
Microchip Technology - ATMEGA165V-8MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega165v-8mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega165v-8mu-4428403
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega165/V
the operation is executed, and the result is stored back in the Register File – in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition,
the ATmega165 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

ALU – Arithmetic Logic
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.
8
2573G–AVR–07/09

ATmega165/V
The X-register, Y-register, and
Z-register

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0xFF. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

– – – – – SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
11
2573G–AVR–07/09

ATmega165/V
Instruction Execution
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation

Reset and Interrupt
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 246 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 46.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INT0
– the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 46 for more information. The Reset Vector can also be

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
12
2573G–AVR–07/09

ATmega165/V
System Control and
Reset

Resetting the AVR During reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
– Absolute Jump – instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The
circuit diagram in Figure 14 shows the reset logic. Table 16 defines the electrical param-
eters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the SUT
and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 24.

Reset Sources The ATmega165 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the
Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 212 for details.
37
2573G–AVR–07/09

ATmega165/V
Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM01:0) and
Compare Output mode (COM0A1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM0A1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM0A1:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 79.).

For detailed timing information refer to Figure 34, Figure 35, Figure 36 and Figure 37 in
“Timer/Counter Timing Diagrams” on page 84.

Normal Mode The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The
TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV0
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

Clear Timer on Compare
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 31. The counter value
(TCNT0) increases until a compare match occurs between TCNT0 and OCR0A, and
then counter (TCNT0) is cleared.

Figure 31. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)
80
2573G–AVR–07/09

ATmega165/V
Figure 59. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOT-
TOM. The Interrupt Flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM2A1:0 to three (See Table 57
on page 132). The actual OC2A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by clearing (or
setting) the OC2A Register at the compare match between OCR2A and TCNT2 when
the counter increments, and setting (or clearing) the OC2A Register at compare match
between OCR2A and TCNT2 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of period 2 in Figure 59 OCn has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR2A changes its value from MAX, like in Figure 59. When the OCR2A value is
MAX the OCn pin value is the same as the result of a down-counting compare
match. To ensure symmetry around BOTTOM the OCn value at MAX must
correspond to the result of an up-counting Compare Match.

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

fOCnxPCPWM
fclk_I/O

N 510⋅
------------------=
128
2573G–AVR–07/09

ATmega165/V
Data Modes There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 67 and Figure 68. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 60 and Table 61, as done below:

Figure 67. SPI Transfer Format with CPHA = 0

Figure 68. SPI Transfer Format with CPHA = 1

Table 63. CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
147
2573G–AVR–07/09

ATmega165/V
Table 74. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%
173
2573G–AVR–07/09

ATmega165/V
Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge Shift Register clock.
The loop is repeated until the USI Counter Overflow Flag is set.

Two-wire Mode The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew
rate limiting on outputs and input noise filtering. Pin names used by this mode are SCL
and SDA.

Figure 79. Two-wire Mode Operation, Simplified Diagram

Figure 79 shows two USI units operating in Two-wire mode, one as Master and one as
Slave. It is only the physical layer that is shown since the system operation is highly
dependent of the communication scheme used. The main differences between the Mas-
ter and Slave operation at this level, is the serial clock generation which is always done
by the Master, and only the Slave uses the clock control unit. Clock generation must be
implemented in software, but the shift operation is done automatically by both devices.
Note that only clocking on negative edge for shifting data is of practical use in this mode.
The slave can insert wait states at start or end of transfer by forcing the SCL clock low.
This means that the Master must always check if the SCL line was actually released
after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate
that the transfer is completed. The clock is generated by the master by toggling the
USCK pin via the PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the
TWI-bus, must be implemented to control the data flow.

MASTER

SLAVE

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SDA

SCL

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Two-wire Clock
Control Unit

HOLD
SCL

PORTxn

SDA

SCL

VCC
179
2573G–AVR–07/09

ATmega165/V
Start Condition Detector The start condition detector is shown in Figure 81. The SDA line is delayed (in the range
of 50 to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is
only enabled in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the
processor from the Power-down sleep mode. However, the protocol used might have
restrictions on the SCL hold time. Therefore, when using this feature in this case the
Oscillator start-up time set by the CKSEL Fuses (see “Clock Systems and their Distribu-
tion” on page 23) must also be taken into the consideration. Refer to the USISIF bit
description on page 182 for further details.

Clock speed considerations. Maximum frequency for SCL and SCK is fCK /4. This is also the maximum data transmit
and receieve rate in both two- and three-wire mode. In two-wire slave mode the Two-
wire Clock Control Unit will hold the SCL low until the slave is ready to receive more
data. This may reduce the actual data rate in two-wire mode.

Alternative USI Usage When the USI unit is not used for serial communication, it can be set up to do alternative
tasks due to its flexible design.

Half-duplex Asynchronous
Data Transfer

By utilizing the Shift Register in Three-wire mode, it is possible to implement a more
compact and higher performance UART than by software only.

4-bit Counter The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note
that if the counter is clocked externally, both clock edges will generate an increment.

12-bit Timer/Counter Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit
counter.

Edge Triggered External
Interrupt

By setting the counter to maximum value (F) it can function as an additional external
interrupt. The Overflow Flag and Interrupt Enable bit are then used for the external inter-
rupt. This feature is selected by the USICS1 bit.

Software Interrupt The counter overflow interrupt can be used as a software interrupt triggered by a clock
strobe.

USI Register
Descriptions

USI Data Register – USIDR

The USI uses no buffering of the Serial Register, i.e., when accessing the Data Register
(USIDR) the Serial Register is accessed directly. If a serial clock occurs at the same
cycle the register is written, the register will contain the value written and no shift is per-
formed. A (left) shift operation is performed depending of the USICS1..0 bits setting. The
shift operation can be controlled by an external clock edge, by a Timer/Counter0 Com-
pare Match, or directly by software using the USICLK strobe bit. Note that even when no
wire mode is selected (USIWM1..0 = 0) both the external data input (DI/SDA) and the
external clock input (USCK/SCL) can still be used by the Shift Register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the out-
put latch to the most significant bit (bit 7) of the Data Register. The output latch is open

Bit 7 6 5 4 3 2 1 0

MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
181
2573G–AVR–07/09

ATmega165/V
Reading the Fuse and Lock
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 252 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits
can now be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be
read at DATA (“0” means programmed).

6. Set OE to “1”.

Figure 116. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 252 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at
DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 252 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
257
2573G–AVR–07/09

ATmega165/V
Programming Command
Register

The Programming Command Register is a 15-bit register. This register is used to seri-
ally shift in programming commands, and to serially shift out the result of the previous
command, if any. The JTAG Programming Instruction Set is shown in Table 115. The
state sequence when shifting in the programming commands is illustrated in Figure 125.

Figure 124. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits
270
2573G–AVR–07/09

ATmega165/V
Programming the Flash Before programming the Flash a Chip Erase must be performed, see “Performing Chip
Erase” on page 275.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH
(refer to Table 112 on page 259).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD
(refer to Table 105 on page 249) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte,
starting with the LSB of the first instruction in the page and ending with the MSB
of the last instruction in the page. Use Update-DR to copy the contents of the
Flash Data Byte Register into the Flash page location and to auto-increment the
Program Counter before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH
(refer to Table 112 on page 259).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD
(refer to Table 105 on page 249) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page
(or Flash), starting with the LSB of the first instruction in the page (Flash) and
276
2573G–AVR–07/09

ATmega165/V
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA

at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10mA
at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QNF/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOH, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

ICC

Power Supply Current
(All bits set in the “Power
Reduction Register” on
page 34)

Active 1MHz, VCC = 2V 0.44 mA

Active 4MHz, VCC = 3V 2.5 mA

Active 8MHz, VCC = 5V 9.5 mA

Idle 1MHz, VCC = 2V 0.2 mA

Idle 4MHz, VCC = 3V 0.8 mA

Idle 8MHz, VCC = 5V 3.3 mA

Power-down mode
WDT enabled, VCC = 3V <8 10 µA

WDT disabled, VCC = 3V <1 2 µA

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
<10 40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40⋅C to 85⋅C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min. Typ. Max. Units
280
2573G–AVR–07/09

ATmega165/V
Idle Supply Current Figure 137. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 138. Idle Supply Current vs. Frequency (1 - 20 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY
0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

IDLE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

5.5 V

5.0 V

4.5 V

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

4.0 V

3.3 V

2.7 V

1.8 V
288
2573G–AVR–07/09

ATmega165/V
Figure 141. Idle Supply Current vs. VCC (32 kHz Crystal)

Supply Current of I/O
modules

The tables and formulas below can be used to calculate the additional current consump-
tion for the different I/O modules in Active and Idle mode. The enabling or disabling of
the I/O modules are controlled by the Power Reduction Register. See “Power Reduction
Register” on page 34 for details.

It is possible to calculate the typical current consumption based on the numbers from
Table 121 for other VCC and frequency settings than listed in Table 120.

IDLE SUPPLY CURRENT vs. VCC

32 kHz Crystal

25 ˚C

0

5

10

15

20

25

30

35

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

Table 120.
Additional Current Consumption for the different I/O modules (absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRADC 18 µA 116 µA 495 µA

PRUSART0 11µA 79 µA 313 µA

PRSPI 10 µA 72 µA 283 µA

PRTIM1 19 µA 117 µA 481 µA

Table 121.
Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption
compared to Active with external
clock
(see Figure 132 and Figure 133)

Additional Current consumption
compared to Idle with external
clock
(see Figure 137 and Figure 138)

PRADC 5.6% 18.7%

PRUSART0 3.7% 12.4%

PRSPI 3.2% 10.8%

PRTIM1 5.6% 18.6%
290
2573G–AVR–07/09

ATmega165/V
Figure 149. Standby Supply Current vs. VCC (4 MHz Resonator, Watchdog Timer
Disabled)

Figure 150. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

295
2573G–AVR–07/09

ATmega165/V
(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) Reserved – – – – – – – –

(0xBC) Reserved – – – – – – – –

(0xBB) Reserved – – – – – – – –

(0xBA) USIDR USI Data Register 181

(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 182

(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 183

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB 134

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 133

(0xB2) TCNT2 Timer/Counter2 (8-bit) 133

(0xB1) Reserved – – – – – – – –

(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 131

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 117

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 117

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 117

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 117

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 118

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 118

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 117

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 117

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 116

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 115

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 113

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 188

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 205

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
320
2573G–AVR–07/09

ATmega165/V
Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
323
2573G–AVR–07/09

ATmega165/V
ADC Characteristics – Preliminary Data... 284

ATmega165 Typical Characteristics .. 285
Active Supply Current ... 285
Idle Supply Current ... 288
Supply Current of I/O modules ... 290
Power-down Supply Current... 291
Power-save Supply Current.. 292
Standby Supply Current.. 293
Pin Pull-up .. 297
Pin Driver Strength ... 300
Pin Thresholds and hysteresis.. 306
BOD Thresholds and Analog Comparator Offset ... 309
Internal Oscillator Speed .. 312
Current Consumption of Peripheral Units ... 314
Current Consumption in Reset and Reset Pulsewidth...................................... 317

Register Summary ... 319

Instruction Set Summary .. 323

Ordering Information... 326

Packaging Information .. 327
64A ... 327
64M1... 328

Errata .. 329
ATmega165 Rev A ... 329

Datasheet Revision History .. 330
Changes from Rev. 2573F-08/06 to Rev. 2573G-07/09................................... 330
Changes from Rev. 2573E-07/06 to Rev. 2573F-08/06 330
Changes from Rev. 2573D-03/06 to Rev. 2573E-07/06................................... 330
Changes from Rev. 2573C-03/06 to Rev. 2573D-03/06................................... 330
Changes from Rev. 2573B-03/05 to Rev. 2573C-02/06................................... 330
Changes from Rev. 2573A-06/04 to Rev. 2573B-03/05 330

Table of Contents ... i
v
2573G–AVR–07/09

