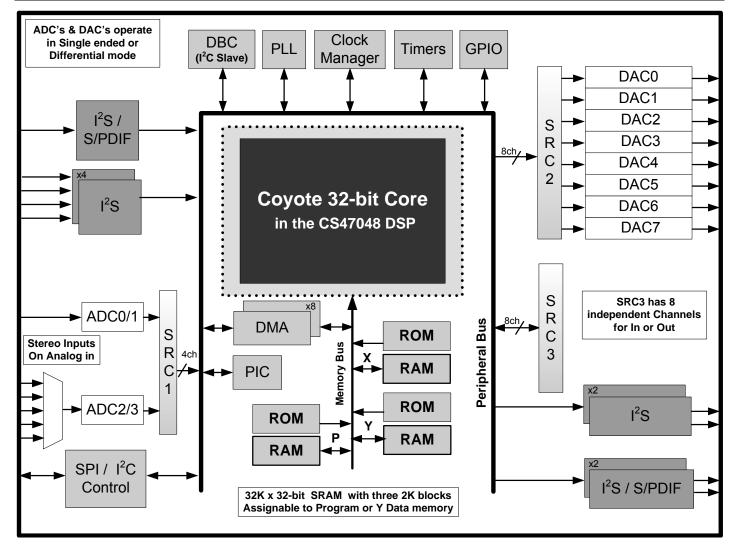


Welcome to **E-XFL.COM**

Understanding <u>Embedded - DSP (Digital Signal Processors)</u>


Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Details	
Product Status	Active
Туре	Fixed Point
Interface	I ² C, SPI
Clock Rate	150MHz
Non-Volatile Memory	-
On-Chip RAM	128kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/cs47028c-dqz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CS47048 Block Diagram

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative.

To find the one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, the Cirrus Logic logo designs, Framerwork, and DSP Composer are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

SPI is a trademark of Motorola, Inc.

I²C is a trademark of Philips Semiconductor.

Dolby, Pro Logic, Dolby Headphone, Virtual Speaker and the double-D symbol are registered trademarks of Dolby Laboratories, Inc. Supply of an implementation of Dolby Technology does not convey a license nor imply a right under any patent, or any other industrial or Intellectual Property Right of Dolby Laboratories, to use the Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.

SRS CircleSurround II technology is incorporated under license from SRS Labs, Inc. The SRS Circle Surround II technology/solution rights incorporated in the Cirrus Logic CS470xx products are owned by SRS Labs, a U.S. Corporation and licensed to Cirrus Logic, Inc. Purchaser of the Cirrus Logic CS470xx products must sign a license for use of the chip and display of the SRS Labs trademarks. Any products incorporating the Cirrus Logic CS470xx products must be sent to SRS Labs for review. SRS CircleSurround II is protected under US and foreign patents issued and/or pending. SRS Circle Surround II, SRS and (O) symbol are trademarks of SRS Labs, Inc. in the United States and selected foreign countries. Neither the purchase of the Cirrus Logic CS470xx products, nor the corresponding sale of audio enhancement equipment conveys the right to sell commercialized recordings made with any SRS technology/solution. SRS Labs requires all set makers to comply with all rules and regulations as outlined in the SRS Trademark Usage Manual.

4 Hardware Functional Description

The CS470xx family, which includes the CS47048, CS47028, and CS47024 DSPs, is a true system-on-a-chip that combines a powerful 32-bit DSP engine with analog/digital audio inputs and analog/digital audio outputs. It can be integrated into a complex multi-DSP processing system, or stand alone in an audio product that requires analog-in and analog-out. A top level block diagram for the CS47048, CS47028, and CS47024 products are shown in Fig. 4-1, Fig. 4-2, and Fig. 4-3 respectively.

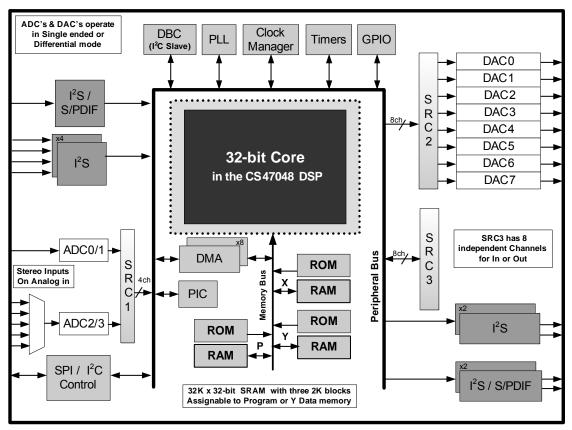


Figure 4-1. CS47048 Top-level Block Diagram

4.1 Cirrus Logic 32-bit DSP Core

The CS470xx comes with a Cirrus Logic 32-bit core with separate X and Y data and P code memory spaces. The DSP core is a high-performance, 32-bit, user-programmable, fixed-point DSP that is capable of performing two multiply-and-accumulate (MAC) operations per clock cycle. The DSP core has eight 72-bit accumulators, four X-data and four Y-data registers, and 12 index registers.

The DSP core is coupled to a flexible 8-channel DMA engine. The DMA engine can move data between peripherals such as the serial control port (SCP), digital audio input (DAI) and digital audio output (DAO), sample rate converters (SRC), analog-to-digital converters (ADC), digital-to-analog converters (DAC), or any DSP core memory, all without the intervention of the DSP. The DMA engine off-loads data move instructions from the DSP core, leaving more MIPS available for signal processing instructions.

CS470xx functionality is controlled by application codes that are stored in on-chip ROM or downloaded to the CS470xx from a host controller or external serial flash/EEPROM.

Users can develop applications using the DSP Composer™ tool to create the processing chain and then compile the image into a series of commands that are sent to the CS470xx through the SCP. The processing application can either load modules (post-processors) from the DSPs on-chip ROM, or custom firmware can be downloaded through the SCP.

The CS470xx is suitable for a variety of audio post-processing applications where sound quality via sound enhancement and speaker/cabinet tuning is required to achieve the sound quality consumers expect. Examples of such applications include automotive head-ends, automotive amplifiers, docking stations, sound bars, subwoofers, and boom boxes.

4.2 DSP Memory

The DSP core has its own on-chip data and program RAM and ROM and does not require external memory for post-processing applications.

The Y-RAM and P-RAM share a single block of memory that includes three 2K word blocks (32 bits/word) that are assignable to either Y-RAM or P-RAM as shown in Table 4.

P-RAM	X-RAM	Y-RAM
14K words	10K words	8K words
12K words	10K words	10K words
10K words	10K words	12K words
8K words	10K words	14K words

Table 4-1. Memory Configurations for the C470xx

4.2.1 DMA Controller

The powerful 8-channel DMA controller can move data between 8 on-chip resources. Each resource has its own arbiter: X, Y, and P RAMs/ROMs and the peripheral bus. Modulo and linear addressing modes are supported, with flexible start address and increment controls. The service intervals for each DMA channel, as well as up to 6 interrupt events, are programmable.

4.3 On-chip DSP Peripherals

4.3.1 Analog to Digital Converter Port (ADC)

The ADCs in the CS470xx devices feature dynamic range performance in excess of 100 dB. See Section 5.16 for more details on CS470xx ADC performance. The CS47024 and CS47028 devices support up to 2 simultaneous channels of analog-to-digital conversion with the input source selectable using an integrated 5:1 stereo analog mux (analog inputs AIN_2A/B through AIN_6A/B). The CS47048 device adds a second pair of ADCs that are directly connected to input pins AIN_1A/B providing a total of 4 simultaneous channels of analog-to-digital conversion. This feature gives the CS47048 the ability to select from a total of six stereo pairs of analog input. A single programmable bit selects single-ended or differential mode signals for all inputs. The conversions are performed with Fs=96 kHz.

4.3.2 Digital to Analog Converter Port (DAC)

The DACs in the CS470xx devices feature dynamic range performance in excess of 100 dB. See Section 5.17 for more details on CS470xx DAC performance. The CS47024 device supports four simultaneous channels of digital-to-analog conversion. The CS47028 and CS47048 devices provide eight simultaneous channels of digital-to-analog conversion. The DACs have voltage mode outputs that can be connected either as single-ended or differential signals. The conversions are performed with Fs=96 kHz.

4.3.3 Digital Audio Input Port (DAI)

The input capabilities for each version of the CS470xx are summarized in Table 3-1 and Table 3-2.

Up to five DAI ports are available. Two of the DAI ports can be programmed to implement other functions. If the SPI mode is used, the DAI_DATA4 pin becomes the SCP_CS input. The integrated S/PDIF receiver can be used to take over the DAI_DATA3 pin.

The DAI port PCM inputs have a single slave-only clock domain. The S/PDIF receiver, if used, is a separate clock domain. The output of the S/PDIF Rx can then be converted through one of the internal SRC blocks to synchronize with the PCM input. The sample rate of the input clock domains can be determined automatically by the DSP, off-loading the task of monitoring the S/PDIF Rx from the host. A time-stamping feature provides the ability to also sample-rate convert the input data via software. The DAI port supports PCM format with word lengths up to 32 bits and sample rates as high as 192 kHz.

The DAI also supports a time division multiplexed (TDM) mode that packs up to 10 PCM audio channels on a single data line.

4.3.4 S/PDIF RX Input Port (DAI)

One of the PCM pins of the DAI can also be used as a DC-coupled, TTL-level S/PDIF Rx input capable of receiving and demodulating bi-phase encoded S/PDIF signals with Fs ≤ 192 kHz.

4.3.5 Digital Audio Output Port (DAO)

DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high as 192 kHz. The port can be configured as an independent clock domain mastered by the DSP, or as a clock slave if an external MCLK or SCLK/LRCLK source is available.

The DAO also supports a time division multiplexed (TDM) mode, that packs up to 8 channels of PCM audio on a single data line.

4.3.6 S/PDIF TX Output Port (DAO)

Two of the serial audio pins can be re-configured as S/PDIF TX pins that drive a bi-phase encoded S/PDIF signal (data with embedded clock on a single line).

4.3.7 Sample Rate Converters (SRC)

All CS470xx devices have at least two internal hardware SRC modules. One is directly associated with the ADCs and normally serves to convert data from the 96 kHz sampling rate of the ADCs to another Fs appropriate for mixing with other audio in the system.

The other SRC module is directly associated with the DACs and normally serves to convert data from the DSP into the 96 kHz sample rate needed by the DACs.

The CS47024, CS47028, and CS47048 devices have an additional stand-alone 8-channel SRC module. This SRC module can be used to make independent input clock domains synchronous (different Fs on PCM input and S/PDIF Rx).

4.3.8 Serial Control Port (I²C or SPI)

The on-chip serial control port is capable of operating as master or slave in either SPI or I2C modes. Master/Slave operation is chosen by mode select pins when the CS470xx comes out of reset. The serial clock pin can support frequencies as high as 25 MHz in SPI mode (SPI clock speed must always be ≤ (DSP Core Frequency/2)). The CS470xx serial control port also includes a pin for flow control of the communications interface (SCP_BSY) and a pin to indicate when the DSP has a message for the host (SCP_IRQ).

4.3.9 **GPIO**

Many of the CS470xx peripheral pins are multiplexed with GPIO. Each GPIO can be configured as an output, an input, or an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge, active-low, or active-high.

4.3.10 PLL-based Clock Generator

The low-jitter PLL generates integer or fractional multiples of a reference frequency, which is used to clock the DSP core and peripherals. Through a second PLL divider chain, a dependent clock domain can be output on the DAO port for driving audio converters. The CS470xx defaults to running from the external reference frequency and is switched to use the PLL output after overlays have been loaded and configured, either through master boot from an external flash or through host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered output frequency ratio is selectable between 1:1 (default) or 2:1.

4.3.11 Hardware Watchdog Timer

The CS470xx has an integrated watchdog timer that acts as a "health" monitor for the DSP. The watchdog timer must be reset by the DSP before the counter expires, or the entire chip is reset. This peripheral ensures that the CS470xx resets itself in the event of a temporary system failure. In stand-alone mode (where there is no host MCU), the DSP reboots from external flash. In slave mode (where the host MCU is present), a GPIO is used to signal the host that the watchdog has expired and the DSP should be rebooted and re-configured.

4.4 DSP I/O Description

4.4.1 Multiplexed Pins

Many of the CS470xx pins are multifunctional. For details on pin functionality, see Section 10.5, "Pin Assignments", in the CS470xx Hardware User's Manual.

4.4.2 Termination Requirements

Open-drain pins on the CS470xx must be pulled high for proper operation. See the CS470xx Hardware User's Manual to identify which pins are open-drain and what value of pull-up resistor is required for proper operation.

Mode select pins on CS470xx are used to select the boot mode on the rising edge from reset. A detailed explanation of termination requirements for each communication mode select pin can be found in the CS470xx Hardware User's Manual.

4.4.3 Pads

The CS470xx Digital I/Os operate from the 3.3 V supply and are 5 V tolerant.

4.5 Application Code Security

The external program code can be encrypted by the programmer to protect any intellectual property it contains. A secret, customer-specific key is used to encrypt the program code that is to be stored external to the device. Contact your local Cirrus representative for details.

5 Characteristics and Specifications

Note: All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and temperature. All data sheet typical parameters are measured under the following conditions: T = 25°C, VDD = 1.8 V, VDDIO = VDDA = 3.3 V, GND = GNDIO = GNDA = 0 V.

5.1 Absolute Maximum Ratings

(GND = GNDIO = GNDA = 0V; all voltages with respect to 0V)

Parameter	Symbol	Min	Max	Unit
DC power supplies: Core supply Analog supply I/O supply VDDA-VDDIO	VDD VDDA VDDIO	-0.3 -0.3 -0.3	2.0 3.6 3.6 0.3	> > > >
Input pin current, any pin except supplies	I _{in}	_	±10	mA
Input voltage on PLL_REF_RES	V_{filt}	-0.3	3.6	٧
Input voltage on digital I/O pins	V _{inio}	-0.3	5.0	V
Analog Input Voltage	V _{in}	AGND-0.7	VA+0.7	V
Storage temperature	T _{stg}	-65	150	°C

WARNING: Operation at or beyond these limits can result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

5.2 Recommended Operating Conditions

(GND = GNDIO = GNDA = 0V; all voltages with respect to 0V)

Parameter	Symbol	Min	Тур	Max	Unit
DC power supplies: Core supply Analog supply I/O supply VDDA – VDDIO	VDD VDDA VDDIO	1.71 3.13 3.13		1.89 3.46 3.46	V V V
Ambient operating temperature Commercial—CQZ (147 MHz) Automotive—DQZ (131 MHz) Automotive—DQZ (113 MHz)	T _A	0 -40 -40	_	+70 +85 +105	°C

Note: It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply.

5.3 Digital DC Characteristics

(Measurements performed under static conditions.)

Parameter	Symbol	Min	Тур	Max	Unit
High-level input voltage	V _{IH}	2.0	_	_	V
Low-level input voltage, except XTI	V _{IL}	_	_	0.8	V
Low-level input voltage, XTI	V _{ILKXTI}	_	_	0.6	V
Input Hysteresis	V _{hys}	_	0.4	_	V
High-level output voltage (I _O = -2mA), except XTO	V _{OH}	VDDIO*0.9	_	_	V
Low-level output voltage (I _O = 2mA), except XTO	V _{OL}	_	_	VDDIO*0.1	V
Input leakage XTI	I _{LXTI}	_	_	5	μΑ
Input leakage current (all digital pins with internal pull-up resistors enabled)	I _{LEAK}	_	_	70	μΑ

5.4 Power Supply Characteristics

Note: Measurements performed under operating conditions

Parameter	Min	Тур	Max	Unit
Operational Power Supply Current:				
VDD: Core and I/O operating ¹	_	325	_	mΑ
VDDA: PLL operating current	_	16	—	mΑ
VDDA: DAC operating current (all 8 channels enabled)	_	56		mA
VDDA: ADC operating current (all 4 channels enabled)	_	34	_	mΑ
VDDIO: With most ports operating	_	27	_	mA
Total Operational Power Dissipation:		1025		mW
Standby Power Supply Current:				
VDD: Core and I/O not clocked	_	410	_	μΑ
VDDA: PLLs halted	_	26	_	μA
VDDA: DAC disabled	_	40	_	μĄ
VDDA: ADC disabled	_	24		μΑ
VDDIO: All connected I/O pins 3-stated by other ICs in system	_	215	_	μΑ
Total Standby Power Dissipation:		1745		μW

^{1.} Dependent on application firmware and DSP clock speed.

5.5 Thermal Data (100-pin LQFP with Exposed Pad)

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance (Junction to Ambient) Two-layer Board ¹ Four-layer Board ²	θ_{ja}		34 18		°C/Watt
Thermal Resistance (Junction to Top of Package) Two-layer Board ¹ Four-layer Board ²	Ψ _{jt}		0.54 .28		°C/Watt

^{1.} To calculate the die temperature for a given power dissipation:

2. To calculate the case temperature for a given power dissipation:

$$T_c = T_i$$
 - [(Power Dissipation in Watts) * ψ_{it}]

Note: Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20% of the top and bottom layers.

Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20% of the top and bottom layers and 0.5-oz. copper covering 90% of the internal power plane and ground plane layers.

5.6 Digital Switching Characteristics-RESET

Parameter	Symbol	Min	Max	Unit
RESET minimum pulse width low1	T _{rstl}	1	_	μs
All bidirectional pins high-Z after RESET low	T _{rst2z}	_	200	ns
Configuration pins setup before RESET high	T _{rstsu}	50	_	ns
Configuration pins hold after RESET high	T _{rsthld}	20	_	ns

^{1.} The rising edge of RESET must not occur before the power supplies are stable at the recommended operating values as described in Section 5.2. In addition, for the configuration pins to be read correctly, the RESET Tristl requirement must be met.

 T_i = Ambient temperature + [(Power Dissipation in Watts) * θ_{ia}]

5.8 Digital Switching Characteristics-Internal Clock

Parameter	Symbol	Min (2- layer Boards)	Min (4- layer Boards)	Max (2- layer Boards)	Max (4- layer Boards)	Unit
Internal DSP_CLK frequency ¹ CS47048-CQZ CS47048-DQZ CS47028-CQZ CS47028-DQZ CS47024-CQZ CS47024-DQZ	F _{dclk}	F, F, F, F,	otnote 2) ttal ttal ttal ttal ttal ttal ttal ttal	147 131 147 131 147 131	147 147 147 147 147 147	MHz
Internal DSP_CLK period ¹ CS47048-CQZ CS47048-DQZ CS47028-CQZ CS47028-DQZ CS47024-CQZ CS47024-CQZ	DCLKP	6.8 7.6 6.8 7.6 6.8 7.6	6.8 6.8 6.8 6.8 6.8 6.8	1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal}		ns

^{1.} After initial power-on reset, F_{dclk} = F_{xtal}. After initial kick-start commands, the PLL is locked to max F_{dclk} and remains locked until the next power-on reset

5.9 Digital Switching Characteristics-Serial Control Port-SPI Slave Mode

Parameter	Symbol	Min	Typical	Max	Unit
SCP_CLK frequency1	f _{spisck}	_	_	25	MHz
SCP_CS falling to SCP_CLK rising	t _{spicss}	24	_	_	ns
SCP_CLK low time	t _{spickl}	20	_	_	ns
SCP_CLK high time	t _{spickh}	20	_	_	ns
Setup time SCP_MOSI input	t _{spidsu}	5	_	_	ns
Hold time SCP_MOSI input	t _{spidh}	5	_	_	ns
SCP_CLK low to SCP_MISO output valid	t _{spidov}	_	_	11	ns
SCP_CLK falling to SCP_IRQ rising	t _{spiirqh}	_	_	27	ns
SCP_CS rising to SCP_IRQ falling	t _{spiirql}	0	_	_	ns
SCP_CLK low to SCP_CS rising	t _{spicsh}	24	_	_	ns
SCP_CS rising to SCP_MISO output high-Z	t _{spicsdz}		20	_	ns
SCP_CLK rising to SCP_BSY falling	t _{spicbsyl}	_	3*DCLKP+20	_	ns

^{1.} f_{spisck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application. Flow control using the SCP_BSY pin should be implemented to prevent overflow of the input data buffer. At boot the maximum speed is F_{xtal}/3.

^{2.} See Section 5.7. for all references to F_{xtal} .

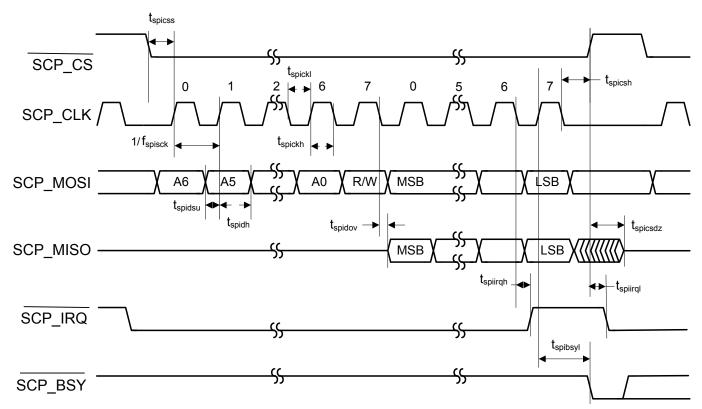


Figure 5-4. Serial Control Port-SPI Slave Mode Timing

5.10 Digital Switching Characteristics-Serial Control Port-SPI Master Mode

Parameter	Symbol	Min	Typical	Max	Units
SCP_CLK frequency ^{1,2}	f _{spisck}	_	_	F _{xtal} /2	MHz
EE_CS falling to SCP_CLK rising ³	t _{spicss}	_	11*DCLKP+(SCP_CLK PERIOD)/2	_	ns
SCP_CLK low time	t _{spickl}	18	_	_	ns
SCP_CLK high time	t _{spickh}	18	_	_	ns
Setup time SCP_MISO input	t _{spidsu}	9	_	_	ns
Hold time SCP_MISO input	t _{spidh}	5	_	_	ns
SCP_CLK low to SCP_MOSI output valid	t _{spidov}	_	_	8	ns
SCP_CLK low to EE_CS falling	t _{spicsl}	7	_	_	ns
SCP_CLK low to EE_CS rising	t _{spicsh}	_	11*DCLKP+(SCP_CLK PERIOD)/2	_	ns
Bus free time between active EE_CS	t _{spicsx}	_	3*DCLKP	_	ns
SCP_CLK falling to SCP_MOSI output high-Z	t _{spidz}	_		20	ns

^{1.} f_{spisck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application.

^{2.} See Section 5.7.

^{3.} SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter.

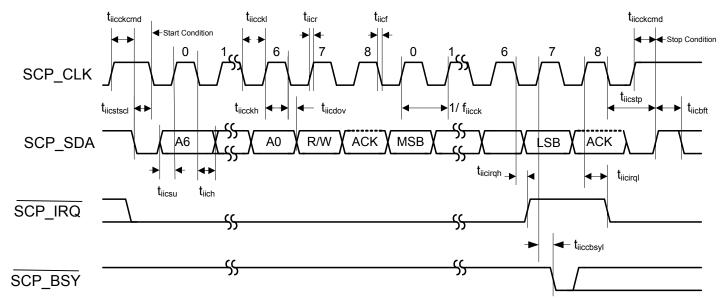


Figure 5-6. Serial Control Port-I²C Slave Mode Timing

5.12 Digital Switching Characteristics-Serial Control Port-I²C Master Mode

Parameter	Symbol	Min	Max	Units
SCP_CLK frequency ¹	f _{iicck}	_	400	kHz
SCP_CLK rise time	t _{iicr}	_	150	ns
SCP_CLK fall time	t _{iicf}	_	150	ns
SCP_CLK low time	t _{iicckl}	1.25	_	μs
SCP_CLK high time	t _{iicckh}	1.25	_	μs
SCP_CLK rising to SCP_SDA rising or falling for START or STOP condition	tiicckcmd	1.25	_	μs
START condition to SCP_CLK falling	t _{iicstscl}	1.25	_	μs
SCP_CLK falling to STOP condition	t _{iicstp}	2.5	_	μs
Bus free time between STOP and START conditions	t _{iicbft}	3	_	μs
Setup time SCP_SDA input valid to SCP_CLK rising	t _{iicsu}	110	_	ns
Hold time SCP_SDA input after SCP_CLK falling	t _{iich}	100	_	ns
SCP_CLK low to SCP_SDA out valid	t _{iicdov}	_	36	ns

1. f_{iicck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application.

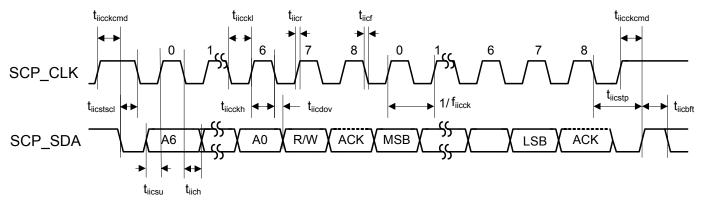


Figure 5-7. Serial Control Port-I²C Master Mode Timing

5.13 Digital Switching Characteristics-Digital Audio Slave Input Port

Parameter	Symbol	Min	Max	Unit
DAI_SCLK period	T _{daiclkp}	20	_	ns
DAI_SCLK duty cycle	_	45	55	%
Setup time DAI_DATAn	t _{daidsu}	8	_	ns
Hold time DAI_DATAn	t _{daidh}	5	_	ns

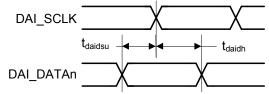


Figure 5-8. Digital Audio Input (DAI) Port Timing Diagram

5.14 Digital Switching Characteristics-Digital Audio Output Port

Parameter	Symbol	Min	Max	Unit	
DAO_MCLK period	T _{daomclk}	20	_	ns	
DAO_MCLK duty cycle	_	45	55	%	
DAO_SCLK period for Master or Slave mode1	T _{daosclk}	20	_	ns	
DAO_SCLK duty cycle for Master or Slave mode1	_	40	60	%	
Master Mode (Output A1 Mode) ^{1,2}					
DAO_SCLK delay from DAO_MCLK rising edge, DAO MCLK as an input	t _{daomsck}		19	ns	
DAO_LRCLK to DAO_SCLK inactive edge ³ . See Fig. 5-9.	t _{daomirts}	_	8	ns	
DAO_SCLK inactive edge ³ to DAO_LRCLK. See Fig. 5-10.	t _{daomstlr}	_	8	ns	
DAO_DATA[3:0] delay from DAO_SCLK inactive edge ³	t _{daomdy}	_	8	ns	
Slave Mode (Output A0 Mode) ⁴					
DAO_SCLK active edge to DAO_LRCLK transition. See Fig. 5-11.	t _{daosstlr}	10	_	ns	
DAO_LRCLK transition to DAO_SCLK active edge. See Fig. 5-12.	t _{daosIrts}	10	_	ns	
DAO_Dx delay from DAO_SCLK inactive edge	t _{daosdv}	_	11	ns	

- 1. Master mode timing specifications are characterized, not production tested.
- Master mode is defined as the CS47048 driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce DAO_SCLK, DAO_ LRCLK.
- 3. The DAO_LRCLK transition can occur on either side of the edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the data is valid.
- 4. Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.

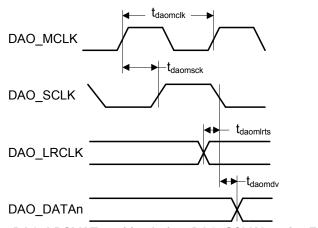


Figure 5-9. DAO_LRCLK Transition before DAO_SCLK Inactive Edge

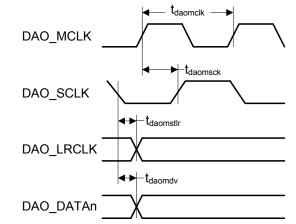


Figure 5-10. DAO_LRCLK Transition after DAO_SCLK Inactive Edge

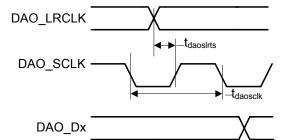


Figure 5-11. DAO_LRCLK Transition before DAO_SCLK Inactive Edge

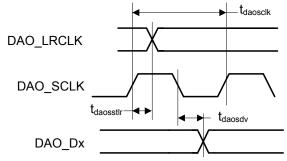


Figure 5-12. DAO_LRCLK Transition after DAO_SCLK Inactive Edge

5.15 Digital Switching Characteristics-S/PDIF RX Port

(Inputs: Logic 0 = V_{IL} , Logic 1 = V_{IH} , C_L = 20 pF)

Parameter	Symbol	Min	Тур	Max	Units
PLL Clock Recovery Sample Rate Range	_	30	_	200	kHz

5.16 ADC Characteristics

5.16.1 Analog Input Characteristics (Commercial)

Test Conditions (unless otherwise specified): $T_A = 0-+70^{\circ}C$; VDD = 1.8V±5%, VDDA (VA) = 3.3V±5%, 1kHz sine wave driven through the passive input filter ($R_i = 10 \text{ k}\Omega$) in Fig. 5-13 or Fig. 5-14; DSP running test application; Measurement Bandwidth is 10–20kHz.

	Differential		Single-ended				
Parameter	Min	Тур	Max	Min	Тур	Max	Unit
Fs = 96 kHz							
Dynamic Range ^{1,6,7} A-weighted Unweighted 40 kHz bandwidth unweighted	99 96 —	105 102 99		96 93 —	102 99 96		dB dB dB
Total Harmonic Distortion + Noise ^{6,7} –1 dB –20 dB –60 dB 40 kHz bandwidth –1 dB	_ _ _ _	-98 -82 -42 -90	-92 	_ _ _ _	-95 -79 -39 -90	-89 	dB dB dB dB
AIN_1A/B Interchannel Isolation ¹⁰	_	95		_	95		dB
AID_[2.6]A/B MUX Interchannel Isolation	_	95	_	_	95	_	dB
DC Accuracy							
Interchannel Gain Mismatch	_	0.1	_	_	0.1	_	dB
Gain Drift		±120	_	_	±120	_	ppm/°C
Analog Input							
Full-scale Input Voltage ^{2,3}	3.3	3.7•VA	3.9	1.65	1.85•VA	1.95	V_{PP}
Differential Input Impedance ⁴		400	_	_	_	_	Ω
Single-ended Input Impedance ⁵	_	_	_	_	200	_	Ω
Common Mode Rejection Ratio (CMRR)8	_	60	_	_	_	_	dB
Parasitic Load Capacitance (C _L) ⁹	_	_	20	_	_	20	pF

- 1. dB units referred to the typical full-scale voltage.
- 2. These full-scale values were measured with Ri=10k for both the single-ended and differential mode input circuits.
- The full-scale voltage can be changed by scaling R_i.
 Differential Full-Scale (Vpp) = 3.7*VDDA*(Ri+200)/(10k+200)
 Single-Ended Full-Scale (Vpp) = 1.85*VDDA*(Ri+200)/(10k+200)
- 4. Measured between AIN_xx+ and AN_xx-.
- 5. Measured between AIN_xx+ and AGND.
- 6. Decreasing full-scale voltage by reducing R_i causes the noise floor to increase.
- 7. Common mode input current should be kept to less than ± 160 uA to avoid performance degradation: $|(l_{ip}+l_{in})/2| < 160$ uA. This corresponds to ± 1.6 V for $R_i=10$ k Ω in the differential case.
- 8. This number was measured using perfectly matched external resistors (R_i). Mismatch in the external resistors typically reduces CMRR by 20 log ($|\Delta R_i|/R_i + 0.001$).
- 9. C_L represents the parasitic load capacitance between R_i on the input circuit and the input pin of the CS47048 package.
- 10. This measurement is not applicable to the CS47028 and CS47024 devices.

	Differential		Single-ended					
Parameter	Min	Тур	Max	Min	Тур	Max	Unit	
Analog Input	Analog Input							
Full-scale Output	1.20	1.40•VA	1.60	0.60	0.70•VA	0.80	V_{PP}	
Interchannel Gain Mismatch	_	0.1	_	_	0.1	_	dB	
Gain Drift	_	±120	_	_	±120	_	ppm/°C	
Output Impedance	_	100	_	_	100	_	Ω	
DC Current Draw from an AOUT Pin1	_	_	10	_	_	10	μΑ	
AC-load Resistance (R _L) ²	3	_	_	3	_	_	kΩ	
Load Capacitance (C _L) ²	_	_	100	_	_	100	pF	

5.17.2 Analog Output Characteristics (Automotive)

Test Conditions (unless otherwise specified): $T_A = -40$ to $+85^{\circ}$ C; VDD = 1.8V±5%, VDDA(VA) = 3.3V±5%; 1 kHz sine wave driven through a filter shown in Fig. 5-15 or Fig. 5-16; DSP running test application; Measurement Bandwidth is 20 Hz–20 kHz.

	Differential			Single-ended			
Parameter	Min	Тур	Max	Min	Тур	Max	Unit
Fs = 96 kHz	•						
Dynamic Range A-weighted Unweighted	100 97	108 105	_	97 94	105 102	_	dB dB
Total Harmonic Distortion + Noise 0 dB -20 dB -60 dB	_ _ _	-98 -88 -48	-90 		-95 -85 -45	-87 	dB dB dB
Interchannel Isolation (1 kHz)	_	95	_		95	_	dB
Analog Input							
Full-scale Output	1.20	1.40•VA	1.60	0.60	0.70•VA	0.80	V _{PP}
Interchannel Gain Mismatch	_	0.1	_	_	0.1	_	dB
Gain Drift	_	±120	_	_	±120	_	ppm/°C
Output Impedance	_	100	_	_	100	_	Ω
DC Current Draw from an AOUT Pin1	_	_	10		_	10	μΑ
AC-load Resistance (R _L) ²	3	_	_	3	_	_	kΩ
Load Capacitance (C _L) ²	_	_	100	_	_	100	pF

- 1. Guaranteed by design. The DC current draw represents the allowed current draw from the AOUT pin due to typical leakage through the electrolytic DC-blocking capacitors.
- 2. Guaranteed by design. R_L and C_L reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp's stability and signal integrity. In this circuit topology, C_L represents any capacitive loading that appears *before* the 560 Ω series resistor (typically parasitic), and effectively moves the dominant pole of the two-pole amp in the output stage. Increasing this value beyond the recommended 100 pF can cause the internal op-amp to become unstable.

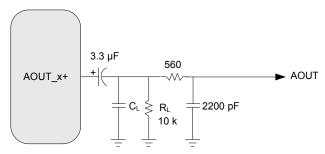
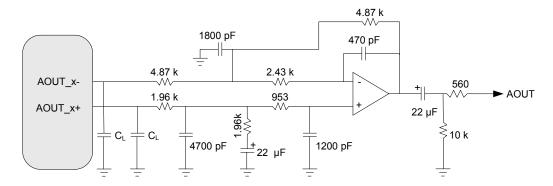



Figure 5-15. DAC Single-ended Output Test Circuit

P output: $R_L = 1.96k + ([2\pi F^*4700pF]^{-1}||(1.96k + [2\pi F^*22\mu F^{-}]^{-1})||(953 + [2\pi F^*1200pF]^{-1})|$ N output: $R_L = 4.87k + ([2\pi F^*1800pF]^{-1}||((2.43k + [2\pi F^*470pF]^{-1})||4.87k|))$

Figure 5-16. DAC Differential Output Test Circuit

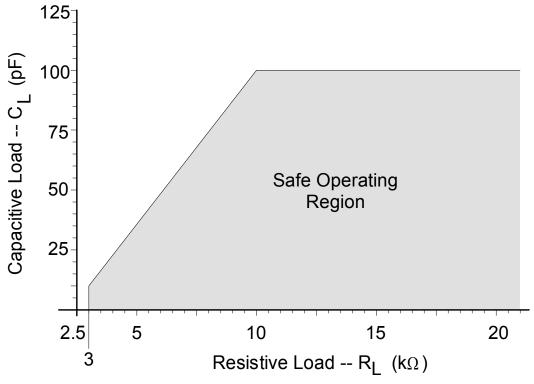


Figure 5-17. Maximum Loading

5.17.3 Combined DAC Interpolation and On-chip Analog Filter Response

Parameter	Min	Тур	Max	Unit
Passband (Frequency Response) to 0.22 dB corner to –3 dB corner	0		0.4125 0.4979	
Frequency Response 10 Hz-20 kHz	-0.02	_	+0.02	dB
StopBand	0.5465	_	_	Fs
StopBand Attenuation	100	_	_	dB
Group Delay	_	10/Fs	_	S

25

6 Ordering Information

The CS470xx DSP part numbers are described as follows:

Example:

CS47048I-XYZR

where

I-ROM ID Letter

X-Product Grade

Y-Package Type

Z-Lead (Pb) Free

R-Tape and Reel Packaging

Table 6-1. Ordering Information

Part No.	Grade	Temp. Range	Package
CS47048C-CQZ	Commercial	0-+70°C	100-pin LQFP
CS47048C-DQZ	Automotive	-40-+85°C	
CS47048C-EQZ	Extended Automotive	-40-+105°C	
CS47028C-CQZ	Commercial	0-+70°C	
CS47028C-DQZ	Automotive	-40-+85°C	
CS47028C-EQZ	Extended Automotive	-40-+105°C	
CS47024C-CQZ	Commercial	0-+70°C	
CS47024C-DQZ	Automotive	-40-+85°C	
CS47024C-EQZ	Extended Automotive	-40-+105°C	

Note: Contact the factory for availability of the –D (automotive grade) package.

7 Environmental, Manufacturing, and Handling Information

Table 7-1. Environmental, Manufacturing, and Handling Information

Model Number	Peak Reflow Temp.	MSL ¹ Rating	Max Floor Life
CS47048C-CQZ	260° C	3	7 days
CS47048C-DQZ			
CS47048C-EQZ			
CS47028C-CQZ	260° C	3	7 days
CS47028C-DQZ			
CS47028C-EQZ			
CS47024C-CQZ	260° C	3	7 days
CS47024C-DQZ			
CS47024C-EQZ			

1. Moisture Sensitivity Level as specified by IPC/JEDEC J-STD-020.

8 Device Pinout Diagrams

8.1 CS47048, 100-pin LQFP Pinout Diagram

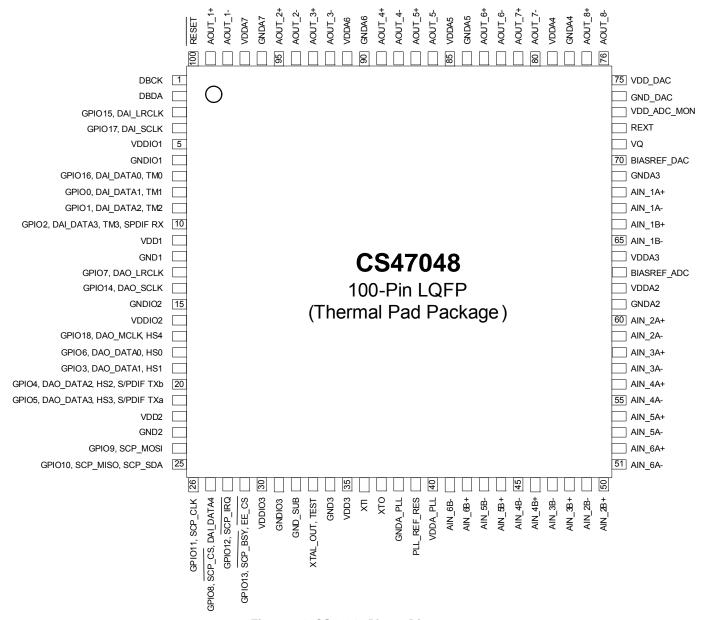


Figure 8-1. CS47048 Pinout Diagram

9 100-pin LQFP with Exposed Pad Package Drawing

Fig. 9-1 shows the 100-pin LQFP package with exposed pad for the CS47048, CS47028, and CS47024.

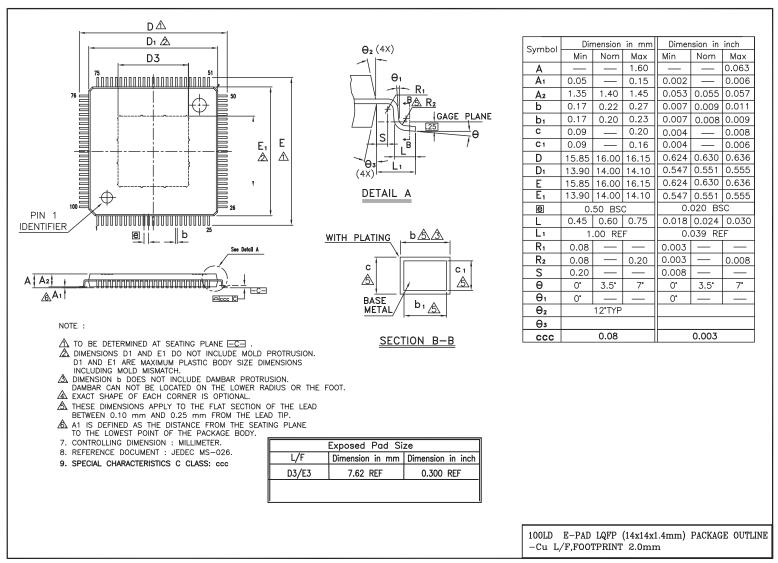


Figure 9-1. 100-pin LQFP Package Drawing

10 Parameter Definitions

10.1 Dynamic Range

The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.

10.2 Total Harmonic Distortion + Noise

The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the specified bandwidth (typically 10 Hz–20 kHz), including distortion components. Expressed in decibels. Measured at –1 and –20 dBFS as suggested in AES17-1991 Annex A.

10.3 Frequency Response

A measure of the amplitude response variation from 10 Hz–20 kHz relative to the amplitude response at 1 kHz. Units in decibels.

10.4 Interchannel Isolation

A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels.

10.5 Interchannel Gain Mismatch

The gain difference between left and right channels. Units in decibels.

10.6 Gain Error

The deviation from the nominal full-scale analog output for a full-scale digital input.

10.7 Gain Drift

The change in gain value with temperature. Units in ppm/°C.