E·XFL

Zilog - Z8F2421AN020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	31
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2421an020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

· • •			
v	I	I	L

SPI Control Register Definitions 1 SPI Data Register 1 SPI Control Register 1 SPI Control Register 1 SPI Status Register 1 SPI Mode Register 1 SPI Diagnostic State Register 1 SPI Baud Rate High and Low Byte Registers 1	 37 37 37 39 40 41 42 43
SPI Data Register 13 SPI Control Register 13 SPI Status Register 13 SPI Mode Register 14 SPI Diagnostic State Register 14 SPI Baud Rate High and Low Byte Registers 14	37 39 40 41 42 43
SPI Control Register 12 SPI Status Register 12 SPI Mode Register 14 SPI Diagnostic State Register 14 SPI Baud Rate High and Low Byte Registers 14	37 39 40 41 42 43
SPI Status Register 1 SPI Mode Register 1 SPI Diagnostic State Register 1 SPI Baud Rate High and Low Byte Registers 1	39 40 41 42 43
SPI Mode Register 14 SPI Diagnostic State Register 14 SPI Baud Rate High and Low Byte Registers 14	40 41 42 43
SPI Diagnostic State Register 14 SPI Baud Rate High and Low Byte Registers 14	41 42 43
SPI Baud Rate High and Low Byte Registers	42 43
	43
I2C Controller	
Overview	43
Architecture	44
Operation	44
SDA and SCL Signals 14	45
I ² C Interrupts 14	45
Software Control of I2C Transactions 14	46
Start and Stop Conditions 14	47
Master Write and Read Transactions	47
Address Only Transaction with a 7-bit Address	48
Write Transaction with a 7-Bit Address	49
Address Only Transaction with a 10-bit Address	50
Pood Transaction with a 7-Bit Address	51 52
Read Transaction with a 10 Bit Address	53
12C Control Register Definitions	56
I2C Data Register	56
I2C Status Register	57
I2C Control Register	58
I2C Baud Rate High and Low Byte Registers	60
I2C Diagnostic State Register 10	61
I2C Diagnostic Control Register 10	63
Direct Memory Access Controller	65
Overview 1	65
Operation	65
DMA0 and DMA1 Operation	65
Configuring DMA0 and DMA1 for Data Transfer	

Signal Descriptions

Table 3 describes the Z8 Encore! XP signals. To determine the signals available for the specific package styles, see Pin Configurations on page 8.

Table 3. Signal Descriptions

Signal Mnemonic	I/O	Description							
General-Purpos	General-Purpose I/O Ports A-H								
PA[7:0]	I/O	Port A[7:0]. These pins are used for general-purpose I/O and support 5 V-tolerant inputs.							
PB[7:0]	I/O	Port B[7:0]. These pins are used for general-purpose I/O.							
PC[7:0]	I/O	Port C[7:0]. These pins are used for general-purpose I/O. These pins are used for general-purpose I/O and support 5 V-tolerant inputs							
PD[7:0]	I/O	Port D[7:0]. These pins are used for general-purpose I/O. These pins are used for general-purpose I/O and support 5 V-tolerant inputs							
PE[7:0]	I/O	Port E[7:0]. These pins are used for general-purpose I/O. These pins are used for general-purpose I/O and support 5 V-tolerant inputs.							
PF[7:0]	I/O	Port F[7:0]. These pins are used for general-purpose I/O. These pins are used for general-purpose I/O and support 5 V-tolerant inputs.							
PG[7:0]	I/O	Port G[7:0]. These pins are used for general-purpose I/O. These pins are used for general-purpose I/O and support 5 V-tolerant inputs.							
PH[3:0]	I/O	Port H[3:0]. These pins are used for general-purpose I/O.							
I ² C Controller									
SCL	0	Serial Clock. This is the output clock for the I ² C. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SCL function, this pin is open-drain.							
SDA	I/O	Serial Data. This open-drain pin transfers data between the I^2C and a slave. This pin is multiplexed with a general-purpose I/O pin. When the general-purpose I/O pin is configured for alternate function to enable the SDA function, this pin is open-drain.							
SPI Controller									
SS	I/O	Slave Select. This signal can be an output or an input. If the Z8 Encore! XP 64K Series Flash Microcontrollers is the SPI master, this pin may be configured as the Slave Select output. If the Z8 Encore! XP 64K Series Flash Microcontrollers is the SPI slave, this pin is the input slave select. It is multiplexed with a general-purpose I/O pin.							

_		0	\frown	
		()		
(Constant)	0	\smile	9	

27

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FEF	Port H Output Data	PHOUT	00	66
Watchdog Time	ər			
FF0	Watchdog Timer Control	WDTCTL	XXX00000b	100
FF1	Watchdog Timer Reload Upper Byte	WDTU	FF	101
FF2	Watchdog Timer Reload High Byte	WDTH	FF	101
FF3	Watchdog Timer Reload Low Byte	WDTL	FF	101
FF4-FF7	Reserved		XX	
Flash Memory	Controller			
FF8	Flash Control	FCTL	00	190
FF8	Flash Status	FSTAT	00	190
FF9	Page Select	FPS	00	191
FF9 (if enabled)	Flash Sector Protect	FPROT	00	192
FFA	Flash Programming Frequency High Byte	FFREQH	00	192
FFB	Flash Programming Frequency Low Byte	FFREQL	00	192
FF4-FF8	Reserved	—	XX	
Read-Only Men	nory Controller			
FF9	Page Select	RPS	00	
FFA-FFB	Reserved	_	XX	
eZ8 CPU				
FFC	Flags		XX	Refer to eZ8 [™]
FFD	Register Pointer	RP	XX	CPU Core
FFE	Stack Pointer High Byte	SPH	XX	User Manual
FFF	Stack Pointer Low Byte	SPL	XX	(UM0128)
Note: XX=Undefir	ned			

Table 7. Z8 Encore! XP 64K Series Flash Microcontrollers Register File Address Map (Continued)

Data Register

PS019919-1207

Caution: The following style of coding to generate software interrupts by setting bits in the Interrupt Request registers is NOT recommended. All incoming interrupts that are received between execution of the first LDX command and the last LDX command are lost.

Poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0 OR r0, MASK LDX IRQ0, r0

To avoid missing interrupts, the following style of coding to set bits in the Interrupt Request registers is recommended:

Good coding style that avoids lost interrupt requests:

ORX IRQO, MASK

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 24) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8[™] CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 register to determine if any interrupt requests are pending

BITS	7	6	5	4	3	2	1				
FIELD	T2I	T1I	ТОІ	U0RXI	U0TXI	I2CI	SPII				
RESET		0									
R/W				R/	W						
ADDR	FC0H										

Table 24, Interrupt Request 0 Register (IRQ0)

T2I—Timer 2 Interrupt Request

- 0 = No interrupt request is pending for Timer 2.
- 1 = An interrupt request from Timer 2 is awaiting service.

0 ADCI

T1I—Timer 1 Interrupt Request

0 = No interrupt request is pending for Timer 1.

1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

0 = No interrupt request is pending for Timer 0.

1 = An interrupt request from Timer 0 is awaiting service.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

I²CI— I²C Interrupt Request

0 = No interrupt request is pending for the I²C.

1 = An interrupt request from the I²C is awaiting service.

SPII—SPI Interrupt Request

0 = No interrupt request is pending for the SPI.

1 = An interrupt request from the SPI is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the Analog-to-Digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 25) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	PAD7I	PAD6I	PAD5I	PAD4I	PAD3I	PAD2I	PAD1I	PAD0I
RESET	0							
R/W	R/W							
ADDR	FC3H							

Table 25.	Interrupt	Request 1	Register	(IRQ1)
-----------	-----------	------------------	----------	--------

Table 29. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0	
FIELD	T2ENL	T1ENL	T0ENL	U0RENL	U0TENL	I2CENL	SPIENL	ADCENL	
RESET		0							
R/W		R/W							
ADDR		FC2H							

T2ENL—Timer 2 Interrupt Request Enable Low Bit T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit UORENL-UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit I2CENL—I²C Interrupt Request Enable Low Bit SPIENL—SPI Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

The IRQ1 Enable High and Low Bit registers (see Table 31 and Table 32 on page 76) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register. Table 30 describes the priority control for IRQ1.

IRQ1ENL[x]	Priority	Description
0	Disabled	Disabled
1	Level 1	Low
0	Level 2	Nominal
1	Level 3	High
	IRQ1ENL[x] 0 1 0 1	IRQ1ENL[x]Priority0Disabled1Level 10Level 21Level 3

Table 30. IRQ1 Enable and Priority Encoding

Note: where x indicates the register bits from 0 through 7.

Timers

Overview

The 64K Series products contain up to four 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse width modulated signals. The timers' features include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generators for any unused UART, SPI, or I^2C peripherals may also be used to provide basic timing functionality. For information on using the Baud Rate Generators as timers, see the respective serial communication peripheral. Timer 3 is unavailable in the 44-pin package devices.

Architecture

Figure 12 displays the architecture of the timers.

8. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. Because the UART Transmit Data register is empty, an interrupt is generated immediately. When the UART Transmit interrupt is detected, the associated interrupt service routine performs the following:

- 1. Write the UART Control 1 register to select the outgoing address bit:
 - Set the MULTIPROCESSOR Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 2. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.
- 4. Execute the IRET instruction to return from the interrupt-service routine and wait for the Transmit Data register to again become empty.

Receiving Data using the Polled Method

Follow the steps below to configure the UART for polled data reception:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions, if desired.
- 4. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception.
 - Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
- 5. Check the RDA bit in the UART Status 0 register to determine if the Receive Data register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate available data, continue to step 6. If the Receive Data register is empty (indicated by a 0), continue to monitor the RDA bit awaiting reception of the valid data.
- Read data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].
- 7. Return to step 5 to receive additional data.

zilog

108

Receiving Data using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Follow the steps below to configure the UART receiver for interrupt-driven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the desired priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
- 6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode functions, if desired.
 - Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
 - Set the MULTIPROCESSOR Mode Bits, MPMD[1:0], to select the desired address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! devices without a DMA block).
- 7. Write the device address to the Address Compare Register (automatic multiprocessor modes only).
- 8. Write to the UART Control 0 register to:
 - Set the receive enable bit (REN) to enable the UART for data reception.
 - Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
- 9. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine performs the following:

- 1. Check the UART Status 0 register to determine the source of the interrupt error, break, or received data.
- 2. If the interrupt was caused by data available, read the data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].

zilog ₁₁₃

Figure 18. UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the Baud Rate Generator interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This action allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

REN—Receive Enable This bit enables or disables the receiver.

0 = Receiver disabled.

1 =Receiver enabled.

CTSE—CTS Enable

 $0 = \text{The }\overline{\text{CTS}}$ signal has no effect on the transmitter.

1 = The UART recognizes the $\overline{\text{CTS}}$ signal as an enable control from the transmitter.

PEN—Parity Enable

This bit enables or disables parity. Even or odd is determined by the PSEL bit. It is overridden by the MPEN bit.

0 = Parity is disabled.

1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit.

PSEL—Parity Select

0 = Even parity is transmitted and expected on all received data.

1 = Odd parity is transmitted and expected on all received data.

SBRK—Send Break

This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit.

- 0 = No break is sent.
- 1 = The output of the transmitter is zero.

STOP—Stop Bit Select

0 = The transmitter sends one stop bit.

1 = The transmitter sends two stop bits.

LBEN—Loop Back Enable

0 = Normal operation.

1 = All transmitted data is looped back to the receiver.

Table 57. UART Control 1 Register (UxCTL1)

BITS	7	6	5	4	3	2	1	0	
FIELD	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN	
RESET	0								
R/W		R/W							
ADDR				F43H ar	nd F4BH				

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

145

- Master receives from a 7-bit slave
- Master receives from a 10-bit slave

SDA and SCL Signals

 I^2C sends all addresses, data and acknowledge signals over the SDA line, most-significant bit first. SCL is the common clock for the I^2C Controller. When the SDA and SCL pin alternate functions are selected for their respective GPIO ports, the pins are automatically configured for open-drain operation.

The master (I^2C) is responsible for driving the SCL clock signal, although the clock signal can become skewed by a slow slave device. During the low period of the clock, the slave pulls the SCL signal Low to suspend the transaction. The master releases the clock at the end of the low period and notices that the clock remains low instead of returning to a high level. When the slave releases the clock, the I²C Controller continues the transaction. All data is transferred in bytes and there is no limit to the amount of data transferred in one operation. When transmitting data or acknowledging read data from the slave, the SDA signal changes in the middle of the low period of SCL and is sampled in the middle of the high period of SCL.

I²C Interrupts

The I²C Controller contains four sources of interrupts—Transmit, Receive, Not Acknowledge and baud rate generator. These four interrupt sources are combined into a single interrupt request signal to the Interrupt Controller. The Transmit interrupt is enabled by the IEN and TXI bits of the Control register. The Receive and Not Acknowledge interrupts are enabled by the IEN bit of the Control register. The baud rate generator interrupt is enabled by the BIRQ and IEN bits of the Control register.

Not Acknowledge interrupts occur when a Not Acknowledge condition is received from the slave or sent by the I²C Controller and neither the START or STOP bit is set. The Not Acknowledge event sets the NCKI bit of the I²C Status register and can only be cleared by setting the START or STOP bit in the I²C Control register. When this interrupt occurs, the I²C Controller waits until either the STOP or START bit is set before performing any action. In an interrupt service routine, the NCKI bit should always be checked prior to servicing transmit or receive interrupt conditions because it indicates the transaction is being terminated.

Receive interrupts occur when a byte of data has been received by the I^2C Controller (master reading data from slave). This procedure sets the RDRF bit of the I^2C Status register. The RDRF bit is cleared by reading the I^2C Data register. The RDRF bit is set during the acknowledge phase. The I^2C Controller pauses after the acknowledge phase until the receive interrupt is cleared before performing any other action.

Table 70. I²C Data Register (I2CDATA)

BITS	7	6	5	4	3	2	1	0					
FIELD	DATA												
RESET	0												
R/W		R/W											
ADDR		F50H											

I²C Status Register

The Read-only I²C Status register (Table 71) indicates the status of the I²C Controller.

Table 71	. I ² C	Status	Register	(I2CSTAT))
----------	--------------------	--------	----------	-----------	---

BITS	7	6	5	4	3	2	1	0					
FIELD	TDRE	RDRF ACK		10B	RD	TAS	DSS	NCKI					
RESET	1		0										
R/W		R											
ADDR		F51H											

TDRE—Transmit Data Register Empty

When the I²C Controller is enabled, this bit is 1 when the I²C Data register is empty. When this bit is set, an interrupt is generated if the TXI bit is set, except when the I²C Controller is shifting in data during the reception of a byte or when shifting an address and the RD bit is set. This bit is cleared by writing to the I2CDATA register.

RDRF—Receive Data Register Full

This bit is set = 1 when the I²C Controller is enabled and the I²C Controller has received a byte of data. When asserted, this bit causes the I²C Controller to generate an interrupt. This bit is cleared by reading the I²C Data register (unless the read is performed using execution of the On-Chip Debugger's Read Register command).

ACK—Acknowledge

This bit indicates the status of the Acknowledge for the last byte transmitted or received. When set, this bit indicates that an Acknowledge occurred for the last byte transmitted or received. This bit is cleared when IEN = 0 or when a Not Acknowledge occurred for the last byte transmitted or received. It is not reset at the beginning of each transaction and is not reset when this register is read.

		Flash \$	Sector Address F	or Address Ranges				
Sector Number	Z8F162x	Z8F242x	Z8F322x	Z8F482x	Z8F642x			
0	0000H-07FFH	0000H-0FFFH	0000H-0FFFH	0000H-1FFFH	0000H-1FFFH			
1	0800H-0FFFH	1000H-1FFFH	1000H-1FFFH	2000H-3FFFH	2000H-3FFFH			
2	1000H-17FFH	2000H-2FFFH	2000H-2FFFH	4000H-5FFFH	4000H-5FFFH			
3	1800H-1FFFH	3000H-3FFFH	3000H-3FFFH	6000H-7FFFH	6000H-7FFFH			
4	2000H-27FFH	4000H-4FFFH	4000H-4FFFH	8000H-9FFFH	8000H-9FFFH			
5	2800H-2FFFH	5000H-5FFFH	5000H-5FFFH	A000H-BFFFH	A000H-BFFFH			
6	3000H-37FFH	N/A	6000H-6FFFH	N/A	C000H-DFFFH			
7	3800H-3FFFH	N/A	7000H-7FFFH	N/A	E000H-FFFFH			

Table 90. Flash Memory Sector Addresses

Figure 35. Flash Memory Arrangement

zilog

220

Figure 43 displays the typical active mode current consumption while operating at 25 °C versus the system clock frequency. All GPIO pins are configured as outputs and driven High.

Figure 43. Typical Active Mode Idd Versus System Clock Frequency

zilog 222

Figure 45 displays the typical current consumption in HALT mode while operating at 25 °C versus the system clock frequency. All GPIO pins are configured as outputs and driven High.

Figure 45. Typical HALT Mode Idd Versus System Clock Frequency

Table 130. Logical Instructions (Continued)

Mnemonic	Operands	Instruction
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 131. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	_	On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	_	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	_	Return
TRAP	vector	Software Trap

Mnemonic	Operands	Instruction
BSWAP	dst	Bit Swap
RL	dst	Rotate Left
RLC	dst	Rotate Left through Carry
RR	dst	Rotate Right
RRC	dst	Rotate Right through Carry
SRA	dst	Shift Right Arithmetic

263

	Lower Nibble (Hex)															
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP	2.3 ADD	2.4 ADD	3.3 ADD	3.4 ADD	3.3 ADD	3.4 ADD	4.3 ADDX	4.3 ADDX	2.3 DJNZ	2.2 JR	2.2 LD	3.2 JP	1.2 INC	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX	11,A	CC,A	11,111	CC,DA		See 2nd Opcode Map
2	2.2 INC	2.3 INC	2.3 SUB	2.4 SUB	3.3 SUB	3.4 SUB	3.3 SUB	3.4 SUB	4.3 SUBX	4.3 SUBX						1,2 ATM
3	2.2 DEC	2.3 DEC	2.3 SBC	2.4 SBC	3.3 SBC	3.4 SBC	3.3 SBC	3.4 SBC	4.3 SBCX	4.3 SBCX						
4	2.2 DA	2.3 DA	2.3 OR	2.4 OR	3.3 OR	3.4 OR	3.3 OR	3.4 OR	4.3 ORX	4.3 ORX						
5	R1 2.2 POP	1R1 2.3 POP	r1,r2 2.3 AND	r1,lr2 2.4 AND	82,R1 3.3 AND	3.4 AND	81,IM 3.3 AND	IR1,IM 3.4 AND	4.3 ANDX	4.3 ANDX						1.2 WDT
6	R1 2.2 COM	IR1 2.3 COM	r1,r2 2.3 TCM	r1,Ir2 2.4 TCM	82,R1 3.3 TCM	3.4 TCM	R1,IM 3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
7	2.2 PUSH	2.3 PUSH	r1,r2 2.3 TM	r1,Ir2 2.4 TM	82,R1 3.3 TM	3.4 TM	81,IM 3.3 TM	3.4 TM	4.3 TMX	4.3 TMX						1.2 HALT
8	2.5 DECW	2.6 DECW	r1,r2 2.5 LDE	r1,lr2 2.9 LDEI	82,R1 3.2 LDX	3.3 LDX	81,IM 3.4 LDX	3.5 LDX	3.4 LDX	3.4 LDX						1.2 DI
9	2.2 RL	2.3 RL	2.5 LDE	2.9 LDEI	3.2 LDX	3.3 LDX	3.4 LDX	3.5 LDX	3.3 LEA	3.5 LEA						1.2 El
А	2.5 INCW	2.6 INCW	r2,Irr1 2.3 CP	1r2,1rr1 2.4 CP	r2,ER1 3.3 CP	3.4 CP	82,IRR1 3.3 CP	3.4 CP	r1,r2,X 4.3 CPX	4.3 CPX						1.4 RET
В	2.2 CLR	2.3 CLR	r1,r2 2.3 XOR	r1,lr2 2.4 XOR	82,R1 3.3 XOR	3.4 XOR	81,IM 3.3 XOR	3.4 XOR	4.3 XORX	4.3 XORX						1.5 IRET
С	R1 2.2 RRC	IR1 2.3 RRC	r1,r2 2.5 LDC	r1,lr2 2.9 LDCI	R2,R1 2.3 JP	IR2,R1 2.9 LDC	R1,IM	IR1,IM 3.4 LD	ER2,ER1 3.2 PUSHX	IM,ER1						1.2 RCF
D	R1 2.2 SRA	IR1 2.3 SRA	r1,Irr2 2.5 LDC	lr1,lrr2 2.9 LDCI	IRR1 2.6 CALL	lr1,Irr2 2.2 BSWAP	3.3 CALL	r1,r2,X 3.4 LD	ER2 3.2 POPX							1.2 SCF
E	R1 2.2 RR	IR1 2.3 RR	r2,Irr1 2.2 BIT	lr2,Irr1 2.3 LD	IRR1 3.2 LD	R1 3.3 LD	DA 3.2 LD	r2,r1,X 3.3 LD	ER1 4.2 LDX	4.2 LDX						1.2 CCF
F	R1 2.2 SWAP	IR1 2.3 SWAP	p,b,r1 2.6 TRAP	r1,lr2 2.3 LD	R2,R1 2.8 MULT	IR2,R1 3.3 LD	R1,IM 3.3 BTJ	IR1,IM 3.4 BTJ	ER2,ER1	IM,ER1						
•	R1	IR1	Vector	lr1,r2	RR1	R2,IR1	p,b,r1,X	p,b,lr1,X				V				

Figure 60. First Opcode Map