
Microchip Technology - ATMEGA165V-8MI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega165v-8mi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega165v-8mi-4428459
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega165/V
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.

Port F also serves the functions of the JTAG interface.

Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega165 as listed
on page 66.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
16 on page 38. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter.

AREF This is the analog reference pin for the A/D Converter.

About Code
Examples

This documentation contains simple code examples that briefly show how to use various
parts of the device. Be aware that not all C compiler vendors include bit definitions in the
header files and interrupt handling in C is compiler dependent. Please confirm with the
C compiler documentation for more details.

These code examples assume that the part specific header file is included before com-
pilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC",
"CBI", and "SBI" instructions must be replaced with instructions that allow access to
extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and
"CBR".
6
2573G–AVR–07/09

ATmega165/V
Instruction Execution
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation

Reset and Interrupt
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 246 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 46.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INT0
– the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 46 for more information. The Reset Vector can also be

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
12
2573G–AVR–07/09

ATmega165/V
Data Memory Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkCPU cycles as described in Figure
10.

Figure 10. On-chip Data SRAM Access Cycles

EEPROM Data Memory The ATmega165 contains 512 bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM,
see page 261, page 266, and page 249 respectively.

EEPROM Read/Write Access The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In heav-
ily filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction
17
2573G–AVR–07/09

ATmega165/V
The EEPROM Address
Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega165 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address
in the 512 bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 511. The initial value of EEAR is undefined. A proper value must be writ-
ten before the EEPROM may be accessed.

The EEPROM Data Register –
EEDR

• Bits 7..0 – EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

The EEPROM Control Register
– EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega165 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address. If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
18
2573G–AVR–07/09

ATmega165/V
Oscillator is stopped during sleep. If the Timer/Counter2 is using the synchronous clock,
the clock source is stopped during sleep. Note that even if the synchronous clock is run-
ning in Power-save, this clock is only available for the Timer/Counter2.

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is not running in asynchronous mode.
3. For INT0, only level interrupt.

Power Reduction
Register

The Power Reduction Register, PRR, provides a method to stop the clock to individual
peripherals to reduce power consumption. The current state of the peripheral is frozen
and the I/O registers can not be read or written. Resources used by the peripheral when
stopping the clock will remain occupied, hence the peripheral should in most cases be
disabled before stopping the clock. Waking up a module, which is done by clearing the
bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the
overall power consumption. See “Supply Current of I/O modules” on page 290 for exam-
ples. In all other sleep modes, the clock is already stopped.

Power Reduction Register -
PRR

• Bit 7..4 - Res: Reserved bits

These bits are reserved in ATmega165 and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the
Timer/Counter1 is enabled, operation will continue like before the shutdown.

Table 15. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode clkCPU clkFLASH clkIO clkADC clkASY

Main Clock
Source
Enabled

Timer
Osc

Enabled

INT0
and Pin
Change

USI Start
Condition Timer2

SPM/
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X

ADC Noise
Reduction X X X X(2) X(3) X X(2) X X

Power-down X(3) X

Power-save X X X(3) X X

Standby(1) X X(3) X

Bit 7 6 5 4 3 2 1 0

– – – – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
34
2573G–AVR–07/09

ATmega165/V
When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT-
in Figure 18), the Brown-out Reset is immediately activated. When VCC increases above
the trigger level (VBOT+ in Figure 18), the delay counter starts the MCU after the Time-
out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 16.

Figure 18. Brown-out Reset During Operation

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 43 for details on operation of the Watchdog Timer.

Figure 19. Watchdog Reset During Operation

MCU Status Register –
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
41
2573G–AVR–07/09

ATmega165/V
• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then Reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

Internal Voltage
Reference

ATmega165 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC.

Voltage Reference Enable
Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 19. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Note: 1. Values are guidelines only. Actual values are TBD.

Table 19. Internal Voltage Reference Characteristics(1)

Symbol Parameter Condition Min Typ Max Units

VBG Bandgap reference voltage
VCC = 2.7V,
TA = 25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC = 2.7V,
TA = 25°C

40 70 µs

IBG
Bandgap reference current
consumption

VCC = 2.7V,
TA = 25°C

15 µA
42
2573G–AVR–07/09

ATmega165/V
• TDO, ADC6 – Port F, Bit 6

ADC6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Regis-
ter. When the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP
states that shift out data, the TDO pin drives actively. In other states the pin is pulled
high.

• TMS, ADC5 – Port F, Bit 5

ADC5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O
pin.

• TCK, ADC4 – Port F, Bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

• ADC3 - ADC0 – Port F, Bit 3:0

Analog to Digital Converter, Channel 3-0.

Table 36. Overriding Signals for Alternate Functions in PF7..PF4

Signal
Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR +
SHIFT_DR

0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

PTOE – – – –

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO TDI
ADC7 INPUT

ADC6 INPUT TMS
ADC5 INPUT

TCK
ADC4 INPUT
69
2573G–AVR–07/09

ATmega165/V
8-bit Timer/Counter0
with PWM

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module.
The main features are:
• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 27. For the
actual placement of I/O pins, refer to “Pinout ATmega165” on page 2. CPU accessible
I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the “8-bit Timer/Counter Register Description” on
page 85.

Figure 27. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers.
Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer
Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the T0 pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkT0).

The double buffered Output Compare Register (OCR0A) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OC0A). See “Output Compare Unit” on page 77. for details. The compare match

Timer/Counter

D
AT

A
 B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

BOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCRn

TCCRn

Clock Select

Tn
Edge

Detector

(From Prescaler)

clkTn

TOP

OCn
(Int.Req.)
75
2573G–AVR–07/09

ATmega165/V
Synchronous Clock Operation When synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock
input (Slave) or clock output (Master). The dependency between the clock edges and
data sampling or data change is the same. The basic principle is that data input (on
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Figure 71. Synchronous Mode XCK Timing.

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 71 shows, when UCPOL is zero the data will
be changed at rising XCK edge and sampled at falling XCK edge. If UCPOL is set, the
data will be changed at falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 72 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 72. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
152
2573G–AVR–07/09

ATmega165/V
The Two-wire clock control unit can generate an interrupt when a start condition is
detected on the Two-wire bus. It can also generate wait states by holding the clock pin
low after a start condition is detected, or after the counter overflows.

Functional Descriptions

Three-wire Mode The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0
and 1, but does not have the slave select (SS) pin functionality. However, this feature
can be implemented in software if necessary. Pin names used by this mode are: DI, DO,
and USCK.

Figure 77. Three-wire Mode Operation, Simplified Diagram

Figure 77 shows two USI units operating in Three-wire mode, one as Master and one as
Slave. The two Shift Registers are interconnected in such way that after eight USCK
clocks, the data in each register are interchanged. The same clock also increments the
USI’s 4-bit counter. The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be
used to determine when a transfer is completed. The clock is generated by the Master
device software by toggling the USCK pin via the PORT Register or by writing a one to
the USITC bit in USICR.

Figure 78. Three-wire Mode, Timing Diagram

SLAVE

MASTER

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

PORTxn

MSB

MSB

6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8

6 5 4 3 2 1 LSB

USCK

USCK

DO

DI

DCBA E

CYCLE (Reference)
176
2573G–AVR–07/09

ATmega165/V
ADMUX = 0xFB (ADC3 - ADC2, 1.1V reference, left adjusted result)

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR = 512 * (300 - 500) / 1100 = -93 = 0x3A3.

ADCL will thus read 0xC0, and ADCH will read 0xD8. Writing zero to ADLAR right
adjusts the result: ADCL = 0xA3, ADCH = 0x03.

ADC Multiplexer Selection
Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 82. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register – ADCL and ADCH” on page 204.

Table 81. Correlation Between Input Voltage and Output Codes

VADCn Read Code Corresponding Decimal Value

 VADCm + VREF 0x1FF 511

VADCm + 511/512 VREF 0x1FF 511

VADCm + 510/512 VREF 0x1FE 510

...

VADCm + 1/512 VREF 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF 0x3FF -1

...

VADCm - 511/512 VREF 0x201 -511

VADCm - VREF 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 82. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin
201
2573G–AVR–07/09

ATmega165/V
Scanning the ADC Figure 107 shows a block diagram of the ADC with all relevant control and observe sig-
nals. The Boundary-scan cell from Figure 103 is attached to each of these signals. The
ADC need not be used for pure connectivity testing, since all analog inputs are shared
with a digital port pin as well.

Figure 107. Analog to Digital Converter

The signals are described briefly in Table 88.

Table 87. Boundary-scan Signals for the Analog Comparator

Signal
Name

Direction as
Seen from the
Comparator Description

Recommended
Input when Not
in Use

Output Values when
Recommended
Inputs are Used

AC_IDLE input Turns off Analog
Comparator when
true

1 Depends upon µC
code being executed

ACO output Analog
Comparator Output

Will become
input to µC code
being executed

0

ACME input Uses output signal
from ADC mux
when true

0 Depends upon µC
code being executed

ACBG input Bandgap
Reference enable

0 Depends upon µC
code being executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-
1x

ST
ACLK

AMPEN

1.11V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

PRECH

GNDEN

PASSEN

COMP

SCTEST
ADCBGEN

To Comparator

1.22V
ref

ACTEN

AREF
221
2573G–AVR–07/09

ATmega165/V
As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3
when the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 88 are used unless other values are given in the
algorithm in Table 89. Only the DAC and port pin values of the Scan Chain are shown.
The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done
on the data scanned out when scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock
frequency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency
has to be at least five times the number of scan bits divided by the maximum hold time,
thold,max

Table 89. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pull-
up_
Enable

1
SAMPLE_
PRELOAD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6

Verify the
COMP bit
scanned
out to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the
COMP bit
scanned
out to be 1

1 0x200 0x08 1 1 0 0 0

The lower limit is: 1024 1.5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1.5V 1.05 5V⁄⋅ ⋅ 323 0x143= =
225
2573G–AVR–07/09

ATmega165/V
ATmega165 Boundary-
scan Order

Table 90 shows the Scan order between TDI and TDO when the Boundary-scan chain
is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
101, PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, and PXn. Pull-
up_enable corresponds to FF2. Bit 4, 5, 6, and 7of Port F is not in the scan chain, since
these pins constitute the TAP pins when the JTAG is enabled.

Table 90. ATmega165 Boundary-scan Order

Bit Number Signal Name Module

197 AC_IDLE Comparator

196 ACO

195 ACME

194 AINBG

193 COMP ADC

192 ACLK

191 ACTEN

190 PRIVATE_SIGNAL1(1)

189 ADCBGEN

188 ADCEN

187 AMPEN

186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4

180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH

175 GNDEN

174 HOLD

173 IREFEN

172 MUXEN_7

171 MUXEN_6

170 MUXEN_5

169 MUXEN_4
226
2573G–AVR–07/09

ATmega165/V
Programming the Fuse Low
Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the Fuse High
Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming
the Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Programming the Extended
Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
ming the Flash” on page 252 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 115. Programming the FUSES Waveforms

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 252 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
256
2573G–AVR–07/09

ATmega165/V
Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 101 on page 247
7. The bit mapping for Fuses High byte is listed in Table 102 on page 248
8. The bit mapping for Fuses Low byte is listed in Table 103 on page 248
9. The bit mapping for Lock bits byte is listed in Table 99 on page 246
10. Address bits exceeding PCMSB and EEAMSB (Table 105 and Table 106) are don’t care
11. All TDI and TDO sequences are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits 0111010_00000000

0111110_00000000
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse Ext. byte
Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 115. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
273
2573G–AVR–07/09

ATmega165/V
including the first read byte. This ensures that the first data is captured from the first
address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

Figure 126. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During
normal operation in which eight bits are shifted for each Flash byte, the clock cycles
needed to navigate through the TAP controller automatically feeds the state machine for
the Flash Data Byte Register with sufficient number of clock pulses to complete its oper-
ation transparently for the user. However, if too few bits are shifted between each
Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle
state for some TCK cycles to ensure that there are at least 11 TCK cycles between each
Update-DR state.

Programming Algorithm All references below of type “1a”, “1b”, and so on, refer to Table 115.

Entering Programming Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the
Programming Enable Register.

Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the
programming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for
tWLRH_CE (refer to Table 112 on page 259).

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine
275
2573G–AVR–07/09

ATmega165/V
ending with the MSB of the last instruction in the page (Flash). The Capture-DR
state both captures the data from the Flash, and also auto-increments the pro-
gram counter after each word is read. Note that Capture-DR comes before the
shift-DR state. Hence, the first byte which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Programming the EEPROM Before programming the EEPROM a Chip Erase must be performed, see “Performing
Chip Erase” on page 275.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for
tWLRH (refer to Table 112 on page 259).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM.

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM.

Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will pro-
gram the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH
(refer to Table 112 on page 259).

6. Load data low byte using programming instructions 6e. A “0” will program the
fuse, a “1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH
(refer to Table 112 on page 259).
277
2573G–AVR–07/09

ATmega165/V
Figure 163. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 2.7V)

Figure 164. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 1.8V)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE, PORT B
Vcc = 2.7V

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (

m
A

)

85°C
25°C

-40°C

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE, PORT B
Vcc = 1.8V

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOH (V)

I O
H
 (

m
A

)

85°C
25°C

-40°C
302
2573G–AVR–07/09

