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memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
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Microcontrollers"
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Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
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used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
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used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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ATmega165/V
• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support – Read-While-Write Self-Programming” on
page 232 for details about Boot programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1.  EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write 
(from CPU)

67 584 8.5 ms
19
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ATmega165/V
Oscillator is stopped during sleep. If the Timer/Counter2 is using the synchronous clock,
the clock source is stopped during sleep. Note that even if the synchronous clock is run-
ning in Power-save, this clock is only available for the Timer/Counter2.

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles. 

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is not running in asynchronous mode.
3. For INT0, only level interrupt.

Power Reduction 
Register

The Power Reduction Register, PRR, provides a method to stop the clock to individual
peripherals to reduce power consumption. The current state of the peripheral is frozen
and the I/O registers can not be read or written. Resources used by the peripheral when
stopping the clock will remain occupied, hence the peripheral should in most cases be
disabled before stopping the clock. Waking up a module, which is done by clearing the
bit in PRR, puts the module in the same state as before shutdown. 

Module shutdown can be used in Idle mode and Active mode to significantly reduce the
overall power consumption. See “Supply Current of I/O modules” on page 290 for exam-
ples. In all other sleep modes, the clock is already stopped.

Power Reduction Register - 
PRR

• Bit 7..4 - Res: Reserved bits

These bits are reserved in ATmega165 and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the
Timer/Counter1 is enabled, operation will continue like before the shutdown. 

Table 15.  Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode clkCPU clkFLASH clkIO clkADC clkASY

Main Clock 
Source 
Enabled

Timer 
Osc 

Enabled

INT0 
and Pin 
Change

USI Start
Condition Timer2

SPM/
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X

ADC Noise
Reduction X X X X(2) X(3) X X(2) X X

Power-down X(3) X

Power-save X X X(3) X X

Standby(1) X X(3) X

Bit 7 6 5 4 3 2 1 0

– – – – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
34
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• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDCE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algo-
rithm described above. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 45.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 21.

Note:Also see Figure 183 on page 312.

Table 21.  Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT 
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 15.4 ms 14.7 ms

0 0 1 32K cycles 30.8 ms 29.3 ms

0 1 0 64K cycles 61.6 ms 58.7 ms

0 1 1 128K cycles 0.12 s 0.12 s

1 0 0 256K cycles 0.25 s 0.23 s

1 0 1 512K cycles 0.49 s 0.47 s

1 1 0 1,024K cycles 1.0 s 0.9 s

1 1 1 2,048K cycles 2.0 s 1.9 s
44
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External Interrupt Mask 
Register – EIMSK

• Bit 7 – PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will
cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is exe-
cuted from the PCI1 Interrupt Vector. PCINT15..8 pins are enabled individually by the
PCMSK1 Register.

• Bit 6 – PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
pin change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause
an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed
from the PCI0 Interrupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0
Register.

• Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the External Interrupt Control Register A (EICRA) define whether the external
interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Inter-
rupt Vector.

External Interrupt Flag 
Register – EIFR

• Bit 7 – PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1
becomes set (one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

• Bit 6 – PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0
becomes set (one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the
MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the inter-
rupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to
it.

Bit 7 6 5 4 3 2 1 0

PCIE1 PCIE0 – – – – – INT0 EIMSK

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PCIF1 PCIF0 – – – – – INTF0 EIFR

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
53
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Table 28 and Table 29 relate the alternate functions of Port B to the overriding signals
shown in Figure 26 on page 60. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

 

Table 28.  Overriding Signals for Alternate Functions in PB7..PB4

Signal 
Name

PB7/OC2A/
PCINT15

PB6/OC1B/
PCINT14

PB5/OC1A/
PCINT13

PB4/OC0A/
PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE

PVOV OC2A OC1B OC1A OC0A

PTOE – – – –

DIEOE PCINT15 • 
PCIE1

PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 • 
PCIE1

DIEOV 1 1 1 1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –

Table 29.  Overriding Signals for Alternate Functions in PB3..PB0

Signal 
Name

PB3/MISO/
PCINT11

PB2/MOSI/
PCINT10

PB1/SCK/
PCINT9

PB0/SS/
PCINT8

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE 
OUTPUT

SPI MSTR 
OUTPUT

SCK OUTPUT 0

PTOE – – – –

DIEOE PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 • 
PCIE1

DIEOV 1 1 1 1

DI PCINT11 INPUT

SPI MSTR INPUT

PCINT10 INPUT

SPI SLAVE INPUT

PCINT9 INPUT

SCK INPUT

PCINT8 INPUT

SPI SS

AIO – – – –
64
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Compare Output Mode and 
Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no
action on the OC1x Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 48 on page 113. For fast
PWM mode refer to Table 49 on page 113, and for phase correct and phase and fre-
quency correct PWM refer to Table 50 on page 114.

A change of the COM1x1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC1x strobe bits.

Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM13:0) and
Compare Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM1x1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM1x1:0 bits control whether the out-
put should be set, cleared or toggle at a compare match (See “Compare Match Output
Unit” on page 102.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 111.

Normal Mode The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero.
The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV1
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.
103
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ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OC2A). See “Output Compare Unit” on page 122. for details. The compare match
event will also set the Compare Flag (OCF2A) which can be used to generate an Output
Compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 2. However, when using the
register or bit defines in a program, the precise form must be used, i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on.

The definitions in Table 53 are also used extensively throughout the section.

Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O.
When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken
from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on
asynchronous operation, see “Asynchronous Status Register – ASSR” on page 134. For
details on clock sources and prescaler, see “Timer/Counter Prescaler” on page 138.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 54 shows a block diagram of the counter and its surrounding environment.

Figure 54.  Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

Table 53.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn
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SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if
SPIE in SPCR is set and global interrupts are enabled. If SS is an input and is driven low
when the SPI is in Master mode, this will also set the SPIF Flag. SPIF is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing
the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set, and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the ATmega165 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode (see Table 62). This means that the minimum SCK period will
be two CPU clock periods. When the SPI is configured as Slave, the SPI is only guaran-
teed to work at fosc/4 or lower.

The SPI interface on the ATmega165 is also used for program memory and EEPROM
downloading or uploading. See page 261 for serial programming and verification.

SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the Regis-
ter File and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
146
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The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Receive Compete Flag and 
Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete interrupt will be executed as long as the RXC Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR)
and Parity Error (UPE). All can be accessed by reading UCSRA. Common for the Error
Flags is that they are located in the receive buffer together with the frame for which they
indicate the error status. Due to the buffering of the Error Flags, the UCSRA must be
read before the receive buffer (UDR), since reading the UDR I/O location changes the
buffer read location. Another equality for the Error Flags is that they can not be altered
by software doing a write to the flag location. However, all flags must be set to zero
when the UCSRA is written for upward compatibility of future USART implementations.
None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE Flag is zero when the stop bit was correctly
read (as one), and the FE Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC
since the Receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition.
A Data OverRun occurs when the receive buffer is full (two characters), it is a new char-
acter waiting in the Receive Shift Register, and a new start bit is detected. If the DOR
Flag is set there was one or more serial frame lost between the frame last read from
UDR, and the next frame read from UDR. For compatibility with future devices, always
write this bit to zero when writing to UCSRA. The DOR Flag is cleared when the frame
received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPE) Flag indicates that the next frame in the receive buffer had a Par-
ity Error when received. If Parity Check is not enabled the UPE bit will always be read
zero. For compatibility with future devices, always set this bit to zero when writing to
UCSRA. For more details see “Parity Bit Calculation” on page 153 and “Parity Checker”
on page 161.
160
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CLK or USITC strobe bits. The clock source depends of the setting of the USICS1..0
bits. For external clock operation a special feature is added that allows the clock to be
generated by writing to the USITC strobe bit. This feature is enabled by write a one to
the USICLK bit while setting an external clock source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

USI Control Register – USICR 

The Control Register includes interrupt enable control, wire mode setting, Clock Select
setting, and clock strobe.

• Bit 7 – USISIE: Start Condition Interrupt Enable

Setting this bit to one enables the Start Condition detector interrupt. If there is a pending
interrupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will
immediately be executed. Refer to the USISIF bit description on page 182 for further
details.

• Bit 6 – USIOIE: Counter Overflow Interrupt Enable

Setting this bit to one enables the Counter Overflow interrupt. If there is a pending inter-
rupt when the USIOIE and the Global Interrupt Enable Flag is set to one, this will
immediately be executed. Refer to the USIOIF bit description on page 182 for further
details.

• Bit 5..4 – USIWM1..0: Wire Mode

These bits set the type of wire mode to be used. Basically only the function of the out-
puts are affected by these bits. Data and clock inputs are not affected by the mode
selected and will always have the same function. The counter and Shift Register can
therefore be clocked externally, and data input sampled, even when outputs are dis-
abled. The relations between USIWM1..0 and the USI operation is summarized in Table
76.

Bit 7 6 5 4 3 2 1 0

USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR

Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0
183
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Analog Comparator The Analog Comparator compares the input values on the positive pin AIN0 and nega-
tive pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on
the negative pin AIN1, the Analog Comparator output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block dia-
gram of the comparator and its surrounding logic is shown in Figure 82.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register - PRR” on page
34 must be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 82.  Analog Comparator Block Diagram(2)

Notes:1. See Table 79 on page 188.
2. Refer to Figure 1 on page 2 and Table 32 on page 66 for Analog Comparator pin

placement.

ADC Control and Status 
Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 188. 

Analog Comparator Control 
and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER 
OUTPUT

ACME
ADEN

(1)

AIN0

AIN1

ACD

VCC

ACIE

INTERRUPT
SELECT

ACIS1 ACIS0 ACIC

ACO

ANALOG
COMPARATOR
IRQ

ACI

TO T/C1 CAPTURE
TRIGGER MUX

Bit 7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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Figure 98.  TAP Controller State Diagram

TAP Controller The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 98 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-
face is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter 
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of 
the JTAG instructions into the JTAG Instruction Register from the TDI input at the 
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in 
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when 
this state is left by setting TMS high. While the instruction is shifted in from the TDI 
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction 
selects a particular Data Register as path between TDI and TDO and controls the 
circuitry surrounding the selected Data Register.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction 
is latched onto the parallel output from the Shift Register path in the Update-IR 
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Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See “Boundary-scan Chain” on page 216 for a complete description.

Boundary-scan Specific 
JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

EXTEST; 0x0 Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; 0x1 Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-
Register consists of a version number, a device number and the manufacturer code
chosen by JEDEC. This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan 
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

SAMPLE_PRELOAD; 0x2 Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as Data Register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. 
However, the output latches are not connected to the pins. 

AVR_RESET; 0xC The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as Data Register. Note that the reset will be
active as long as there is a logic “one” in the Reset Chain. The output from this chain is
not latched. 
214
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MCU Status Register – 
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

Boundary-scan Chain The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection. 

Scanning the Digital Port Pins Figure 101 shows the Boundary-scan Cell for a bi-directional port pin with pull-up func-
tion. The cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn
– function, and a bi-directional pin cell that combines the three signals Output Control –
OCxn, Output Data – ODxn, and Input Data – IDxn, into only a two-stage Shift Register.
The port and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 102
shows a simple digital port pin as described in the section “External Interrupts” on page
51. The Boundary-scan details from Figure 101 replaces the dashed box in Figure 102.

When no alternate port function is present, the Input Data – ID – corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction – DD Register, and
the Pull-up Enable – PUExn – corresponds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 102 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuitry.

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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Setting the Boot Loader Lock 
Bits by SPM

To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0,
write “X0001001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR.

See Table 92 and Table 93 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to “1” when
writing the Lock bits. When programming the Lock bits the entire Flash can be read dur-
ing the operation.

EEPROM Write Prevents 
Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.

Reading the Fuse and Lock 
Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destina-
tion register. The BLBSET and SPMEN bits will auto-clear upon completion of reading
the Lock bits or if no LPM instruction is executed within three CPU cycles or no SPM
instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared,
LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value
of the Fuse Low byte (FLB) will be loaded in the destination register as shown below.
Refer to Table 103 on page 248 for a detailed description and mapping of the Fuse Low
byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination
register as shown below. Refer to Table 102 on page 248 for detailed description and
mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
241
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Programming the Fuse Low 
Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the Fuse High 
Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming
the Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Programming the Extended 
Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
ming the Flash” on page 252 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 115.  Programming the FUSES Waveforms

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.
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Write Extended Fuse byte
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ATmega165 Typical 
Characteristics

The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-
to-rail output is used as clock source.

All Active- and Idle current consumption measurements are done with all bits in the PRR
register set and thus, the corresponding I/O modules are turned off. Also the Analog
Comparator is disabled during these measurements. Table 120 and Table 121 on page
290 show the additional current consumption compared to ICC Active and ICC Idle for
every I/O module controlled by the Power Reduction Register. See “Power Reduction
Register” on page 34 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switch-
ing frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog Timer.

Active Supply Current Figure 132.  Active Supply Current vs. Frequency (0.1 - 1.0 MHz)
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Figure 163.  I/O Pin Source Current vs. Output Voltage, Port B (VCC = 2.7V)

Figure 164.  I/O Pin Source Current vs. Output Voltage, Port B (VCC = 1.8V)
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Figure 185.  Calibrated 8 MHz RC Oscillator Frequency vs. VCC 

Figure 186.  Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value
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(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) Reserved – – – – – – – –

(0xBC) Reserved – – – – – – – –

(0xBB) Reserved – – – – – – – –

(0xBA) USIDR  USI Data Register 181

(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 182

(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 183

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB 134

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) OCR2A  Timer/Counter2 Output Compare Register A 133

(0xB2) TCNT2  Timer/Counter2 (8-bit) 133

(0xB1) Reserved – – – – – – – –

(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 131

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 117

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 117

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 117

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 117

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 118

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 118

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 117

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 117

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 116

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 115

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 113

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 188

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 205

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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