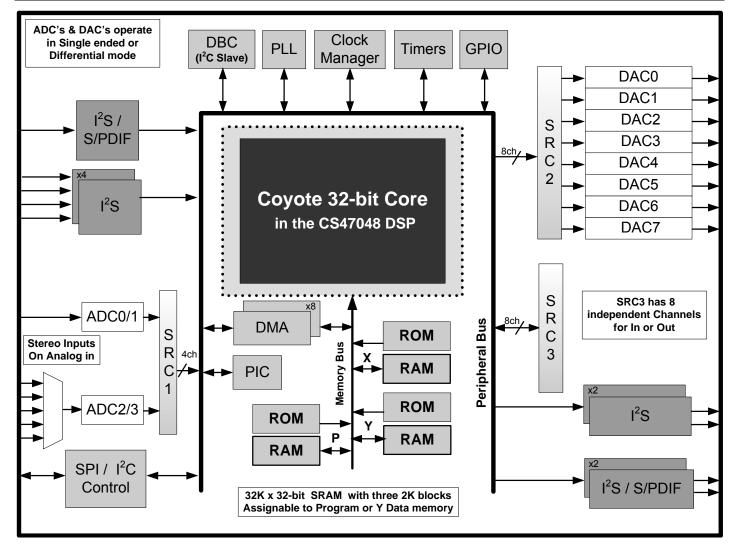


Welcome to **E-XFL.COM**

Understanding <u>Embedded - DSP (Digital Signal Processors)</u>


Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Details	
Product Status	Active
Туре	Fixed Point
Interface	I ² C, SPI
Clock Rate	150MHz
Non-Volatile Memory	-
On-Chip RAM	128kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	100-LQFP-EP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/cs47048c-dqzr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CS47048 Block Diagram

1 Documentation Strategy

The CS470xx Data Sheet describes the CS47048, CS47028, and CS47024 audio processors. This document should be used in conjunction with the following documents when evaluating or designing a system around the CS470xx processors.

Table 1-1. CS470xx Related Documentation

Document Name	Description
CS470xx Data Sheet	This document
	Includes detailed system design information such as typical connection diagrams, boot-procedures, and pin descriptions
	Includes a list of firmware modules available on the CS470xx family platform and detailed firmware design information including signal processing flow diagrams and control API information
DSP Composer User's Manual	Includes detailed configuration and usage information for the GUI development tool
CDB470xx User's Manual	Includes detailed instructions on the use of the CDB470xx development board

The scope of the CS470xx Data Sheet is primarily the hardware specifications of the CS470xx family of devices. This includes hardware functionality, characteristic data, pinout, and packaging information.

The intended audience for the CS470xx Data Sheet is the system PCB designer, MCU programmer, and the quality control engineer.

2 Overview

The CS470xx DSP is designed to provide high-performance post-processing and mixing of analog and digital audio. Dual clock domains are supported when the DAI and SPDIF RX inputs are used together. Integrated sample rate converters (SRCs) allow audio streams with different sample rates to be mixed. The low-power standby preserves battery life for applications that are always on, but not necessarily processing audio, such as automotive audio systems.

The CS470xx uses voltage-out DACs and is capable of supporting dual input clock domains through the use of the internal SRCs. The CS470xx is available in a 100-pin LQFP package. Refer to Table 3-1 and Table 3-2 for the input, output, and firmware configurations for the CS470xx DSP.

2.1 Licensing

Licenses are required for any third-party audio processing algorithms provided for the CS470xx. Contact your local Cirrus Logic Sales representative for more information.

3 Code Overlays

The suite of software available for the CS470xx family consists of an operating system (OS) and a library of overlays. The software components for the CS470xx family include:

- 1. OS/Kernel—Encompasses all non-audio processing tasks, including loading data from external serial memory, processing host messages, calling audio-processing subroutines, error concealment, etc.
- 2. Decoder—Any module that performs a compressed audio decode on IEC61937-packed data delivered via S/PDIF Rx or I²S input, such as Dolby Digital (AC3).
- 3. *Matrix-processor*—Any Module that performs a matrix decode on PCM data to produce more output channels than input channels (2Æn channels). Examples are Dolby® Pro Logic® IIx and SRS Circle Surround II®. Generally speaking, these modules increase the number of valid channels in the audio I/O buffer.
- 4. Virtualizer-processor—Any module that encodes PCM data into fewer output channels than input channels (nÆ2 channels) with the effect of providing "phantom" speakers to represent the physical audio channels that were eliminated. Examples are Dolby Headphone® 2 and Dolby® Virtual Speaker® 2. Generally speaking, these modules reduce the number of valid channels in the audio I/O buffer.
- 5. *Post-processors*—Any module that processes audio I/O buffer PCM data. Examples are bass management, audio manager, tone control, EQ, delay, customer-specific effects, and any post-processing algorithms available for the CS470xx DSP.

The bulk of standard overlays are stored in ROM within the CS470xx, but a small image is required to configure the overlays and boot the DSP. This small image can either be stored in an external serial flash/EEPROM, or downloaded via a host controller through the SPI/I²C serial port.

The overlay structure reduces the time required to reconfigure the DSP when a processing change is requested. Each overlay can be reloaded independently without disturbing the other overlays. For example, when a different post-processor is selected, the OS, does not need to be reloaded—only the new post-processor.

Table 3-1 lists the different configuration options available. Refer to the CS470xx Firmware User's Manual for the latest listing of application codes and Cirrus Framework™ modules available. See Table 3-2, which provides a summary of the available channels for each type of input and output communication mode for members of the CS470xx family of DSPs.

Table 3-1. CS470xx Device Selection Guide

Features	CS47048-CQZ CS47048-DQZ	CS47028-CQZ CS47028-DQZ	CS47024-CQZ CS47024-DQZ
Primary Applications	4-In/8-Out Car Audio High-end Digital TV Dual Source/Dual Zone	2-In/8-Out Car Audio Sound Bar DVD Receiver	2-In/4-Out Car Audio Digital TV Portable Audio Docking Station Portable DVD DVD Mini / Receiver Multimedia PC Speakers
Package	100-pin LQFP with Exposed Pad		
DSP Core	Cirrus Logic 32-bit Core		
SRAM	32K x 32-bit SRAM with three 2K bloc	ks x 32-bit SRAM, assignable to either	r Y data or program memory
Integrated DAC and ADC	2 Channels of ADC input: with integrated 5:1 analog mux 2 additional channels of ADC input: without mux 8 channels of DAC output	2 channels of ADC input: with integrated 5:1 analog mux 8 channels of DAC output	2 channels of ADC input: with integrated 5:1 analog mux 4 channels of DAC output
Configurable Serial Audio Inputs/Outputs	 Integrated 192 kHz S/PDIF Rx, 2 Ir I2S support for 32-bit Samples @ 7 TDM Input modes (Up to 8 channe TDM Output modes (Up to 8 channe 	192 kHz ls)	
Supports Different Fs Sample Rates	 Integrated hardware SRC blocks for Additional 8-channel hardware SRI Dual-domain Fs on inputs (I2S and Output can be master or slave 	C block	
Other Features	Integrated Clock Manager/PLL with Host Control and Boot via SPI/I ² C s DSP Tool Set w/ Private Keys Prote Configurable GPIOs and External I Hardware Watchdog Timer	ect Customer IP	., external crystal, external oscillator

Table 3-2. CS470xx Channel Count

Product	PCM/TDM In ¹	TDM Out ¹	PCM Out	ADC with 5:1 Input Mux	ADC with- out Mux	DAC Out	S/PDIF In (Stereo Pairs)	S/PDIF Out (Ste- reo Pairs)
CS47048	 Up to 5 I2S lines, 2 channels per line or 1 TDM line, up to 8 channels per line. 	Up to 8 chan- nels	8	2	2	8	1	2
CS47028	 Up to 5 I2S lines, 2 channels per line or 1 TDM line, up to 8 channels per line. 	Up to 8 chan- nels	8	2	0	8	1	2
CS47024	 Up to 5 I2S lines, 2 channels per line or 1 TDM line, up to 8 channels per line. 	Up to 8 chan- nels	8	2	0	4	1	2

^{1.} Contact your Cirrus Logic representative to determine the TDM modes that are supported. The CS470xx can support up to 8 channels per line, but the DSP software provided for the IC can restrict this capability.

4.3.2 Digital to Analog Converter Port (DAC)

The DACs in the CS470xx devices feature dynamic range performance in excess of 100 dB. See Section 5.17 for more details on CS470xx DAC performance. The CS47024 device supports four simultaneous channels of digital-to-analog conversion. The CS47028 and CS47048 devices provide eight simultaneous channels of digital-to-analog conversion. The DACs have voltage mode outputs that can be connected either as single-ended or differential signals. The conversions are performed with Fs=96 kHz.

4.3.3 Digital Audio Input Port (DAI)

The input capabilities for each version of the CS470xx are summarized in Table 3-1 and Table 3-2.

Up to five DAI ports are available. Two of the DAI ports can be programmed to implement other functions. If the SPI mode is used, the DAI_DATA4 pin becomes the SCP_CS input. The integrated S/PDIF receiver can be used to take over the DAI_DATA3 pin.

The DAI port PCM inputs have a single slave-only clock domain. The S/PDIF receiver, if used, is a separate clock domain. The output of the S/PDIF Rx can then be converted through one of the internal SRC blocks to synchronize with the PCM input. The sample rate of the input clock domains can be determined automatically by the DSP, off-loading the task of monitoring the S/PDIF Rx from the host. A time-stamping feature provides the ability to also sample-rate convert the input data via software. The DAI port supports PCM format with word lengths up to 32 bits and sample rates as high as 192 kHz.

The DAI also supports a time division multiplexed (TDM) mode that packs up to 10 PCM audio channels on a single data line.

4.3.4 S/PDIF RX Input Port (DAI)

One of the PCM pins of the DAI can also be used as a DC-coupled, TTL-level S/PDIF Rx input capable of receiving and demodulating bi-phase encoded S/PDIF signals with Fs ≤ 192 kHz.

4.3.5 Digital Audio Output Port (DAO)

DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high as 192 kHz. The port can be configured as an independent clock domain mastered by the DSP, or as a clock slave if an external MCLK or SCLK/LRCLK source is available.

The DAO also supports a time division multiplexed (TDM) mode, that packs up to 8 channels of PCM audio on a single data line.

4.3.6 S/PDIF TX Output Port (DAO)

Two of the serial audio pins can be re-configured as S/PDIF TX pins that drive a bi-phase encoded S/PDIF signal (data with embedded clock on a single line).

4.3.7 Sample Rate Converters (SRC)

All CS470xx devices have at least two internal hardware SRC modules. One is directly associated with the ADCs and normally serves to convert data from the 96 kHz sampling rate of the ADCs to another Fs appropriate for mixing with other audio in the system.

The other SRC module is directly associated with the DACs and normally serves to convert data from the DSP into the 96 kHz sample rate needed by the DACs.

The CS47024, CS47028, and CS47048 devices have an additional stand-alone 8-channel SRC module. This SRC module can be used to make independent input clock domains synchronous (different Fs on PCM input and S/PDIF Rx).

4.3.8 Serial Control Port (I²C or SPI)

The on-chip serial control port is capable of operating as master or slave in either SPI or I2C modes. Master/Slave operation is chosen by mode select pins when the CS470xx comes out of reset. The serial clock pin can support frequencies as high as 25 MHz in SPI mode (SPI clock speed must always be ≤ (DSP Core Frequency/2)). The CS470xx serial control port also includes a pin for flow control of the communications interface (SCP_BSY) and a pin to indicate when the DSP has a message for the host (SCP_IRQ).

4.3.9 **GPIO**

Many of the CS470xx peripheral pins are multiplexed with GPIO. Each GPIO can be configured as an output, an input, or an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge, active-low, or active-high.

4.3.10 PLL-based Clock Generator

The low-jitter PLL generates integer or fractional multiples of a reference frequency, which is used to clock the DSP core and peripherals. Through a second PLL divider chain, a dependent clock domain can be output on the DAO port for driving audio converters. The CS470xx defaults to running from the external reference frequency and is switched to use the PLL output after overlays have been loaded and configured, either through master boot from an external flash or through host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered output frequency ratio is selectable between 1:1 (default) or 2:1.

4.3.11 Hardware Watchdog Timer

The CS470xx has an integrated watchdog timer that acts as a "health" monitor for the DSP. The watchdog timer must be reset by the DSP before the counter expires, or the entire chip is reset. This peripheral ensures that the CS470xx resets itself in the event of a temporary system failure. In stand-alone mode (where there is no host MCU), the DSP reboots from external flash. In slave mode (where the host MCU is present), a GPIO is used to signal the host that the watchdog has expired and the DSP should be rebooted and re-configured.

4.4 DSP I/O Description

4.4.1 Multiplexed Pins

Many of the CS470xx pins are multifunctional. For details on pin functionality, see Section 10.5, "Pin Assignments", in the CS470xx Hardware User's Manual.

4.4.2 Termination Requirements

Open-drain pins on the CS470xx must be pulled high for proper operation. See the CS470xx Hardware User's Manual to identify which pins are open-drain and what value of pull-up resistor is required for proper operation.

Mode select pins on CS470xx are used to select the boot mode on the rising edge from reset. A detailed explanation of termination requirements for each communication mode select pin can be found in the CS470xx Hardware User's Manual.

4.4.3 Pads

The CS470xx Digital I/Os operate from the 3.3 V supply and are 5 V tolerant.

4.5 Application Code Security

The external program code can be encrypted by the programmer to protect any intellectual property it contains. A secret, customer-specific key is used to encrypt the program code that is to be stored external to the device. Contact your local Cirrus representative for details.

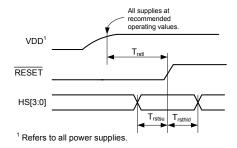


Figure 5-1. RESET Timing at Power-on

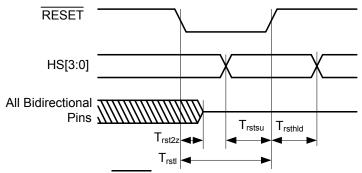


Figure 5-2. RESET Timing after Power is Stable

5.7 Digital Switching Characteristics-XTI

Parameter	Symbol	Min	Max	Unit
External Crystal operating frequency ¹	F _{xtal}	12.288	24.576	MHz
XTI period	T _{clki}	41	81	ns
XTI high time	T _{clkih}	13.3	_	ns
XTI low time	T _{clkil}	13.3	_	ns
External Crystal Load Capacitance (parallel resonant)2	C _L	10	18	pF
External Crystal Equivalent Series Resistance	ESR	_	50	Ω

- 1. Part characterized with the following crystal frequency values: 12.288 and 24.576 MHz.
- 2. C_L refers to the total load capacitance as specified by the crystal manufacturer. Crystals that require a C_L outside this range should be avoided. The crystal oscillator circuit design should follow the crystal manufacturer's recommendation for load capacitor selection.

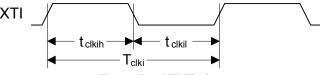


Figure 5-3. XTI Timing

5.8 Digital Switching Characteristics-Internal Clock

Parameter	Symbol	Min (2- layer Boards)	Min (4- layer Boards)	Max (2- layer Boards)	Max (4- layer Boards)	Unit				
Internal DSP_CLK frequency ¹ CS47048-CQZ CS47048-DQZ CS47028-CQZ CS47028-DQZ CS47024-CQZ CS47024-DQZ	F _{dclk}	(See Footnote 2) F _{xtal}		F _{xtal} F _{xtal} F _{xtal} F _{xtal} F _{xtal}		F _{xtal} F _{xtal} F _{xtal} F _{xtal} F _{xtal}		147 131 147 131 147 131	147 147 147 147 147 147	MHz
Internal DSP_CLK period ¹ CS47048-CQZ CS47048-DQZ CS47028-CQZ CS47028-DQZ CS47024-CQZ CS47024-CQZ	DCLKP	6.8 7.6 6.8 7.6 6.8 7.6	6.8 6.8 6.8 6.8 6.8 6.8	1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal} 1/F _{xtal}		ns				

^{1.} After initial power-on reset, F_{dclk} = F_{xtal}. After initial kick-start commands, the PLL is locked to max F_{dclk} and remains locked until the next power-on reset

5.9 Digital Switching Characteristics-Serial Control Port-SPI Slave Mode

Parameter	Symbol	Min	Typical	Max	Unit
SCP_CLK frequency1	f _{spisck}	_	_	25	MHz
SCP_CS falling to SCP_CLK rising	t _{spicss}	24	_	_	ns
SCP_CLK low time	t _{spickl}	20	_	_	ns
SCP_CLK high time	t _{spickh}	20	_	_	ns
Setup time SCP_MOSI input	t _{spidsu}	5	_	_	ns
Hold time SCP_MOSI input	t _{spidh}	5	_	_	ns
SCP_CLK low to SCP_MISO output valid	t _{spidov}	_	_	11	ns
SCP_CLK falling to SCP_IRQ rising	t _{spiirqh}	_	_	27	ns
SCP_CS rising to SCP_IRQ falling	t _{spiirql}	0	_	_	ns
SCP_CLK low to SCP_CS rising	t _{spicsh}	24	_	_	ns
SCP_CS rising to SCP_MISO output high-Z	t _{spicsdz}		20	_	ns
SCP_CLK rising to SCP_BSY falling	t _{spicbsyl}	_	3*DCLKP+20	_	ns

^{1.} f_{spisck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application. Flow control using the SCP_BSY pin should be implemented to prevent overflow of the input data buffer. At boot the maximum speed is F_{xtal}/3.

^{2.} See Section 5.7. for all references to F_{xtal} .

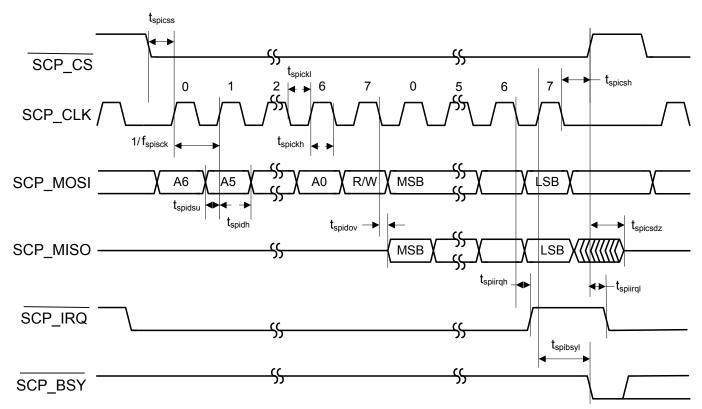


Figure 5-4. Serial Control Port-SPI Slave Mode Timing

5.10 Digital Switching Characteristics-Serial Control Port-SPI Master Mode

Parameter	Symbol	Min	Typical	Max	Units
SCP_CLK frequency ^{1,2}	f _{spisck}	_	_	F _{xtal} /2	MHz
EE_CS falling to SCP_CLK rising ³	t _{spicss}	_	11*DCLKP+(SCP_CLK PERIOD)/2	_	ns
SCP_CLK low time	t _{spickl}	18	_	_	ns
SCP_CLK high time	t _{spickh}	18	_	_	ns
Setup time SCP_MISO input	t _{spidsu}	9	_	_	ns
Hold time SCP_MISO input	t _{spidh}	5	_	_	ns
SCP_CLK low to SCP_MOSI output valid	t _{spidov}	_	_	8	ns
SCP_CLK low to EE_CS falling	t _{spicsl}	7	_	_	ns
SCP_CLK low to EE_CS rising	t _{spicsh}	_	11*DCLKP+(SCP_CLK PERIOD)/2	_	ns
Bus free time between active EE_CS	t _{spicsx}	_	3*DCLKP	_	ns
SCP_CLK falling to SCP_MOSI output high-Z	t _{spidz}	_		20	ns

^{1.} f_{spisck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application.

^{2.} See Section 5.7.

^{3.} SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter.

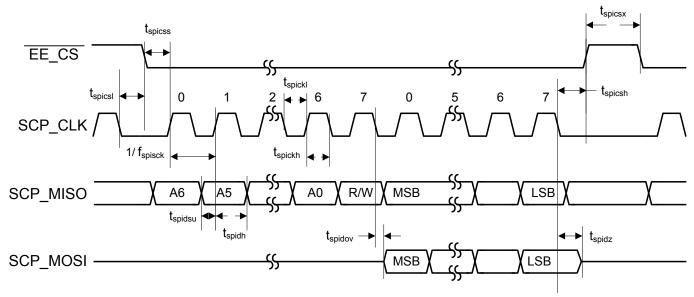


Figure 5-5. Serial Control Port-SPI Master Mode Timing

5.11 Digital Switching Characteristics-Serial Control Port I²C Slave Mode

Parameter	Symbol	Min	Typical	Max	Units
SCP_CLK frequency ¹	f _{iicck}	_	_	400	kHz
SCP_CLK rise time	t _{iicr}	_	_	150	ns
SCP_CLK fall time	t _{iicf}	_	_	150	ns
SCP_CLK low time	t _{iicckl}	1.25	_	_	μs
SCP_CLK high time	t _{iicckh}	1.25	_	_	μs
SCP_CLK rising to SCP_SDA rising or falling for START or STOP condition	tiicckcmd	1.25	_	_	μs
START condition to SCP_CLK falling	tiicstscl	1.25	_	_	μs
SCP_CLK falling to STOP condition	t _{iicstp}	2.5	_	_	μs
Bus free time between STOP and START conditions	tiicbft	3	_	_	μs
Setup time SCP_SDA input valid to SCP_CLK rising	t _{iicsu}	110	_	_	ns
Hold time SCP_SDA input after SCP_CLK falling	t _{iich}	100	_		ns
SCP_CLK low to SCP_SDA out valid	t _{iicdov}	_	_	18	ns
SCP_CLK falling to SCP_IRQ rising	tiicirqh	_	_	3*DCLKP+40	ns
NAK condition to SCP_IRQ low	t _{iicirql}	_	3*DCLKP+20	_	ns
SCP_CLK rising to SCB_BSY low	t _{iicbsyl}	_	3*DCLKP+20	_	ns

^{1.} f_{iicck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application. Flow control using the SCP_BSY pin should be implemented to prevent overflow of the input data buffer.

I2C Slave Address = 0x82

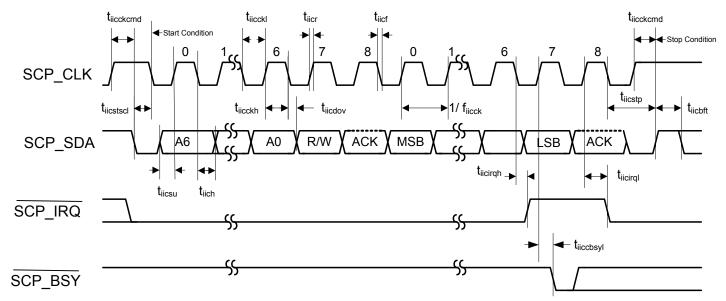


Figure 5-6. Serial Control Port-I²C Slave Mode Timing

5.12 Digital Switching Characteristics-Serial Control Port-I²C Master Mode

Parameter	Symbol	Min	Max	Units
SCP_CLK frequency ¹	f _{iicck}	_	400	kHz
SCP_CLK rise time	t _{iicr}	_	150	ns
SCP_CLK fall time	t _{iicf}	_	150	ns
SCP_CLK low time	t _{iicckl}	1.25	_	μs
SCP_CLK high time	t _{iicckh}	1.25	_	μs
SCP_CLK rising to SCP_SDA rising or falling for START or STOP condition	tiicckcmd	1.25	_	μs
START condition to SCP_CLK falling	t _{iicstscl}	1.25	_	μs
SCP_CLK falling to STOP condition	t _{iicstp}	2.5	_	μs
Bus free time between STOP and START conditions	t _{iicbft}	3	_	μs
Setup time SCP_SDA input valid to SCP_CLK rising	t _{iicsu}	110	_	ns
Hold time SCP_SDA input after SCP_CLK falling	t _{iich}	100	_	ns
SCP_CLK low to SCP_SDA out valid	t _{iicdov}	_	36	ns

1. f_{iicck} indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the communication port can be limited by the firmware application.

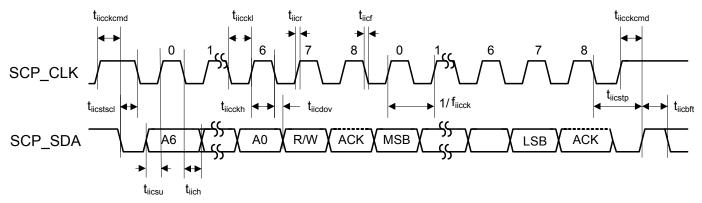


Figure 5-7. Serial Control Port-I²C Master Mode Timing

5.13 Digital Switching Characteristics-Digital Audio Slave Input Port

Parameter	Symbol	Min	Max	Unit
DAI_SCLK period	T _{daiclkp}	20	_	ns
DAI_SCLK duty cycle	_	45	55	%
Setup time DAI_DATAn	t _{daidsu}	8	_	ns
Hold time DAI_DATAn	t _{daidh}	5	_	ns

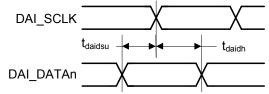


Figure 5-8. Digital Audio Input (DAI) Port Timing Diagram

5.14 Digital Switching Characteristics-Digital Audio Output Port

Parameter	Symbol	Min	Max	Unit		
DAO_MCLK period	T _{daomclk}	20	_	ns		
DAO_MCLK duty cycle	_	45	55	%		
DAO_SCLK period for Master or Slave mode1	T _{daosclk}	20	_	ns		
DAO_SCLK duty cycle for Master or Slave mode1	_	40	60	%		
Master Mode (Output A1 Mode) ^{1,2}						
DAO_SCLK delay from DAO_MCLK rising edge, DAO MCLK as an input	t _{daomsck}	_	19	ns		
DAO_LRCLK to DAO_SCLK inactive edge ³ . See Fig. 5-9.	t _{daomirts}	_	8	ns		
DAO_SCLK inactive edge ³ to DAO_LRCLK. See Fig. 5-10.	t _{daomstlr}	_	8	ns		
DAO_DATA[3:0] delay from DAO_SCLK inactive edge ³	t _{daomdy}	_	8	ns		
Slave Mode (Output A0 Mode) ⁴	Slave Mode (Output A0 Mode) ⁴					
DAO_SCLK active edge to DAO_LRCLK transition. See Fig. 5-11.	t _{daosstlr}	10	_	ns		
DAO_LRCLK transition to DAO_SCLK active edge. See Fig. 5-12.	t _{daosIrts}	10	_	ns		
DAO_Dx delay from DAO_SCLK inactive edge	t _{daosdv}	_	11	ns		

- 1. Master mode timing specifications are characterized, not production tested.
- Master mode is defined as the CS47048 driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce DAO_SCLK, DAO_ LRCLK.
- 3. The DAO_LRCLK transition can occur on either side of the edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the data is valid.
- 4. Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.

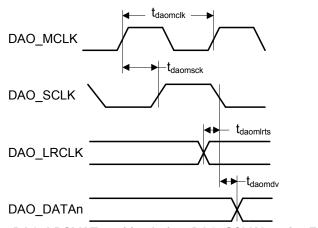


Figure 5-9. DAO_LRCLK Transition before DAO_SCLK Inactive Edge

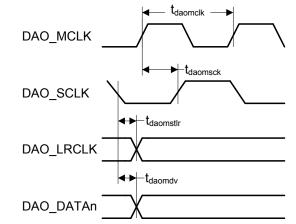


Figure 5-10. DAO_LRCLK Transition after DAO_SCLK Inactive Edge

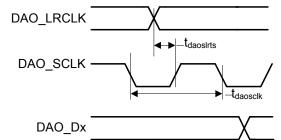


Figure 5-11. DAO_LRCLK Transition before DAO_SCLK Inactive Edge

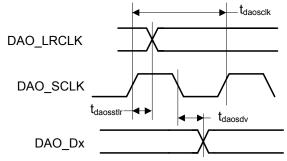
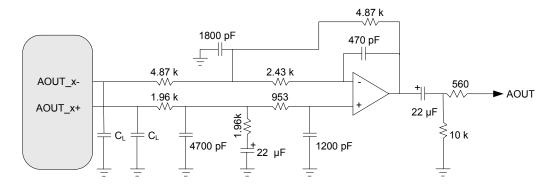


Figure 5-12. DAO_LRCLK Transition after DAO_SCLK Inactive Edge

5.15 Digital Switching Characteristics-S/PDIF RX Port

(Inputs: Logic 0 = V_{IL} , Logic 1 = V_{IH} , C_L = 20 pF)

Parameter	Symbol	Min	Тур	Max	Units
PLL Clock Recovery Sample Rate Range	_	30	_	200	kHz


5.16 ADC Characteristics

5.16.1 Analog Input Characteristics (Commercial)

Test Conditions (unless otherwise specified): $T_A = 0-+70^{\circ}C$; VDD = 1.8V±5%, VDDA (VA) = 3.3V±5%, 1kHz sine wave driven through the passive input filter ($R_i = 10 \text{ k}\Omega$) in Fig. 5-13 or Fig. 5-14; DSP running test application; Measurement Bandwidth is 10–20kHz.

	Differential			Single-ended			
Parameter	Min	Тур	Max	Min	Тур	Max	Unit
Fs = 96 kHz							
Dynamic Range ^{1,6,7} A-weighted Unweighted 40 kHz bandwidth unweighted	99 96 —	105 102 99		96 93 —	102 99 96		dB dB dB
Total Harmonic Distortion + Noise ^{6,7} –1 dB –20 dB –60 dB 40 kHz bandwidth –1 dB	_ _ _ _	-98 -82 -42 -90	-92 		-95 -79 -39 -90	-89 	dB dB dB dB
AIN_1A/B Interchannel Isolation ¹⁰	_	95		_	95		dB
AID_[2.6]A/B MUX Interchannel Isolation	_	95	_	_	95	_	dB
DC Accuracy							
Interchannel Gain Mismatch	_	0.1	_	_	0.1	_	dB
Gain Drift	_	±120	_	_	±120	_	ppm/°C
Analog Input							
Full-scale Input Voltage ^{2,3}	3.3	3.7•VA	3.9	1.65	1.85•VA	1.95	V_{PP}
Differential Input Impedance ⁴		400	_	_	_	_	Ω
Single-ended Input Impedance ⁵	_	_		_	200		Ω
Common Mode Rejection Ratio (CMRR)8	_	60		_	_		dB
Parasitic Load Capacitance (C _L) ⁹	_	_	20	_	_	20	pF

- 1. dB units referred to the typical full-scale voltage.
- 2. These full-scale values were measured with Ri=10k for both the single-ended and differential mode input circuits.
- The full-scale voltage can be changed by scaling R_i.
 Differential Full-Scale (Vpp) = 3.7*VDDA*(Ri+200)/(10k+200)
 Single-Ended Full-Scale (Vpp) = 1.85*VDDA*(Ri+200)/(10k+200)
- 4. Measured between AIN_xx+ and AN_xx-.
- 5. Measured between AIN_xx+ and AGND.
- 6. Decreasing full-scale voltage by reducing R_i causes the noise floor to increase.
- 7. Common mode input current should be kept to less than ± 160 uA to avoid performance degradation: $|(l_{ip}+l_{in})/2| < 160$ uA. This corresponds to ± 1.6 V for $R_i=10$ k Ω in the differential case.
- 8. This number was measured using perfectly matched external resistors (R_i). Mismatch in the external resistors typically reduces CMRR by 20 log ($|\Delta R_i|/R_i + 0.001$).
- 9. C_L represents the parasitic load capacitance between R_i on the input circuit and the input pin of the CS47048 package.
- 10. This measurement is not applicable to the CS47028 and CS47024 devices.

P output: $R_L = 1.96k + ([2\pi F^*4700pF]^{-1}||(1.96k + [2\pi F^*22\mu F^{-}]^{-1})||(953 + [2\pi F^*1200pF]^{-1})|$ N output: $R_L = 4.87k + ([2\pi F^*1800pF]^{-1}||((2.43k + [2\pi F^*470pF]^{-1})||4.87k|))$

Figure 5-16. DAC Differential Output Test Circuit

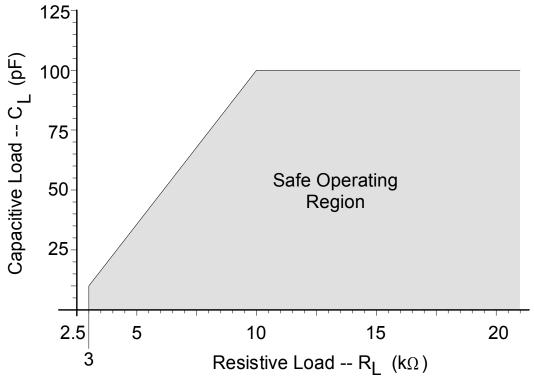


Figure 5-17. Maximum Loading

5.17.3 Combined DAC Interpolation and On-chip Analog Filter Response

Parameter	Min	Тур	Max	Unit
Passband (Frequency Response) to 0.22 dB corner to –3 dB corner	0		0.4125 0.4979	
Frequency Response 10 Hz-20 kHz	-0.02	_	+0.02	dB
StopBand	0.5465	_	_	Fs
StopBand Attenuation	100	_	_	dB
Group Delay	_	10/Fs	_	S

25

8 Device Pinout Diagrams

8.1 CS47048, 100-pin LQFP Pinout Diagram

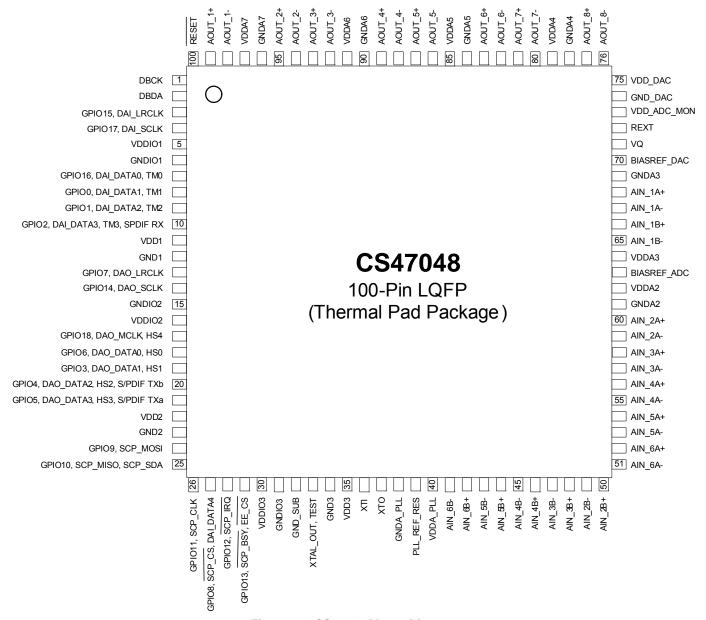


Figure 8-1. CS47048 Pinout Diagram

8.2 CS47028, 100-pin LQFP Pinout Diagram

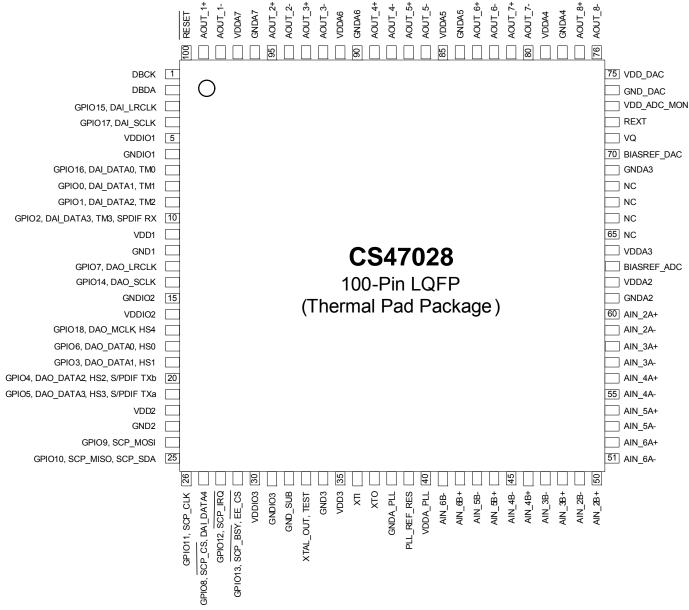


Figure 8-2. CS47028 Pinout Diagram

8.3 CS47024, 100-pin LQFP Pinout Diagram

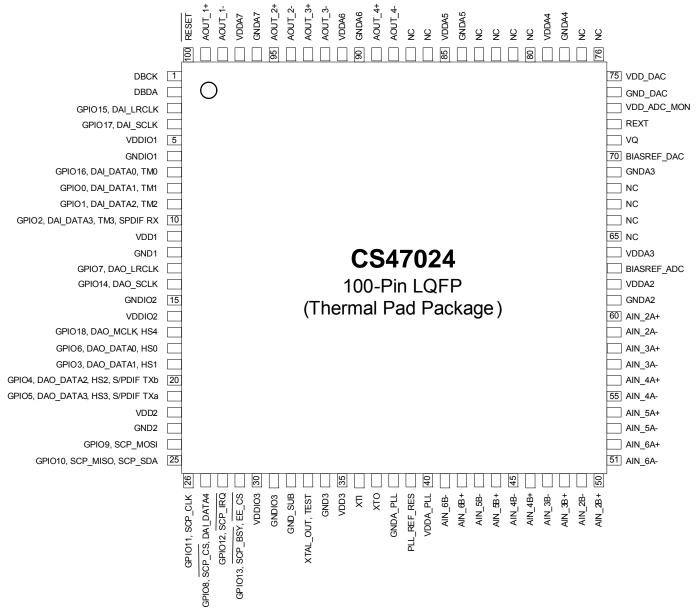


Figure 8-3. CS47024 Pinout Diagram

9 100-pin LQFP with Exposed Pad Package Drawing

Fig. 9-1 shows the 100-pin LQFP package with exposed pad for the CS47048, CS47028, and CS47024.

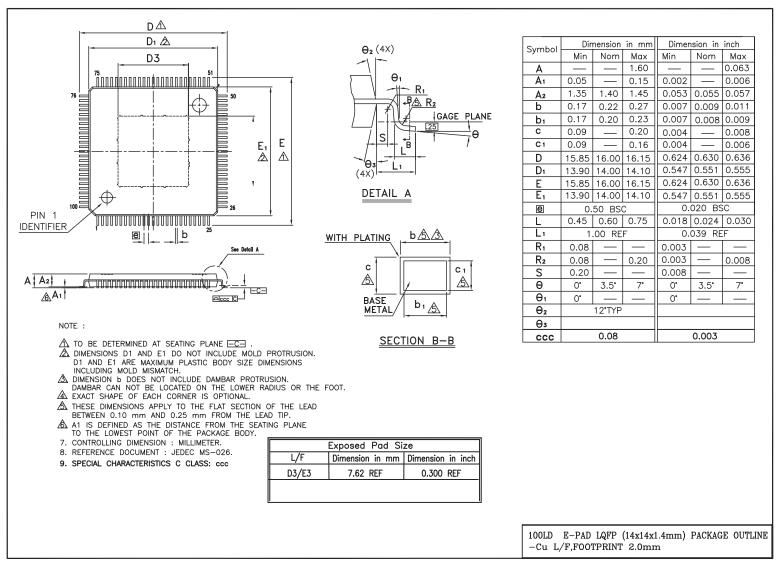


Figure 9-1. 100-pin LQFP Package Drawing

10 Parameter Definitions

10.1 Dynamic Range

The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.

10.2 Total Harmonic Distortion + Noise

The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the specified bandwidth (typically 10 Hz–20 kHz), including distortion components. Expressed in decibels. Measured at –1 and –20 dBFS as suggested in AES17-1991 Annex A.

10.3 Frequency Response

A measure of the amplitude response variation from 10 Hz–20 kHz relative to the amplitude response at 1 kHz. Units in decibels.

10.4 Interchannel Isolation

A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels.

10.5 Interchannel Gain Mismatch

The gain difference between left and right channels. Units in decibels.

10.6 Gain Error

The deviation from the nominal full-scale analog output for a full-scale digital input.

10.7 Gain Drift

The change in gain value with temperature. Units in ppm/°C.