
Zilog - Z8F1621VN020EC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f1621vn020ec

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f1621vn020ec-4427114
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

11
Figure 5. Z8 Encore! XP 64K Series Flash Microcontrollers in 64-Pin Low-Profile Quad Flat Package
(LQFP)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
PD7 / RCOUT
VSS
PE5
PE6
PE7
VDD

PA0 / T0IN
PD2

PC2 / SS
RESET

VDD
PE4
PE3

VSS
PE2

49 32

PG3PE1
VDDPE0

P
A

1
/ T

0O
U

T
P

A
2

/ D
E

0
P

A
3

/ C
TS

0
V

S
S

V
D

D
P

F7
PC

5
/ M

IS
O

P
D

4
/ R

XD
1

P
D

5
/ T

X
D

1
P

C
4

/ M
O

S
I

V
S

S

P
B

1
/ A

N
A

1
P

B
0

/ A
N

A
0

A
V

D
D

PH
0

/ A
N

A8
PH

1
/ A

N
A9

P
B

4
/ A

N
A

4

P
B

7
/ A

N
A

7
P

B
6

/ A
N

A
6

P
B

5
/ A

N
A

5

P
B

3
/ A

N
A

3

48

1

PC7 / T2OUT
PC6 / T2IN
DBG
PC1 / T1OUT
PC0 / T1IN17

P
B

2
/ A

N
A

2

V
R

E
F

P
H

3
/ A

N
A1

1
P

H
2

/ A
N

A1
0

A
V

S
S

16

VSS
PD1 / T3OUT

PD0 / T3IN
 XOUT

XIN 64

P
D

3
/ D

E1

V
D

D

P
A

4
/ R

X
D

0
P

A
5

/ T
X

D
0

P
A

6
/ S

C
L

33

V
S

S

56

40

25

8

PS019919-1207 Signal and Pin Descriptions

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

13
Figure 7. Z8 Encore! XP 64K Series Flash Microcontrollers in 80-Pin Quad Flat Package (QFP)

PA7 / SDA
PD6 / CTS1
PC3 / SCK
PD7 / RCOUT
PG0
VSS
PG1
PG2
PE5

PA0 / T0IN
PD2

PC2 / SS
PF6

RESET
VDD
PF5
PF4
PF3

1 64

PE6PE4
PE7PE3

P
A

1
/ T

0O
U

T
P

A
2

/ D
E

0
P

A
3

/ C
TS

0
V

S
S

V
D

D
P

F7
PC

5
/ M

IS
O

P
D

4
/ R

XD
1

P
D

5
/ T

X
D

1
P

C
4

/ M
O

S
I

V
S

S

P
B1

 /
A

N
A

1
P

B0
 /

A
N

A
0

A
V

D
D

P
H

0
/ A

N
A

8

P
B4

 /
A

N
A

4

P
B7

 /
A

N
A

7
P

B6
 /

A
N

A
6

P
B5

 /
A

N
A

5

P
B3

 /
A

N
A

3

80

25

VDD
PG3
PG4
PG5
PG6

P
B

2
/ A

N
A

2

V
R

EF
P

H
3

/ A
N

A
11

P
H

2
/ A

N
A

10

A
V

S
S

VSS
PE2
PE1
PE0
VSS

P
D

3
/ D

E1

V
D

D

P
A

4
/ R

X
D

0
P

A
5

/ T
X

D
0

P
A

6
/ S

C
L

V
S

S

P
H

1
/ A

N
A

9

65

VDD

40

PF2
PG7PF1
PC7 / T2OUT
PC6 / T2IN
DBG
PC1 / T1OUT
PC0 / T1IN

PF0
VDD

PD1 / T3OUT
PD0 / T3IN

 XOUT
VSS41XIN 24

5

10

15

20

30 35

45

50

55

60

7075
PS019919-1207 Signal and Pin Descriptions

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

28
Control Register
Summary
Timer 0 High Byte
T0H (F00H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 0 current count value [15:8]

Timer 0 Low Byte
T0L (F01H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 0 current count value [7:0]

Timer 0 Reload High Byte
T0RH (F02H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 0 reload value [15:8]

Timer 0 Reload Low Byte
T0RL (HF03 - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 0 reload value [7:0]

Timer 0 PWM High Byte
T0PWMH (F04H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 0 PWM value [15:8]

Timer 0 Control 0
T0CTL0 (F06H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Reserved
Cascade Timer
0 = Timer 0 Input signal is GPIO pin
1 = Timer 0 Input signal is Timer 3
out
Reserved

Timer 0 Control 1
T0CTL1 (F07H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer Mode
 000 = One-Shot mode
 001 = CONTINUOUS mode
 010 = COUNTER mode
 011 = PWM mode
 100 = CAPTURE mode
 101 = COMPARE mode
 110 = GATED mode
 111 = Capture/COMPARE mode

Prescale Value
 000 = Divide by 1
 001 = Divide by 2
 010 = Divide by 4
 011 = Divide by 8
 100 = Divide by 16
 101 = Divide by 32
 110 = Divide by 64
111 = Divide by 128

Timer Input/Output Polarity
 Operation of this bit is a function of
 the current operating mode of the
timer

Timer Enable
 0 = Timer is disabled
 1 = Timer is enabled

Timer 1 High Byte
T1H (F08H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 current count value [15:8]

Timer 1 Low Byte
T1L (F09H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 current count value [7:0]

Timer 1 Reload High Byte
T1RH (F0AH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 reload value [15:8]

Timer 1 Reload Low Byte
T1RL (F0BH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Timer 1 reload value [7:0]
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

43
Port C Control
PCCTL (FD9H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Control[7:0]
Provides Access to Port Sub-
Registers

Port C Input Data
PCIN (FDAH - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Input Data [7:0]

Port C Output Data
PCOUT (FDBH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Output Data [7:0]

Port D Address
PDADDR (FDCH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function

Port D Control
PDCTL (FDDH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Control[7:0]
Provides Access to Port Sub-
Registers

Port D Input Data
PDIN (FDE H- Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Input Data [7:0]

Port D Output Data
PDOUT (FDFH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Output Data [7:0]

Port E Address
PEADDR (FE0H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function

Port E Control
PECTL (FE1H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Control[7:0]
 Provides Access to Port Sub-
Registers

Port E Input Data
PEIN (FE2H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Input Data [7:0]

Port E Output Data
PEOUT (FE3H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Output Data [7:0]

Port F Address
PFADDR (FE4H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port F Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

61
GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data.
Table 13 lists these Port registers. Use the Port A–H Address and Control registers
together to provide access to sub-registers for Port configuration and control.

Port A–H Address Registers
The Port A–H Address registers select the GPIO Port functionality accessible through the
Port A–H Control registers. The Port A–H Address and Control registers combine to pro-
vide access to all GPIO Port control (Table 14).

Table 13. GPIO Port Registers and Sub-Registers

Port Register Mnemonic Port Register Name

PxADDR Port A–H Address Register
(Selects sub-registers)

PxCTL Port A–H Control Register
(Provides access to sub-registers)

PxIN Port A–H Input Data Register

PxOUT Port A–H Output Data Register

Port Sub-Register Mnemonic Port Register Name

PxDD Data Direction

PxAF Alternate Function

PxOC Output Control (Open-Drain)

PxDD High Drive Enable

PxSMRE Stop Mode Recovery Source
Enable

Table 14. Port A–H GPIO Address Registers (PxADDR)

BITS 7 6 5 4 3 2 1 0

FIELD PADDR[7:0]

RESET 00H

R/W R/W

ADDR FD0H, FD4H, FD8H, FDCH, FE0H, FE4H, FE8H, FECH
PS019919-1207 General-Purpose I/O

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

108
Receiving Data using the Interrupt-Driven Method
 The UART Receiver interrupt indicates the availability of new data (as well as error con-
ditions). Follow the steps below to configure the UART receiver for interrupt-driven oper-
ation:

1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud
rate.

2. Enable the UART pin functions by configuring the associated GPIO Port pins for
alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set
the desired priority.

5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.

6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode
functions, if desired.
– Set the MULTIPROCESSOR Mode Select (MPEN) to Enable

MULTIPROCESSOR mode.
– Set the MULTIPROCESSOR Mode Bits, MPMD[1:0], to select the desired

address matching scheme.
– Configure the UART to interrupt on received data and errors or errors only

(interrupt on errors only is unlikely to be useful for Z8 Encore! devices without a
DMA block).

7. Write the device address to the Address Compare Register (automatic multiprocessor
modes only).

8. Write to the UART Control 0 register to:
– Set the receive enable bit (REN) to enable the UART for data reception.
– Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and

select either even or odd parity.

9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART
Receiver interrupt is detected, the associated interrupt service routine performs the follow-
ing:

1. Check the UART Status 0 register to determine the source of the interrupt - error,
break, or received data.

2. If the interrupt was caused by data available, read the data from the UART Receive
Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may
be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

131
During an SPI transfer, data is sent and received simultaneously by both the Master and
the Slave SPI devices. Separate signals are required for data and the serial clock. When an
SPI transfer occurs, a multi-bit (typically 8-bit) character is shifted out one data pin and an
multi-bit character is simultaneously shifted in on a second data pin. An 8-bit shift register
in the Master and another 8-bit shift register in the Slave are connected as a circular buffer.
The SPI shift register is single-buffered in the transmit and receive directions. New data to
be transmitted cannot be written into the shift register until the previous transmission is
complete and receive data (if valid) has been read.

SPI Signals
The four basic SPI signals are:

• Master-In/Slave-Out

• Master-Out/Slave-In

• Serial Clock

• Slave Select

Each signal is described in both Master and Slave modes.

Master-In/Slave-Out
The Master-In/Slave-Out (MISO) pin is configured as an input in a Master device and as
an output in a Slave device. It is one of the two lines that transfer serial data, with the most
significant bit sent first. The MISO pin of a Slave device is placed in a high-impedance
state if the Slave is not selected. When the SPI is not enabled, this signal is in a high-
impedance state.

Master-Out/Slave-In
The Master-Out/Slave-In (MOSI) pin is configured as an output in a Master device and as
an input in a Slave device. It is one of the two lines that transfer serial data, with the most
significant bit sent first. When the SPI is not enabled, this signal is in a high-impedance
state.

Serial Clock
The Serial Clock (SCK) synchronizes data movement both in and out of the device
through its MOSI and MISO pins. In MASTER mode, the SPI’s Baud Rate Generator cre-
ates the serial clock. The Master drives the serial clock out its own SCK pin to the Slave’s
SCK pin. When the SPI is configured as a Slave, the SCK pin is an input and the clock sig-
nal from the Master synchronizes the data transfer between the Master and Slave devices.
Slave devices ignore the SCK signal, unless the SS pin is asserted. When configured as a
slave, the SPI block requires a minimum SCK period of greater than or equal to 8 times
the system (XIN) clock period.
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

133
Transfer Format PHASE Equals Zero
Figure 25 displays the timing diagram for an SPI transfer in which PHASE is cleared to 0.
The two SCK waveforms show polarity with CLKPOL reset to 0 and with CLKPOL set to
one. The diagram may be interpreted as either a Master or Slave timing diagram because
the SCK Master-In/Slave-Out (MISO) and Master-Out/Slave-In (MOSI) pins are directly
connected between the Master and the Slave.

Figure 25. SPI Timing When PHASE is 0

Transfer Format PHASE Equals One
Figure 26 on page 134 displays the timing diagram for an SPI transfer in which PHASE is
one. Two waveforms are depicted for SCK, one for CLKPOL reset to 0 and another for
CLKPOL set to 1.

SCK
(CLKPOL = 0)

SCK
(CLKPOL = 1)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MOSI

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MISO

Input Sample Time

SS
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

142
SPI Baud Rate High and Low Byte Registers
The SPI Baud Rate High and Low Byte registers (Table 68 and Table 69) combine to form
a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator.

When configured as a general purpose timer, the SPI BRG interrupt interval is calculated
using the following equation:

BRH = SPI Baud Rate High Byte
Most significant byte, BRG[15:8], of the SPI Baud Rate Generator’s reload value.

BRL = SPI Baud Rate Low Byte
Least significant byte, BRG[7:0], of the SPI Baud Rate Generator’s reload value.

Table 68. SPI Baud Rate High Byte Register (SPIBRH)

BITS 7 6 5 4 3 2 1 0

FIELD BRH

RESET 1

R/W R/W

ADDR F66H

Table 69. SPI Baud Rate Low Byte Register (SPIBRL)

BITS 7 6 5 4 3 2 1 0

FIELD BRL

RESET 1

R/W R/W

ADDR F67H

SPI BRG Interrupt Interval (s) System Clock Period (s) BRG[15:0]×=
PS019919-1207 Serial Peripheral Interface

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

150
13. The I2C Controller shifts the data out of using the SDA signal. After the first bit is
sent, the Transmit interrupt is asserted.

14. If more bytes remain to be sent, return to step 9.

15. Software responds by setting the STOP bit of the I2C Control register (or START bit
to initiate a new transaction). In the STOP case, software clears the TXI bit of the I2C
Control register at the same time.

16. The I2C Controller completes transmission of the data on the SDA signal.

17. The slave may either Acknowledge or Not Acknowledge the last byte. Because either
the STOP or START bit is already set, the NCKI interrupt does not occur.

18. The I2C Controller sends the STOP (or RESTART) condition to the I2C bus. The
STOP or START bit is cleared.

Address Only Transaction with a 10-bit Address
In the situation where software wants to determine if a slave with a 10-bit address is
responding without sending or receiving data, a transaction can be done which only con-
sists of an address phase. Figure 30 displays this ‘address only’ transaction to determine if
a slave with 10-bit address will acknowledge. As an example, this transaction can be used
after a ‘write’ has been done to a EEPROM to determine when the EEPROM completes its
internal write operation and is once again responding to I2C transactions. If the slave does
not Acknowledge the transaction can be repeated until the slave is able to Acknowledge.

Figure 30. 10-Bit Address Only Transaction Format

Follow the steps below for an address only transaction to a 10-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts, because the I2C Data register is empty (TDRE = 1)

4. Software responds to the TDRE interrupt by writing the first slave address byte. The
least-significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

S Slave Address
1st 7 bits W = 0 A/A Slave Address

2nd Byte A/A P
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

152
The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
read/write control bit (=0). The transmit operation is carried out in the same manner as 7-
bit addressing.

Follow the steps below for a transmit operation on a 10-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE interrupt by writing the first slave address byte to the
I2C Data register. The least-significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is
asserted.

9. Software responds by writing the second byte of address into the contents of the I2C
Data register.

10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA
signal.

11. If the I2C slave acknowledges the first address byte by pulling the SDA signal low
during the next high period of SCL, the I2C Controller sets the ACK bit in the I2C
Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I2C Controller sets the
NCKI bit and clears the ACK bit in the I2C Status register. Software responds to the
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and
NCKI bits. The transaction is complete (ignore the following steps).

12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

13. The I2C Controller shifts the second address byte out the SDA signal. After the first
bit has been sent, the Transmit interrupt is asserted.

14. Software responds by writing a data byte to the I2C Data register.

15. The I2C Controller completes shifting the contents of the shift register on the SDA
signal.
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

154
4. The I2C Controller sends the START condition.

5. The I2C Controller shifts the address and read bit out the SDA signal.

6. If the I2C slave acknowledges the address by pulling the SDA signal Low during the
next high period of SCL, the I2C Controller sets the ACK bit in the I2C Status register.
Continue with step 7.

If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is
set in the Status register, ACK bit is cleared). Software responds to the Not
Acknowledge interrupt by setting the STOP bit and clearing the TXI bit. The I2C
Controller sends the STOP condition on the bus and clears the STOP and NCKI bits.
The transaction is complete (ignore the following steps).

7. The I2C Controller shifts in the byte of data from the I2C slave on the SDA signal. The
I2C Controller sends a Not Acknowledge to the I2C slave if the NAK bit is set (last
byte), else it sends an Acknowledge.

8. The I2C Controller asserts the Receive interrupt (RDRF bit set in the Status register).

9. Software responds by reading the I2C Data register which clears the RDRF bit. If there
is only one more byte to receive, set the NAK bit of the I2C Control register.

10. If there are more bytes to transfer, return to step 7.

11. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I2C
Controller.

12. Software responds by setting the STOP bit of the I2C Control register.

13. A STOP condition is sent to the I2C slave, the STOP and NCKI bits are cleared.

Read Transaction with a 10-Bit Address
Figure 33 displays the read transaction format for a 10-bit addressed slave. The shaded
regions indicate data transferred from the I2C Controller to slaves and unshaded regions
indicate data transferred from the slaves to the I2C Controller.

Figure 33. Receive Data Format for a 10-Bit Addressed Slave

The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
write control bit.

S Slave Address
1st 7 bits W=0 A Slave Address

2nd Byte A S Slave Address
1st 7 bits R=1 A Data A Data A P
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

166
Configuring DMA0 and DMA1 for Data Transfer
Follow the steps below to configure and enable DMA0 or DMA1:

1. Write to the DMAx I/O Address register to set the Register File address identifying the
on-chip peripheral control register. The upper nibble of the 12-bit address for on-chip
peripheral control registers is always FH. The full address is {FH, DMAx_IO[7:0]}.

2. Determine the 12-bit Start and End Register File addresses. The 12-bit Start Address
is given by {DMAx_H[3:0], DMA_START[7:0]}. The 12-bit End Address is given by
{DMAx_H[7:4], DMA_END[7:0]}.

3. Write the Start and End Register File address high nibbles to the DMAx End/Start
Address High Nibble register.

4. Write the lower byte of the Start Address to the DMAx Start/Current Address register.

5. Write the lower byte of the End Address to the DMAx End Address register.

6. Write to the DMAx Control register to complete the following:
– Select loop or single-pass mode operation
– Select the data transfer direction (either from the Register File RAM to the on-

chip peripheral control register; or from the on-chip peripheral control register to
the Register File RAM)

– Enable the DMAx interrupt request, if desired
– Select Word or Byte mode
– Select the DMAx request trigger
– Enable the DMAx channel

DMA_ADC Operation
DMA_ADC transfers data from the ADC to the Register File. The sequence of operations
in a DMA_ADC data transfer is:

1. ADC completes conversion on the current ADC input channel and signals the DMA
controller that two-bytes of ADC data are ready for transfer.

2. DMA_ADC requests control of the system bus (address and data) from the eZ8 CPU.

3. After the eZ8 CPU acknowledges the bus request, DMA_ADC transfers the two-byte
ADC output value to the Register File and then returns system bus control back to the
eZ8 CPU.

4. If the current ADC Analog Input is the highest numbered input to be converted:
– DMA_ADC resets the ADC Analog Input number to 0 and initiates data

conversion on ADC Analog Input 0.
– If configured to generate an interrupt, DMA_ADC sends an interrupt request to

the Interrupt Controller
PS019919-1207 Direct Memory Access Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

169
DMAx_IO[7:0]}. When the DMA is configured for two-byte word transfers, the
DMAx I/O Address register must contain an even numbered address.

DMA_IO—DMA on-chip peripheral control register address
This byte sets the low byte of the on-chip peripheral control register address on Register
File Page FH (addresses F00H to FFFH).

DMAx Address High Nibble Register
The DMAx Address High register (Table 79) specifies the upper four bits of address for
the Start/Current and End Addresses of DMAx.

DMA_END_H—DMAx End Address High Nibble
These bits, used with the DMAx End Address Low register, form a 12-bit End Address.
The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.

DMA_START_H—DMAx Start/Current Address High Nibble
These bits, used with the DMAx Start/Current Address Low register, form a 12-bit
Start/Current Address. The full 12-bit address is given by {DMA_START_H[3:0],
DMA_START[7:0]}.

Table 78. DMAx I/O Address Register (DMAxIO)

BITS 7 6 5 4 3 2 1 0

FIELD DMA_IO

RESET X

R/W R/W

ADDR FB1H, FB9H

Table 79. DMAx Address High Nibble Register (DMAxH)

BITS 7 6 5 4 3 2 1 0

FIELD DMA_END_H DMA_START_H

RESET X

R/W R/W

ADDR FB2H, FBAH
PS019919-1207 Direct Memory Access Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

190
Flash Control Register Definitions

Flash Control Register
The Flash Control register (Table 92) unlocks the Flash Controller for programming and
erase operations, or to select the Flash Sector Protect register.

The Write-only Flash Control Register shares its Register File address with the Read-only
Flash Status Register.

FCMD—Flash Command
73H = First unlock command.
8CH = Second unlock command.
95H = Page erase command.
63H = Mass erase command
5EH = Flash Sector Protect register select.

* All other commands, or any command out of sequence, lock the Flash Controller.

Flash Status Register
The Flash Status register (Table 93) indicates the current state of the Flash Controller. This
register can be read at any time. The Read-only Flash Status Register shares its Register
File address with the Write-only Flash Control Register.

Table 92. Flash Control Register (FCTL)

BITS 7 6 5 4 3 2 1 0

FIELD FCMD

RESET 0

R/W W

ADDR FF8H

Table 93. Flash Status Register (FSTAT)

BITS 7 6 5 4 3 2 1 0

FIELD Reserved FSTAT

RESET 0

R/W R

ADDR FF8H
PS019919-1207 Flash Memory

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

198
PS019919-1207 Option Bits

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

200
Operation

OCD Interface
The On-Chip Debugger uses the DBG pin for communication with an external host. This
one-pin interface is a bi-directional open-drain interface that transmits and receives data.
Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously.
The serial data on the DBG pin is sent using the standard asynchronous data format
defined in RS-232. This pin can interface the 64K Series products to the serial port of a
host PC using minimal external hardware.Two different methods for connecting the DBG
pin to an RS-232 interface are depicted in Figure 37 and Figure 38 on page 201.

For operation of the On-Chip Debugger, all power pins (VDD and AVDD) must
be supplied with power, and all ground pins (VSS and AVSS) must be properly
grounded.
The DBG pin is open-drain and must always be connected to VDD through an
external pull-up resistor to ensure proper operation.

Figure 37. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (1)

Caution:

RS-232 TX

RS-232 RX

RS-232
Transceiver

VDD

DBG Pin

10 kΩ
Diode
PS019919-1207 On-Chip Debugger

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

204
finish the interrupt service routine it may be in and return the BRK instruction. When the
CPU returns to the BRK instruction it was previously looping on, it automatically sets the
DBGMODE bit and enter DEBUG mode.

Software detects that the majority of the OCD commands are still disabled when the
eZ8TM CPU is looping on a BRK instruction. The eZ8 CPU must be stopped and the part
must be in DEBUG mode before these commands can be issued.

Breakpoints in Flash Memory
The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a
byte in Flash memory. To implement a Breakpoint, write 00H to the desired address, over-
writing the current instruction. To remove a Breakpoint, the corresponding page of Flash
memory must be erased and reprogrammed with the original data.

On-Chip Debugger Commands

The host communicates to the On-Chip Debugger by sending OCD commands using the
DBG interface. During normal operation, only a subset of the OCD commands are avail-
able. In DEBUG mode, all OCD commands become available unless the user code and
control registers are protected by programming the Read Protect Option Bit (RP). The
Read Protect Option Bit prevents the code in memory from being read out of the 64K
Series products. When this option is enabled, several of the OCD commands are disabled.
Table 101 contains a summary of the On-Chip Debugger commands. Each OCD com-
mand is described in detail in the bulleted list following Table 101.
Table 101 indicates those commands that operate when the device is not in DEBUG mode
(normal operation) and those commands that are disabled by programming the Read Pro-
tect Option Bit.

Table 101. On-Chip Debugger Commands

Debug Command
Command
Byte

Enabled when
NOT in DEBUG
mode?

Disabled by
Read Protect Option Bit

Read OCD Revision 00H Yes -

Read OCD Status
Register

02H Yes -

Read Runtime Counter 03H - -

Write OCD Control
Register

04H Yes Cannot clear DBGMODE bit

Read OCD Control
Register

05H Yes -
PS019919-1207 On-Chip Debugger

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

238
UART Timing
Figure 56 and Table 120 provide timing information for UART pins for the case where the
Clear To Send input pin (CTS) is used for flow control. In this example, it is assumed that
the Driver Enable polarity has been configured to be Active Low and is represented here
by DE. The CTS to DE assertion delay (T1) assumes the UART Transmit Data register has
been loaded with data prior to CTS assertion.

Figure 56. UART Timing with CTS

Table 120. UART Timing with CTS

Parameter Abbreviation

Delay (ns)

Minimum Maximum

T1 CTS Fall to DE Assertion Delay 2 * XIN period 2 * XIN period
+ 1 Bit period

T2 DE Assertion to TXD Falling Edge (Start)
Delay

1 Bit period 1 Bit period +
1 * XIN period

T3 End of Stop Bit(s) to DE Deassertion Delay 1 * XIN period 2 * XIN period

T1

T2

TXD
(Output)

DE
(Output)

CTS
(Input)

Start Bit 0

T3

Bit 7 Parity StopBit 1

End of
Stop Bit(s)
PS019919-1207 Electrical Characteristics

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

247
BSWAP dst Bit Swap

CCF — Complement Carry Flag

RCF — Reset Carry Flag

SCF — Set Carry Flag

TCM dst, src Test Complement Under Mask

TCMX dst, src Test Complement Under Mask using Extended Addressing

TM dst, src Test Under Mask

TMX dst, src Test Under Mask using Extended Addressing

Table 127. Block Transfer Instructions

Mnemonic Operands Instruction

LDCI dst, src Load Constant to/from Program Memory and Auto-
Increment Addresses

LDEI dst, src Load External Data to/from Data Memory and Auto-
Increment Addresses

Table 128. CPU Control Instructions

Mnemonic Operands Instruction

ATM — Atomic Execution

CCF — Complement Carry Flag

DI — Disable Interrupts

EI — Enable Interrupts

HALT — HALT Mode

NOP — No Operation

RCF — Reset Carry Flag

SCF — Set Carry Flag

SRP src Set Register Pointer

Table 126. Bit Manipulation Instructions (Continued)

Mnemonic Operands Instruction
PS019919-1207 eZ8™ CPU Instruction Set

