  | 0  | 0  |
| ſ |     |     |     |     |     |     |    |    |    |    |    |    | · · · · · · · · · · · · · · · · · · · |    |    |    |
|   |     |     |     |     |     |     |    |    |    |    |    |    |                                       |    |    |    |

[15:0] SPDIF\_RX\_VB\_LEFT (RW) S/PDIF receiver validity bits (left)

### Table 150. Bit Descriptions for SPDIF\_RX\_VB\_LEFT\_x

| Bits   | Bit Name         | Settings | Description                           | Reset  | Access |
|--------|------------------|----------|---------------------------------------|--------|--------|
| [15:0] | SPDIF_RX_VB_LEFT |          | S/PDIF receiver validity bits (left). | 0x0000 | R      |

### S/PDIF Receiver Validity Bits (Right) Register

### Address: 0xF660 to 0xF66B (Increments of 0x1), Reset: 0x0000, Name: SPDIF\_RX\_VB\_RIGHT\_x

These 12 registers store the 192 validity bits decoded from the left channel of the S/PDIF input stream on the ADAU1463 and ADAU1467.

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | В4 | B3 | B2 | B1 | B0 |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| · · |     |     |     | 1   |     |    |    | 1  |    |    |    | 1  |    |    | 1  |

[15:0] SPDIF\_RX\_VB\_RIGHT (RW) S/PDIF receiver validity bits (right)

### Table 151. Bit Descriptions for SPDIF\_RX\_VB\_RIGHT\_x

| Bits   | Bit Name          | Settings | Description                            | Reset  | Access |
|--------|-------------------|----------|----------------------------------------|--------|--------|
| [15:0] | SPDIF_RX_VB_RIGHT |          | S/PDIF receiver validity bits (right). | 0x0000 | R      |

### S/PDIF Receiver Parity Bits (Left) Register

### Address: 0xF670 to 0xF67B (Increments of 0x1), Reset: 0x0000, Name: SPDIF\_RX\_PB\_LEFT\_x

These 12 registers store the 192 parity bits decoded from the left channel of the S/PDIF input stream on the ADAU1463 and ADAU1467.

| L | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | в0 |
|---|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| ſ | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| ŀ |     |     |     |     |     |     |    |    |    |    |    | _  |    |    |    |    |

[15:0] SPDIF\_RX\_PB\_LEFT (RW) S/PDIF receiver parity bits (left)

### Table 152. Bit Descriptions for SPDIF\_RX\_PB\_LEFT\_x

| Bits   | Bit Name         | Settings | Description                         | Reset  | Access |
|--------|------------------|----------|-------------------------------------|--------|--------|
| [15:0] | SPDIF_RX_PB_LEFT |          | S/PDIF receiver parity bits (left). | 0x0000 | R      |

### S/PDIF Receiver Parity Bits (Right) Register

### Address: 0xF680 to 0xF68B (Increments of 0x1), Reset: 0x0000, Name: SPDIF\_RX\_PB\_RIGHT\_x

These 12 registers store the 192 parity bits decoded from the right channel of the S/PDIF input stream on the ADAU1463 and ADAU1467.

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | В0 |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| L   |     |     |     |     |     |    |    | 1  |    |    |    |    |    |    |    |

[15:0] SPDIF\_RX\_PB\_RIGHT (RW) S/PDIF receiver parity bits (right)

### Table 153. Bit Descriptions for SPDIF\_RX\_PB\_RIGHT\_x

| Bits   | Bit Name          | Settings | Description                          | Reset  | Access |
|--------|-------------------|----------|--------------------------------------|--------|--------|
| [15:0] | SPDIF_RX_PB_RIGHT |          | S/PDIF receiver parity bits (right). | 0x0000 | R      |

## MOSI/ADDR1 Pin Drive Strength and Slew Rate Register

## Address: 0xF79C, Reset: 0x0018, Name: MOSI\_ADDR1\_PIN

This register configures the drive strength, slew rate, and pull resistors for the MOSI/ADDR1 pin.



## Table 175. Bit Descriptions for MOSI\_ADDR1\_PIN

| Bits   | Bit Name         | Settings | Description                | Reset | Access |  |  |  |  |  |
|--------|------------------|----------|----------------------------|-------|--------|--|--|--|--|--|
| [15:5] | RESERVED         |          | Reserved.                  | 0x0   | RW     |  |  |  |  |  |
| 4      | MOSI_ADDR1_PULL  |          | MOSI/ADDR1 pull-up.        | 0x1   | RW     |  |  |  |  |  |
|        |                  | 0        | Pull-up disabled.          |       |        |  |  |  |  |  |
|        |                  | 1        | Pull-up enabled.           |       |        |  |  |  |  |  |
| [3:2]  | MOSI_ADDR1_SLEW  |          | MOSI/ADDR1 slew rate.      | 0x2   | RW     |  |  |  |  |  |
|        |                  | 00       | Slowest.                   |       |        |  |  |  |  |  |
|        |                  | 01       | Slow.                      |       |        |  |  |  |  |  |
|        |                  | 10       | Fast.                      |       |        |  |  |  |  |  |
|        |                  | 11       | Fastest.                   |       |        |  |  |  |  |  |
| [1:0]  | MOSI_ADDR1_DRIVE |          | MOSI/ADDR1 drive strength. | 0x0   | RW     |  |  |  |  |  |
|        |                  | 00       | Lowest.                    |       |        |  |  |  |  |  |
|        |                  | 01       | Low.                       |       |        |  |  |  |  |  |
|        |                  | 10       | High.                      |       |        |  |  |  |  |  |
|        |                  | 11       | Highest.                   |       |        |  |  |  |  |  |

## MP6 Pin Drive Strength and Slew Rate Register

## Address: 0xF7A1, Reset: 0x0018, Name: MP6\_PIN

This register configures the drive strength, slew rate, and pull resistors for the MP6 pin.



### Table 180. Bit Descriptions for MP6\_PIN

| Bits   | Bit Name  | Settings | Description         | Reset | Access |
|--------|-----------|----------|---------------------|-------|--------|
| [15:5] | RESERVED  |          | Reserved.           | 0x0   | RW     |
| 4      | MP6_PULL  |          | MP6 pull-down.      | 0x1   | RW     |
|        |           | 0        | Pull-down disabled. |       |        |
|        |           | 1        | Pull-down enabled.  |       |        |
| [3:2]  | MP6_SLEW  |          | MP6 slew rate.      | 0x2   | RW     |
|        |           | 00       | Slowest.            |       |        |
|        |           | 01       | Slow.               |       |        |
|        |           | 10       | Fast.               |       |        |
|        |           | 11       | Fastest.            |       |        |
| [1:0]  | MP6_DRIVE |          | MP6 drive strength. | 0x0   | RW     |
|        |           | 00       | Lowest.             |       |        |
|        |           | 01       | Low.                |       |        |
|        |           | 10       | High.               |       |        |
|        |           | 11       | Highest.            |       |        |

## PCB MANUFACTURING GUIDELINES

The soldering profile in Figure 91 is recommended for the LFCSP package. See the AN-772 Application Note for more information about PCB manufacturing guidelines.



Figure 92. PCB Decal Dimensions