
Zilog - Z8F1621VN020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor eZ8

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 31

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f1621vn020ec00tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f1621vn020ec00tr-4427180
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

xi
General-Purpose I/O Port Output Timing . 233
On-Chip Debugger Timing . 234
SPI Master Mode Timing . 235
SPI Slave Mode Timing . 236
I2C Timing . 237
UART Timing . 238

eZ8™ CPU Instruction Set . 241
Assembly Language Programming Introduction . 241
Assembly Language Syntax . 242
eZ8 CPU Instruction Notation . 242
Condition Codes . 244
eZ8 CPU Instruction Classes . 245
eZ8 CPU Instruction Summary . 250
Flags Register . 259

Opcode Maps . 261

Packaging . 265

Ordering Information . 270
Part Number Suffix Designations . 275

Index . 277

Customer Support . 287
PS019919-1207 Table of Contents

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

xiii
Braces
The curly braces, { }, indicate a single register or bus created by concatenating some
combination of smaller registers, buses, or individual bits.

• Example: The 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit
hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer
(RP) and Working Register R1. 0H is the most-significant nibble (4-bit value) of the
12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses
The parentheses, (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address contained in the
Working Register R1.

Parentheses/Bracket Combinations
The parentheses, (), indicate an indirect register address lookup and the square brackets,
[], indicate a register or bus.

• Example: Assume PC[15:0] contains the value 1234h. (PC[15:0]) then refers to the
contents of the memory location at address 1234h.

Use of the Words Set, Reset and Clear
The word set implies that a register bit or a condition contains a logical 1. The words reset
or clear imply that a register bit or a condition contains a logical 0. When either of these
terms is followed by a number, the word logical may not be included; however, it is
implied.

Notation for Bits and Similar Registers
A field of bits within a register is designated as: Register[n:n].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.

Use of the Terms LSB, MSB, lsb, and msb
In this document, the terms LSB and MSB, when appearing in upper case, mean least
significant byte and most significant byte, respectively. The lowercase forms, lsb and msb,
mean least significant bit and most significant bit, respectively.

Use of Initial Uppercase Letters
Initial uppercase letters designate settings and conditions in general text.

• Example 1: The receiver forces the SCL line to Low.

• Example 2: The Master can generate a Stop condition to abort the transfer.
PS019919-1207 Manual Objectives

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

32
UART0 Control 1
U0CTL1 (F43H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Infrared Encoder/Decoder Enable
0 = Infrared endec is disabled
1 = Infrared endec is enabled

Received Data Interrupt Enable
0 = Received data and errors
generate
 interrupt requests
1 = Only errors generate interrupt
 requests. Received data does
not.

Baud Rate Registers Control
Refer to UART chapter for operation

Driver Enable Polarity
0 = DE signal is active High
1 = DE signal is active Low

Multiprocessor Bit Transmit
0 = Send a 0 as the multiprocessor
bit
1 = Send a 1 as the multiprocessor
bit

Multiprocessor Mode [0]
See Multiprocessor Mode [1] below

Multiprocessor (9-bit) Enable
0 = Multiprocessor mode is disabled
1 = Multiprocessor mode is enabled

Multiprocessor Mode [1]
with Multiprocess Mode bit 0:
00 = Interrupt on all received bytes
01 = Interrupt only on address bytes
10 = Interrupt on address match and
 following data
11 = Interrupt on data following an
 address match

UART0 Status 1
U0STAT1 (F44H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Mulitprocessor Receive
Returns value of last multiprocessor
bit

New Frame
0 = Current byte is not start of frame
1 = Current byte is start of new
frame

Reserved

UART0 Address Compare
U0ADDR (F45H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Address Compare [7:0]

UART0 Baud Rate Generator High Byte
U0BRH (F46H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor [15:8]

UART0 Baud Rate Generator Low Byte
U0BRL (F47H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

UART0 Baud Rate divisor [7:0]

UART1 Transmit Data
U1TXD (F48H - Write Only)
D7 D6 D5 D4 D3 D2 D1 D0

UART1 transmitter data byte[7:0]

UART1 Receive Data
U1RXD (F48H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

 UART receiver data byte [7:0]
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

43
Port C Control
PCCTL (FD9H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Control[7:0]
Provides Access to Port Sub-
Registers

Port C Input Data
PCIN (FDAH - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Input Data [7:0]

Port C Output Data
PCOUT (FDBH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port C Output Data [7:0]

Port D Address
PDADDR (FDCH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function

Port D Control
PDCTL (FDDH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Control[7:0]
Provides Access to Port Sub-
Registers

Port D Input Data
PDIN (FDE H- Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Input Data [7:0]

Port D Output Data
PDOUT (FDFH - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port D Output Data [7:0]

Port E Address
PEADDR (FE0H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function

Port E Control
PECTL (FE1H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Control[7:0]
 Provides Access to Port Sub-
Registers

Port E Input Data
PEIN (FE2H - Read Only)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Input Data [7:0]

Port E Output Data
PEOUT (FE3H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port E Output Data [7:0]

Port F Address
PFADDR (FE4H - Read/Write)
D7 D6 D5 D4 D3 D2 D1 D0

Port F Address[7:0]
Selects Port Sub-Registers:
00H = No function
01H = Data direction
02H = Alternate function
03H = Output control (open-drain)
04H = High drive enable
05H = Stop Mode Recovery enable
06H-FFH = No function
PS019919-1207 Control Register Summary

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

71
The following style of coding to generate software interrupts by setting bits in
the Interrupt Request registers is NOT recommended. All incoming interrupts
that are received between execution of the first LDX command and the last
LDX command are lost.

Poor coding style that can result in lost interrupt requests:
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0

To avoid missing interrupts, the following style of coding to set bits in the
Interrupt Request registers is recommended:

Good coding style that avoids lost interrupt requests:
ORX IRQ0, MASK

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the interrupt control registers
enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register
The Interrupt Request 0 (IRQ0) register (Table 24) stores the interrupt requests for both
vectored and polled interrupts. When a request is presented to the interrupt controller, the
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-
tored interrupts), the interrupt controller passes an interrupt request to the eZ8™ CPU. If
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt
Request 0 register to determine if any interrupt requests are pending

T2I—Timer 2 Interrupt Request
0 = No interrupt request is pending for Timer 2.
1 = An interrupt request from Timer 2 is awaiting service.

Table 24. Interrupt Request 0 Register (IRQ0)

BITS 7 6 5 4 3 2 1 0

FIELD T2I T1I T0I U0RXI U0TXI I2CI SPII ADCI

RESET 0

R/W R/W

ADDR FC0H

Caution:
PS019919-1207 Interrupt Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

75
T2ENL—Timer 2 Interrupt Request Enable Low Bit
T1ENL—Timer 1 Interrupt Request Enable Low Bit
T0ENL—Timer 0 Interrupt Request Enable Low Bit
U0RENL—UART 0 Receive Interrupt Request Enable Low Bit
U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit
I2CENL—I2C Interrupt Request Enable Low Bit
SPIENL—SPI Interrupt Request Enable Low Bit
ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers
The IRQ1 Enable High and Low Bit registers (see Table 31 and Table 32 on page 76) form
a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is
generated by setting bits in each register. Table 30 describes the priority control for IRQ1.

Table 29. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS 7 6 5 4 3 2 1 0

FIELD T2ENL T1ENL T0ENL U0RENL U0TENL I2CENL SPIENL ADCENL

RESET 0

R/W R/W

ADDR FC2H

Table 30. IRQ1 Enable and Priority Encoding

IRQ1ENH[x] IRQ1ENL[x] Priority Description

0 0 Disabled Disabled

0 1 Level 1 Low

1 0 Level 2 Nominal

1 1 Level 3 High

Note: where x indicates the register bits from 0 through 7.
PS019919-1207 Interrupt Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

84
2. Write to the Timer High and Low Byte registers to set the starting count value (usually
0001H), affecting only the first pass in CONTINUOUS mode. After the first timer
Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.

3. Write to the Timer Reload High and Low Byte registers to set the Reload value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer
period is given by the following equation:

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, the ONE-SHOT mode equation must be used to determine the first time-out
period.

COUNTER Mode
In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer
input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the
Timer Control 1 Register selects whether the count occurs on the rising edge or the falling
edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

The input frequency of the Timer Input signal must not exceed one-fourth the
system clock frequency.

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at
timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the
count:

1. Write to the Timer Control 1 register to:
– Disable the timer
– Configure the timer for COUNTER mode

CONTINUOUS Mode Time-Out Period (s) Reload Value Prescale×
System Clock Frequency (Hz)
--=

Caution:
PS019919-1207 Timers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

88
Follow the steps below for configuring a timer for COMPARE mode and initiating the
count:

1. Write to the Timer Control 1 register to:
– Disable the timer
– Configure the timer for COMPARE mode
– Set the prescale value
– Set the initial logic level (High or Low) for the Timer Output alternate function, if

desired

2. Write to the Timer High and Low Byte registers to set the starting count value.

3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to
the relevant interrupt registers.

5. If using the Timer Output function, configure the associated GPIO port pin for the
Timer Output alternate function.

6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time
is given by the following equation:

GATED Mode
In GATED mode, the timer counts only when the Timer Input signal is in its active state
(asserted), as determined by the TPOL bit in the Timer Control 1 register. When the Timer
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal
deassertion generated the interrupt, read the associated GPIO input value and compare to
the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the system clock. When reaching the Reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted).
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state
(from Low to High or from High to Low) at timer reset.

Follow the steps below for configuring a timer for GATED mode and initiating the count:

1. Write to the Timer Control 1 register to:
– Disable the timer
– Configure the timer for GATED mode

COMPARE Mode Time (s) Compare Value Start Value–() Prescale×
System Clock Frequency (Hz)

--=
PS019919-1207 Timers

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

99
If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and exe-
cuting code from the vector address.

WDT Reset in Normal Operation
If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the
device into the Reset state. The WDT status bit in the Watchdog Timer Control register is
set to 1. For more information on Reset, see Reset and Stop Mode Recovery on page 47.

WDT Reset in STOP Mode
If enabled in STOP mode and configured to generate a Reset when a time-out occurs and
the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both
the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1
following WDT time-out in STOP mode. Default operation is for the WDT and its RC
oscillator to be enabled during STOP mode.

WDT RC Disable in STOP Mode
To minimize power consumption in STOP Mode, the WDT and its RC oscillator can be
disabled in STOP mode. The following sequence configures the WDT to be disabled when
the 64K Series devices enter STOP Mode following execution of a STOP instruction:

1. Write 55H to the Watchdog Timer Control register (WDTCTL).

2. Write AAH to the Watchdog Timer Control register (WDTCTL).

3. Write 81H to the Watchdog Timer Control register (WDTCTL) to configure the WDT
and its oscillator to be disabled during STOP Mode. Alternatively, write 00H to the
Watchdog Timer Control register (WDTCTL) as the third step in this sequence to
reconfigure the WDT and its oscillator to be enabled during STOP mode.

This sequence only affects WDT operation in STOP mode.

Watchdog Timer Reload Unlock Sequence
Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address
unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to
allow changes to the time-out period. These write operations to the WDTCTL register
address produce no effect on the bits in the WDTCTL register. The locking mechanism
prevents spurious writes to the Reload registers. Follow the steps below to unlock the
Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

1. Write 55H to the Watchdog Timer Control register (WDTCTL).

2. Write AAH to the Watchdog Timer Control register (WDTCTL).

3. Write the Watchdog Timer Reload Upper Byte register (WDTU).

4. Write the Watchdog Timer Reload High Byte register (WDTH).
PS019919-1207 Watchdog Timer

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

111
when a byte is written to the UART Transmit Data register. The Driver Enable signal
asserts at least one UART bit period and no greater than two UART bit periods before the
Start bit is transmitted. This timing allows a setup time to enable the transceiver. The
Driver Enable signal deasserts one system clock period after the last Stop bit is transmit-
ted. This one system clock delay allows both time for data to clear the transceiver before
disabling it, as well as the ability to determine if another character follows the current
character. In the event of back to back characters (new data must be written to the Trans-
mit Data Register before the previous character is completely transmitted) the DE signal is
not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the
polarity of the Driver Enable signal.

Figure 17. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

UART Interrupts
The UART features separate interrupts for the transmitter and the receiver. In addition,
when the UART primary functionality is disabled, the Baud Rate Generator can also func-
tion as a basic timer with interrupt capability.

Transmitter Interrupts
The transmitter generates a single interrupt when the Transmit Data Register Empty bit
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-
mission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit
of data out. At this point, the Transmit Data register may be written with the next character
to send. This provides 7 bit periods of latency to load the Transmit Data register before the
Transmit shift register completes shifting the current character. Writing to the UART
Transmit Data register clears the TDRE bit to 0.

Start Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Parity

Data Field

lsb msb
Idle State

of Line

Stop Bit

1

1

0

0

1

DE

1
Baud Rate (Hz)
------------------------------------- 

  DE to Start Bit Setup Time (s) 2
Baud Rate (Hz)
------------------------------------- 

 ≤ ≤
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

116
PE—Parity Error
This bit indicates that a parity error has occurred. Reading the UART Receive Data regis-
ter clears this bit.
0 = No parity error occurred.
1 = A parity error occurred.

OE—Overrun Error
This bit indicates that an overrun error has occurred. An overrun occurs when new data is
received and the UART Receive Data register has not been read. If the RDA bit is reset to
0, then reading the UART Receive Data register clears this bit.
0 = No overrun error occurred.
1 = An overrun error occurred.

FE—Framing Error
This bit indicates that a framing error (no Stop bit following data reception) was detected.
Reading the UART Receive Data register clears this bit.
0 = No framing error occurred.
1 = A framing error occurred.

BRKD—Break Detect
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop
bit(s) are all zeros then this bit is set to 1. Reading the UART Receive Data register clears
this bit.
0 = No break occurred.
1 = A break occurred.

TDRE—Transmitter Data Register Empty
This bit indicates that the UART Transmit Data register is empty and ready for additional
data. Writing to the UART Transmit Data register resets this bit.
0 = Do not write to the UART Transmit Data register.
1 = The UART Transmit Data register is ready to receive an additional byte to be transmit-
ted.

TXE—Transmitter Empty
This bit indicates that the transmit shift register is empty and character transmission is fin-
ished.
0 = Data is currently transmitting.
1 = Transmission is complete.

CTS—CTS signal
When this bit is read it returns the level of the CTS signal.

UART Status 1 Register
This register contains multiprocessor control and status bits.
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

119
01 = The UART generates an interrupt request only on received address bytes.
10 = The UART generates an interrupt request when a received address byte matches
 the value stored in the Address Compare Register and on all successive data
 bytes until an address mismatch occurs.
11 = The UART generates an interrupt request on all received data bytes for which
 the most recent address byte matched the value in the Address Compare Register.

MPEN—MULTIPROCESSOR (9-bit) Enable
This bit is used to enable MULTIPROCESSOR (9-bit) mode.
0 = Disable MULTIPROCESSOR (9-bit) mode.
1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—MULTIPROCESSOR Bit Transmit
This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled.
0 = Send a 0 in the multiprocessor bit location of the data stream (9th bit).
1 = Send a 1 in the multiprocessor bit location of the data stream (9th bit).

DEPOL—Driver Enable Polarity
0 = DE signal is Active High.
1 = DE signal is Active Low.

BRGCTL—Baud Rate Control
This bit causes different UART behavior depending on whether the UART receiver is
enabled (REN = 1 in the UART Control 0 Register).

When the UART receiver is not enabled, this bit determines whether the Baud Rate Gener-
ator issues interrupts.
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.
Reads from the Baud Rate High and Low Byte registers return the current BRG count
value.

When the UART receiver is enabled, this bit allows reads from the Baud Rate Registers to
return the BRG count value instead of the Reload Value.
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG
 count value. Unlike the Timers, there is no mechanism to latch the High Byte
 when the Low Byte is read.

RDAIRQ—Receive Data Interrupt Enable
0 = Received data and receiver errors generates an interrupt request to the Interrupt
 Controller.
1 = Received data does not generate an interrupt request to the Interrupt Controller.
 Only receiver errors generate an interrupt request.

IREN—Infrared Encoder/Decoder Enable
0 = Infrared Encoder/Decoder is disabled. UART operates normally operation.
PS019919-1207 UART

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

152
The first seven bits transmitted in the first byte are 11110XX. The two bits XX are the two
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the
read/write control bit (=0). The transmit operation is carried out in the same manner as 7-
bit addressing.

Follow the steps below for a transmit operation on a 10-bit addressed slave:

1. Software asserts the IEN bit in the I2C Control register.

2. Software asserts the TXI bit of the I2C Control register to enable Transmit interrupts.

3. The I2C interrupt asserts because the I2C Data register is empty.

4. Software responds to the TDRE interrupt by writing the first slave address byte to the
I2C Data register. The least-significant bit must be 0 for the write operation.

5. Software asserts the START bit of the I2C Control register.

6. The I2C Controller sends the START condition to the I2C slave.

7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is
asserted.

9. Software responds by writing the second byte of address into the contents of the I2C
Data register.

10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA
signal.

11. If the I2C slave acknowledges the first address byte by pulling the SDA signal low
during the next high period of SCL, the I2C Controller sets the ACK bit in the I2C
Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I2C Controller sets the
NCKI bit and clears the ACK bit in the I2C Status register. Software responds to the
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and
NCKI bits. The transaction is complete (ignore the following steps).

12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data
register.

13. The I2C Controller shifts the second address byte out the SDA signal. After the first
bit has been sent, the Transmit interrupt is asserted.

14. Software responds by writing a data byte to the I2C Data register.

15. The I2C Controller completes shifting the contents of the shift register on the SDA
signal.
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

158
Software must be cautious in making decisions based on this bit within a trans-
action because software cannot tell when the bit is updated by hardware. In the
case of write transactions, the I2C pauses at the beginning of the Acknowledge
cycle if the next transmit data or address byte has not been written (TDRE = 1)
and STOP and START = 0. In this case the ACK bit is not updated until the
transmit interrupt is serviced and the Acknowledge cycle for the previous byte
completes. For examples of how the ACK bit can be used, see Address Only
Transaction with a 7-bit Address on page 148 and Address Only Transaction
with a 10-bit Address on page 150.

10B—10-Bit Address
This bit indicates whether a 10- or 7-bit address is being transmitted. After the START bit
is set, if the five most-significant bits of the address are 11110B, this bit is set. When set,
it is reset once the first byte of the address has been sent.

RD—Read
This bit indicates the direction of transfer of the data. It is active high during a read. The
status of this bit is determined by the least-significant bit of the I2C Shift register after the
START bit is set.

TAS—Transmit Address State
This bit is active high while the address is being shifted out of the I2C Shift register.

DSS—Data Shift State
This bit is active high while data is being shifted to or from the I2C Shift register.

NCKI—NACK Interrupt
This bit is set high when a Not Acknowledge condition is received or sent and neither the
START nor the STOP bit is active. When set, this bit generates an interrupt that can only
be cleared by setting the START or STOP bit, allowing you to specify whether to perform
a STOP or a repeated START.

I2C Control Register
The I2C Control register (Table 72) enables the I2C operation.

Table 72. I2C Control Register (I2CCTL)

BITS 7 6 5 4 3 2 1 0

FIELD IEN START STOP BIRQ TXI NAK FLUSH FILTEN

RESET 0

R/W R/W R/W1 R/W1 R/W R/W R/W1 W1 R/W

ADDR F52H

Caution:
PS019919-1207 I2C Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

169
DMAx_IO[7:0]}. When the DMA is configured for two-byte word transfers, the
DMAx I/O Address register must contain an even numbered address.

DMA_IO—DMA on-chip peripheral control register address
This byte sets the low byte of the on-chip peripheral control register address on Register
File Page FH (addresses F00H to FFFH).

DMAx Address High Nibble Register
The DMAx Address High register (Table 79) specifies the upper four bits of address for
the Start/Current and End Addresses of DMAx.

DMA_END_H—DMAx End Address High Nibble
These bits, used with the DMAx End Address Low register, form a 12-bit End Address.
The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.

DMA_START_H—DMAx Start/Current Address High Nibble
These bits, used with the DMAx Start/Current Address Low register, form a 12-bit
Start/Current Address. The full 12-bit address is given by {DMA_START_H[3:0],
DMA_START[7:0]}.

Table 78. DMAx I/O Address Register (DMAxIO)

BITS 7 6 5 4 3 2 1 0

FIELD DMA_IO

RESET X

R/W R/W

ADDR FB1H, FB9H

Table 79. DMAx Address High Nibble Register (DMAxH)

BITS 7 6 5 4 3 2 1 0

FIELD DMA_END_H DMA_START_H

RESET X

R/W R/W

ADDR FB2H, FBAH
PS019919-1207 Direct Memory Access Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

173
0101 = ADC Analog Inputs 0-5 updated.
0110 = ADC Analog Inputs 0-6 updated.
0111 = ADC Analog Inputs 0-7 updated.
1000 = ADC Analog Inputs 0-8 updated.
1001 = ADC Analog Inputs 0-9 updated.
1010 = ADC Analog Inputs 0-10 updated.
1011 = ADC Analog Inputs 0-11 updated.
1100-1111 = Reserved.

DMA Status Register
The DMA Status register (Table 85 on page 173) indicates the DMA channel that gener-
ated the interrupt and the ADC Analog Input that is currently undergoing conversion.
Reads from this register reset the Interrupt Request Indicator bits (IRQA, IRQ1, and
IRQ0) to 0. Therefore, software interrupt service routines that read this register must pro-
cess all three interrupt sources from the DMA.

CADC[3:0]—Current ADC Analog Input
This field identifies the Analog Input that the ADC is currently converting.

Reserved
This bit is reserved and must be 0.

IRQA—DMA_ADC Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.
0 = DMA_ADC is not the source of the interrupt from the DMA Controller.
1 = DMA_ADC completed transfer of data from the last ADC Analog Input and generated
an interrupt.

IRQ1—DMA1 Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.
0 = DMA1 is not the source of the interrupt from the DMA Controller.
1 = DMA1 completed transfer of data to/from the End Address and generated an interrupt.

IRQ0—DMA0 Interrupt Request Indicator
This bit is automatically reset to 0 each time a read from this register occurs.

Table 85. DMA_ADC Status Register (DMAA_STAT)

BITS 7 6 5 4 3 2 1 0

FIELD CADC[3:0] Reserved IRQA IRQ1 IRQ0

RESET 0

R/W R

ADDR FBFH
PS019919-1207 Direct Memory Access Controller

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

211
On-Chip Oscillator
Overview

The products in the 64K Series feature an on-chip oscillator for use with external crystals
with frequencies from 32 kHz to 20 MHz. In addition, the oscillator can support external
RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with oscilla-
tion frequencies up to 20 MHz. This oscillator generates the primary system clock for the
internal eZ8™ CPU and the majority of the on-chip peripherals. Alternatively, the XIN
input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an exter-
nal clock generator is used, the XOUT pin must be left unconnected.

When configured for use with crystal oscillators or external clock drivers, the frequency of
the signal on the XIN input pin determines the frequency of the system clock (that is, no
internal clock divider). In RC operation, the system clock is driven by a clock divider
(divide by 2) to ensure 50% duty cycle.

Operating Modes

The 64K Series products support four different oscillator modes:

• On-chip oscillator configured for use with external RC networks (<4 MHz).

• Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).

• Medium power for use with medium frequency crystals or ceramic resonators
(0.5 MHz to 10.0 MHz).

• Maximum power for use with high frequency crystals or ceramic resonators
(8.0 MHz to 20.0 MHz).

The oscillator mode is selected through user-programmable Option Bits. For more infor-
mation, see Option Bits on page 195.

Crystal Oscillator Operation

Figure 40 on page 212 displays a recommended configuration for connection with an
external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended
20 MHz crystal specifications are provided in Table 104 on page 212. Resistor R1 is
optional and limits total power dissipation by the crystal. The printed circuit board layout
PS019919-1207 On-Chip Oscillator

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

220
Figure 43 displays the typical active mode current consumption while operating at 25 ºC
versus the system clock frequency. All GPIO pins are configured as outputs and driven
High.
stics

Figure 43. Typical Active Mode Idd Versus System Clock Frequency

0

3

6

9

12

15

0 5 10 15 20
System Clock Frequency (MHz)

Id
d

(m
A

)

3.0V 3.3V 3.6V
PS019919-1207 Electrical Characteristics

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

253
EI IRQCTL[7] ← 1 9F - - - - - - 1 2

HALT HALT Mode 7F - - - - - - 1 2

INC dst dst ← dst + 1 R 20 - * * * - - 2 2

IR 21 2 3

r 0E-FE 1 2

INCW dst dst ← dst + 1 RR A0 - * * * - - 2 5

IRR A1 2 6

IRET FLAGS ← @SP
SP ← SP + 1
PC ← @SP
SP ← SP + 2
IRQCTL[7] ← 1

BF * * * * * * 1 5

JP dst PC ← dst DA 8D - - - - - - 3 2

IRR C4 2 3

JP cc, dst if cc is true
 PC ← dst

DA 0D-FD - - - - - - 3 2

JR dst PC ← PC + X DA 8B - - - - - - 2 2

JR cc, dst if cc is true
 PC ← PC + X

DA 0B-FB - - - - - - 2 2

LD dst, rc dst ← src r IM 0C-FC - - - - - - 2 2

r X(r) C7 3 3

X(r) r D7 3 4

r Ir E3 2 3

R R E4 3 2

R IR E5 3 4

R IM E6 3 2

IR IM E7 3 3

Ir r F3 2 3

IR R F5 3 3

Table 133. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic Symbolic Operation

Address
Mode

Opcode(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
PS019919-1207 eZ8™ CPU Instruction Set

Z8 Encore! XP® 64K Series Flash Microcontrollers
Product Specification

277
Index

Symbols
244
% 244
@ 244

Numerics
10-bit ADC 4
40-lead plastic dual-inline package 265
44-lead low-profile quad flat package 266
44-lead plastic lead chip carrier package 267
64-lead low-profile quad flat package 267
68-lead plastic lead chip carrier package 268
80-lead quad flat package 269

A
absolute maximum ratings 215
AC characteristics 231
ADC 246

architecture 175
automatic power-down 176
block diagram 176
continuous conversion 177
control register 179
control register definitions 179
data high byte register 180
data low bits register 180
DMA control 178
electrical characteristics and timing 229
operation 176
single-shot conversion 177

ADCCTL register 179
ADCDH register 180
ADCDL register 180
ADCX 246
ADD 246
add - extended addressing 246
add with carry 246
add with carry - extended addressing 246

additional symbols 244
address space 19
ADDX 246
analog signals 15
analog-to-digital converter (ADC) 175
AND 248
ANDX 248
arithmetic instructions 246
assembly language programming 241
assembly language syntax 242

B
B 244
b 243
baud rate generator, UART 113
BCLR 246
binary number suffix 244
BIT 246
bit 243

clear 246
manipulation instructions 246
set 246
set or clear 246
swap 247
test and jump 249
test and jump if non-zero 249
test and jump if zero 249

bit jump and test if non-zero 249
bit swap 249
block diagram 3
block transfer instructions 247
BRK 249
BSET 246
BSWAP 247, 249
BTJ 249
BTJNZ 249
BTJZ 249

C
CALL procedure 249
capture mode 95
capture/compare mode 95
PS019919-1207 Index

