

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Coro Procossor	079
	ezo
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	29
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f2421pm020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2007 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

IIART	103
UART Overview Architecture Operation Data Format Transmitting Data using the Polled Method Transmitting Data using the Interrupt-Driven Method Receiving Data using the Polled Method Receiving Data using the Interrupt-Driven Method Clear To Send (CTS) Operation	103 103 104 104 105 106 107 108 109
	109
	110
UART Baud Rate Generator	113
UART Control Register Definitions	114
UART Transmit Data Register	114
UART Receive Data Register	115
UART Status 0 Register	115
UART Status 1 Register	116
UART Control 0 and Control 1 Registers	117
UART Address Compare Register	120
UART Baud Rate High and Low Byte Registers	120
Infrared Encoder/Decoder	125
Overview	125
Architecture	125
Operation	126
Transmitting IrDA Data	126
Receiving IrDA Data	127
Infrared Encoder/Decoder Control Register Definitions	128
Serial Peripheral Interface	129
Overview	129
Architecture	129
Operation	130
SPI Signals	131
SPI Clock Phase and Polarity Control	132
	134
	134

zilog ₁₇

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-up or Pull-down	Schmitt- Trigger Input	Open Drain Output
AVSS	N/A	N/A	N/A	N/A	No	No	N/A
AVDD	N/A	N/A	N/A	N/A	No	No	N/A
DBG	I/O	l	N/A	Yes	No	Yes	Yes
VSS	N/A	N/A	N/A	N/A	No	No	N/A
PA[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PB[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PC[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PD[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PE7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PF[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PG[7:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
PH[3:0]	I/O	I	N/A	Yes	No	Yes	Yes, Programmable
RESET	I	I	Low	N/A	Pull-up	Yes	N/A
VDD	N/A	N/A	N/A	N/A	No	No	N/A
XIN	I	I	N/A	N/A	No	No	N/A
XOUT	0	0	N/A	Yes, in STOP mode	No	No	No

Table 4. Pin Characteristics of the Z8 Encore! XP 64K Series Flash Microcontrollers

Note: *x* represents integer 0, 1,... to indicate multiple pins with symbol mnemonics that differ only by the integer.

- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H), affecting only the first pass in CONTINUOUS mode. After the first timer Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control 1 register to enable the timer and initiate counting.

In CONTINUOUS mode, the system clock always provides the timer input. The timer period is given by the following equation:

CONTINUOUS Mode Time-Out Period (s) = $\frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation must be used to determine the first time-out period.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control 1 Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.

Caution: *The input frequency of the Timer Input signal must not exceed one-fourth the system clock frequency.*

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control 1 register to:
 - Disable the timer
 - Configure the timer for COUNTER mode

WDT Reload Value	WDT Reload Value	Approximato (with 10 kHz typical \	e Time-Out Delay WDT oscillator frequency)		
(Hex)	(Decimal)	Typical	Description		
000004	4	400 μs	Minimum time-out delay		
FFFFF	16,777,215	1677.5 s	Maximum time-out delay		

Table 47. Watchdog Timer Approximate Time-Out Delays

Watchdog Timer Refresh

When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer then counts down to 000000H unless a WDT instruction is executed by the eZ8TM CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When the 64K Series devices are operating in DEBUG Mode (through the On-Chip Debugger), the Watchdog Timer is continuously refreshed to prevent spurious Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a Reset. The WDT_RES Option Bit determines the time-out response of the Watchdog Timer. For information on programming of the WDT_RES Option Bit, see Option Bits on page 195.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Watchdog Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the 64K Series devices are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery on page 47.

- 3. Clear the UART Receiver interrupt in the applicable Interrupt Request register.
- 4. Execute the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this would typically be done during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTI-PROCESSOR mode (also referred to as 9-Bit mode), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 16. The character format is:

Figure 16. UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the MUL-TIPROCESSOR control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor

zilog

register. The IRQE, PHASE, CLKPOL, WOR bits in the SPICTL register and the NUM-BITS field in the SPIMODE register must be set to be consistent with the other SPI devices. The STR bit in the SPICTL register may be used if desired to force a "startup" interrupt. The BIRQ bit in the SPICTL register and the SSV bit in the SPIMODE register are not used in SLAVE mode. The SPI baud rate generator is not used in SLAVE mode so the SPIBRH and SPIBRL registers need not be initialized.

If the slave has data to send to the master, the data must be written to the SPIDAT register before the transaction starts (first edge of SCK when \overline{SS} is asserted). If the SPIDAT register is not written prior to the slave transaction, the MISO pin outputs whatever value is currently in the SPIDAT register.

Due to the delay resulting from synchronization of the SPI input signals to the internal system clock, the maximum SPICLK baud rate that can be supported in SLAVE mode is the system clock frequency (XIN) divided by 8. This rate is controlled by the SPI master.

Error Detection

The SPI contains error detection logic to support SPI communication protocols and recognize when communication errors have occurred. The SPI Status register indicates when a data transmission error has been detected.

Overrun (Write Collision)

An overrun error (write collision) indicates a write to the SPI Data register was attempted while a data transfer is in progress (in either MASTER or SLAVE modes). An overrun sets the OVR bit in the SPI Status register to 1. Writing a 1 to OVR clears this error Flag. The data register is not altered when a write occurs while data transfer is in progress.

Mode Fault (Multi-Master Collision)

A mode fault indicates when more than one Master is trying to communicate at the same time (a multi-master collision). The mode fault is detected when the enabled Master's \overline{SS} pin is asserted. A mode fault sets the COL bit in the SPI Status register to 1. Writing a 1 to COL clears this error Flag.

Slave Mode Abort

In SLAVE mode of operation if the \overline{SS} pin deasserts before all bits in a character have been transferred, the transaction is aborted. When this condition occurs the ABT bit is set in the SPISTAT register as well as the IRQ bit (indicating the transaction is complete). The next time \overline{SS} asserts, the MISO pin outputs SPIDAT[7], regardless of where the previous transaction left off. Writing a 1 to ABT clears this error Flag.

SPI Interrupts

When SPI interrupts are enabled, the SPI generates an interrupt after character transmission/reception completes in both MASTER and SLAVE modes. A character can be

Table 64. SPI Control Register (SPICTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	IRQE	STR	BIRQ	PHASE	CLKPOL	WOR	MMEN	SPIEN	
RESET		0							
R/W		R/W							
ADDR				F6	1H				

IRQE—Interrupt Request Enable

0 = SPI interrupts are disabled. No interrupt requests are sent to the Interrupt Controller.

1 = SPI interrupts are enabled. Interrupt requests are sent to the Interrupt Controller.

STR—Start an SPI Interrupt Request

0 = No effect.

1 = Setting this bit to 1 also sets the IRQ bit in the SPI Status register to 1. Setting this bit forces the SPI to send an interrupt request to the Interrupt Control. This bit can be used by software for a function similar to transmit buffer empty in a UART. Writing a 1 to the IRQ bit in the SPI Status register clears this bit to 0.

BIRQ-BRG Timer Interrupt Request

If the SPI is enabled, this bit has no effect. If the SPI is disabled:

0 = The Baud Rate Generator timer function is disabled.

1 = The Baud Rate Generator timer function and time-out interrupt are enabled.

PHASE—Phase Select

Sets the phase relationship of the data to the clock. For more information on operation of the PHASE bit, see SPI Clock Phase and Polarity Control on page 132.

CLKPOL—Clock Polarity

0 = SCK idles Low (0).

1 = SCK idle High (1).

WOR-Wire-OR (OPEN-DRAIN) Mode Enabled

0 = SPI signal pins not configured for open-drain.

 $1 = \text{All four SPI signal pins (SCK, \overline{SS}, MISO, MOSI)}$ configured for open-drain function. This setting is typically used for multi-master and/or multi-slave configurations.

MMEN—SPI Master Mode Enable

0 = SPI configured in Slave mode.

1 = SPI configured in Master mode.

SPIEN—SPI Enable

0 = SPI disabled.

1 = SPI enabled.

140

 $0 = \overline{SS}$ input pin is asserted (Low). $1 = \overline{SS}$ input is not asserted (High). If SPI enabled as a Master, this bit is not applicable.

SPI Mode Register

The SPI Mode register (Table 66) configures the character bit width and the direction and value of the \overline{SS} pin.

Table	66.	SPI	Mode	Register	(SPIMODE)	۱
IUNIC	UU .	U I I	mouc	Register		,

BITS	7	6	5	4	3	2	1	0			
FIELD	Reserved		DIAG NUMBITS[2:0]				DIAG NUMBITS[2:0]			SSIO	SSV
RESET		0									
R/W	F	२		R/W							
ADDR				F6	3H						

Reserved—Must be 0.

DIAG-Diagnostic Mode Control bit

This bit is for SPI diagnostics. Setting this bit allows the Baud Rate Generator value to be read using the SPIBRH and SPIBRL register locations.

- 0 = Reading SPIBRH, SPIBRL returns the value in the SPIBRH and SPIBRL registers
- 1 = Reading SPIBRH returns bits [15:8] of the SPI Baud Rate Generator; and reading SPIBRL returns bits [7:0] of the SPI Baud Rate Counter. The Baud Rate Counter High and Low byte values are not buffered.

Caution: *Exercise caution if reading the values while the BRG is counting.*

NUMBITS[2:0]—Number of Data Bits Per Character to Transfer

This field contains the number of bits to shift for each character transfer. For information on valid bit positions when the character length is less than 8-bits, see SPI Data Register description.

000 = 8 bits 001 = 1 bit 010 = 2 bits 011 = 3 bits 100 = 4 bits 101 = 5 bits 110 = 6 bits 111 = 7 bits

The first seven bits transmitted in the first byte are 11110xx. The two bits xx are the two most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the read/write control bit (=0). The transmit operation is carried out in the same manner as 7-bit addressing.

Follow the steps below for a transmit operation on a 10-bit addressed slave:

- 1. Software asserts the IEN bit in the I^2C Control register.
- 2. Software asserts the TXI bit of the I^2C Control register to enable Transmit interrupts.
- 3. The I^2C interrupt asserts because the I^2C Data register is empty.
- 4. Software responds to the TDRE interrupt by writing the first slave address byte to the I^2C Data register. The least-significant bit must be 0 for the write operation.
- 5. Software asserts the START bit of the I^2C Control register.
- 6. The I^2C Controller sends the START condition to the I^2C slave.
- 7. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register.
- 8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is asserted.
- 9. Software responds by writing the second byte of address into the contents of the I²C Data register.
- 10. The I²C Controller shifts the rest of the first byte of address and write bit out the SDA signal.
- If the I²C slave acknowledges the first address byte by pulling the SDA signal low during the next high period of SCL, the I²C Controller sets the ACK bit in the I²C Status register. Continue with step 12.

If the slave does not acknowledge the first address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status register. Software responds to the Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI bit. The I²C Controller sends the STOP condition on the bus and clears the STOP and NCKI bits. The transaction is complete (ignore the following steps).

- 12. The I²C Controller loads the I²C Shift register with the contents of the I²C Data register.
- 13. The I²C Controller shifts the second address byte out the SDA signal. After the first bit has been sent, the Transmit interrupt is asserted.
- 14. Software responds by writing a data byte to the I^2C Data register.
- 15. The I²C Controller completes shifting the contents of the shift register on the SDA signal.

zilog

170

DMAx Start/Current Address Low Byte Register

The DMAx Start/Current Address Low register, in conjunction with the DMAx Address High Nibble register, forms a 12-bit Start/Current Address. Writes to this register set the Start Address for DMA operations. Each time the DMA completes a data transfer, the 12-bit Start/Current Address increments by either 1 (single-byte transfer) or 2 (two-byte word transfer). Reads from this register return the low byte of the Current Address to be used for the next DMA data transfer.

Table 80. DMAx Start/Current Address Low Byte Register (DMAxSTART)

BITS	7	6	5	4	3	2	1	0		
FIELD		DMA_START								
RESET		X								
R/W		R/W								
ADDR				FB3H,	FBBH					

DMA_START—DMAx Start/Current Address Low

These bits, with the four lower bits of the DMAx_H register, form the 12-bit Start/Current address. The full 12-bit address is given by {DMA_START_H[3:0], DMA_START[7:0]}.

DMAx End Address Low Byte Register

The DMAx End Address Low Byte register (Table 80), in conjunction with the DMAx_H register (Table 81), forms a 12-bit End Address.

Table 81. DMAx End Address Low Byte Register (DMAxEND)

BITS	7	6	5	4	3	2	1	0	
FIELD	DMA_END								
RESET	X								
R/W		R/W							
ADDR				FB4H,	FBCH				

DMA_END—DMAx End Address Low

These bits, with the four upper bits of the DMAx_H register, form a 12-bit address. This address is the ending location of the DMAx transfer. The full 12-bit address is given by $\{DMA_END_H[3:0], DMA_END[7:0]\}$.

- 0 = DMA0 is not the source of the interrupt from the DMA Controller.
- 1 = DMA0 completed transfer of data to/from the End Address and generated an interrupt.

On-Chip Debugger Control Register Definitions

OCD Control Register

The OCD Control register (Table 102) controls the state of the On-Chip Debugger. This register enters or exits DEBUG mode and enables the BRK instruction. It can also reset the Z8F642x family, Z8R642x family device.

A 'reset and stop' function can be achieved by writing 81H to this register. A 'reset and go' function can be achieved by writing 41H to this register. If the device is in DEBUG mode, a 'run' function can be implemented by writing 40H to this register.

Table 102. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK	BRKLOOP			Reserved	RST
RESET		0						
R/W		R/W			R			R/W

DBGMODE—DEBUG Mode

Setting this bit to 1 causes the device to enter DEBUG mode. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to start running again. This bit is automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device, it cannot be written to 0.

0 = The 64K Series device is operating in NORMAL mode.

1 = The 64K Series device is in DEBUG mode.

BRKEN-Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, Breakpoints are disabled and the BRK instruction behaves like a NOP. If this bit is set to 1 and a BRK instruction is decoded, the OCD takes action dependent upon the BRKLOOP bit.

- 0 = BRK instruction is disabled.
- 1 = BRK instruction is enabled.

DBGACK—Debug Acknowledge

This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends an Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.

0 = Debug Acknowledge is disabled.

1 = Debug Acknowledge is enabled.

BRKLOOP—Breakpoint Loop

This bit determines what action the OCD takes when a BRK instruction is decoded if breakpoints are enabled (BRKEN is 1). If this bit is 0, then the DBGMODE bit is automatically set to 1 and the OCD entered DEBUG mode. If BRKLOOP is set to 1, then the

Table 105. Absolute Maximum Ratings (Continued)

Parameter	Minimum	Maximum	Units	Notes
Maximum current into V _{DD} or out of V _{SS}		140	mA	
64-Pin LQFP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		1000	mW	
Maximum current into V _{DD} or out of V _{SS}		275	mA	
64-Pin LQFP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		540	mW	
Maximum current into V _{DD} or out of V _{SS}		150	mA	
44-Pin PLCC Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		750	mW	
Maximum current into V _{DD} or out of V _{SS}		200	mA	
44-Pin PLCC Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		295	mW	
Maximum current into V _{DD} or out of V _{SS}		83	mA	
44-Pin LQFP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		750	mW	
Maximum current into V _{DD} or out of V _{SS}		200	mA	
44-Pin LQFP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		360	mW	
Maximum current into V _{DD} or out of V _{SS}		100	mA	
40-Pin PDIP Maximum Ratings at –40 °C to 70 °C				
Total power dissipation		1000	mW	
Maximum current into V _{DD} or out of V _{SS}		275	mA	
40-Pin PDIP Maximum Ratings at 70 °C to 125 °C				
Total power dissipation		540	mW	
Maximum current into V_{DD} or out of V_{SS}		150	mA	
Note: This voltage applies to all pins except the following: VDD, AV RESET, and where noted otherwise.	DD, pins sup	porting analog	g input (Por	ts B and H),

V_{DD} = 3.3 V

V_{DD} = 3.3 V

mΑ

5

4

V_{DD} = 3.6 V, Fsysclk = 10 MHz

Symbol		T _A = -40 °	C to 125 °	C		
	Parameter	Minimum	Typical	Maximum	Units	Conditions
C _{PAD}	GPIO Port Pad Capacitance	_	8.0 ²	-	pF	
C _{XIN}	XIN Pad Capacitance	-	8.0 ²	_	pF	
C _{XOUT}	XOUT Pad Capacitance	-	9.5 ²	-	pF	
I _{PU}	Weak Pull-up Current	30	100	350	mA	V _{DD} = 3.0 - 3.6 V
I _{DDA}	Active Mode Supply Current (See Figure 43 on	-	11	16 12	mA	V _{DD} = 3.6 V, Fsysclk = 20 MHz V _{DD} = 3.3 V
	page 220 and Figure 44 on page 221) GPIO pins configured as outputs	-	9	11 9	mA	V _{DD} = 3.6 V, Fsysclk = 10 MHz V _{DD} = 3.3 V
I _{DDH}	HALT Mode Supply Current		4	7 5	mA	V _{DD} = 3.6 V, Fsysclk = 20 MHz

3

_

Table 106

(See Figure 45 on page 222 and Figure 46

on page 223) GPIO pins

configured as outputs

	Lower Nibble (Hex)															
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP	2.3 ADD	2.4 ADD	3.3 ADD	3.4 ADD	3.3 ADD	3.4 ADD	4.3 ADDX	4.3 ADDX	2.3 DJNZ	2.2 JR	2.2 LD	3.2 JP	1.2 INC	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1	11,A	CC,A	11,111	CC,DA		See 2nd Opcode Map
2	2.2 INC	2.3 INC	2.3 SUB	2.4 SUB	3.3 SUB	3.4 SUB	3.3 SUB	3.4 SUB	4.3 SUBX	4.3 SUBX						1,2 ATM
3	2.2 DEC	2.3 DEC	2.3 SBC	2.4 SBC	3.3 SBC	3.4 SBC	3.3 SBC	3.4 SBC	4.3 SBCX	4.3 SBCX						
4	2.2 DA	2.3 DA	2.3 OR	2.4 OR	3.3 OR	3.4 OR	3.3 OR	3.4 OR	4.3 ORX	4.3 ORX						
5	R1 2.2 POP	1R1 2.3 POP	r1,r2 2.3 AND	r1,lr2 2.4 AND	82,R1 3.3 AND	3.4 AND	81,IM 3.3 AND	IR1,IM 3.4 AND	4.3 ANDX	4.3 ANDX						1.2 WDT
6	R1 2.2 COM	IR1 2.3 COM	r1,r2 2.3 TCM	r1,Ir2 2.4 TCM	82,R1 3.3 TCM	3.4 TCM	R1,IM 3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
7	2.2 PUSH	2.3 PUSH	r1,r2 2.3 TM	r1,Ir2 2.4 TM	82,R1 3.3 TM	3.4 TM	81,IM 3.3 TM	3.4 TM	4.3 TMX	4.3 TMX						1.2 HALT
8	2.5 DECW	2.6 DECW	r1,r2 2.5 LDE	r1,lr2 2.9 LDEI	82,R1 3.2 LDX	3.3 LDX	81,IM 3.4 LDX	3.5 LDX	3.4 LDX	3.4 LDX						1.2 DI
9	2.2 RL	2.3 RL	2.5 LDE	2.9 LDEI	3.2 LDX	3.3 LDX	3.4 LDX	3.5 LDX	3.3 LEA	3.5 LEA						1.2 El
А	2.5 INCW	2.6 INCW	r2,Irr1 2.3 CP	1r2,1rr1 2.4 CP	r2,ER1 3.3 CP	3.4 CP	82,IRR1 3.3 CP	3.4 CP	r1,r2,X 4.3 CPX	4.3 CPX						1.4 RET
В	2.2 CLR	1RR1 2.3 CLR	r1,r2 2.3 XOR	r1,lr2 2.4 XOR	82,R1 3.3 XOR	3.4 XOR	81,IM 3.3 XOR	3.4 XOR	4.3 XORX	4.3 XORX						1.5 IRET
С	R1 2.2 RRC	IR1 2.3 RRC	r1,r2 2.5 LDC	r1,lr2 2.9 LDCI	R2,R1 2.3 JP	IR2,R1 2.9 LDC	R1,IM	IR1,IM 3.4 LD	ER2,ER1 3.2 PUSHX	IM,ER1						1.2 RCF
D	R1 2.2 SRA	IR1 2.3 SRA	r1,Irr2 2.5 LDC	lr1,lrr2 2.9 LDCI	IRR1 2.6 CALL	lr1,Irr2 2.2 BSWAP	3.3 CALL	r1,r2,X 3.4 LD	ER2 3.2 POPX							1.2 SCF
E	R1 2.2 RR	IR1 2.3 RR	r2,Irr1 2.2 BIT	lr2,Irr1 2.3 LD	IRR1 3.2 LD	R1 3.3 LD	DA 3.2 LD	r2,r1,X 3.3 LD	ER1 4.2 LDX	4.2 LDX						1.2 CCF
F	R1 2.2 SWAP	IR1 2.3 SWAP	p,b,r1 2.6 TRAP	r1,lr2 2.3 LD	R2,R1 2.8 MULT	IR2,R1 3.3 LD	R1,IM 3.3 BTJ	IR1,IM 3.4 BTJ	ER2,ER1	IM,ER1						
•	R1	IR1	Vector	lr1,r2	RR1	R2,IR1	p,b,r1,X	p,b,lr1,X								

Figure 60. First Opcode Map

Packaging

Figure 62 displays the 40-pin Plastic Dual-inline Package (PDIP) available for the Z8X1601, Z8X2401, Z8X3201, Z8X4801, and Z8X6401 devices.

Figure 62. 40-Lead Plastic Dual-Inline Package (PDIP)

art Number	ash	WA	O Lines	iterrupts	6-Bit Timers w/PWM	0-Bit A/D Channels	U	ā	ARTs with IrDA	escription		
م Z8F242x with 24 KB Flasl	ц. h, 10-Bit	<u>∽</u> Analog	∣ ≦ -to-D) ⊆ ligita	i ← Co	⊂ nvert	ter	S	>	Ω		
Standard Temperature: 0 °C to 70 °C												
Z8F2421PM020SC	24 KB	2 KB	29	23	3	8	1	1	2	PDIP 40-pin package		
Z8F2421AN020SC	24 KB	2 KB	31	23	3	8	1	1	2	LQFP 44-pin package		
Z8F2421VN020SC	24 KB	2 KB	31	23	3	8	1	1	2	PLCC 44-pin package		
Z8F2422AR020SC	24 KB	2 KB	46	24	4	12	1	1	2	LQFP 64-pin package		
Z8F2422VS020SC	24 KB	2 KB	46	24	4	12	1	1	2	PLCC 68-pin package		
Extended Temperature: -40 °C to 105 °C												
Z8F2421PM020EC	24 KB	2 KB	29	23	3	8	1	1	2	PDIP 40-pin package		
Z8F2421AN020EC	24 KB	2 KB	31	23	3	8	1	1	2	LQFP 44-pin package		
Z8F2421VN020EC	24 KB	2 KB	31	23	3	8	1	1	2	PLCC 44-pin package		
Z8F2422AR020EC	24 KB	2 KB	46	24	4	12	1	1	2	LQFP 64-pin package		
Z8F2422VS020EC	24 KB	2 KB	46	24	4	12	1	1	2	PLCC 68-pin package		
Automotive/Industrial Temperature: -40 °C to 125 °C												
Z8F2421PM020AC	24 KB	2 KB	29	23	3	8	1	1	2	PDIP 40-pin package		
Z8F2421AN020AC	24 KB	2 KB	31	23	3	8	1	1	2	LQFP 44-pin package		
Z8F2421VN020AC	24 KB	2 KB	31	23	3	8	1	1	2	PLCC 44-pin package		
Z8F2422AR020AC	24 KB	2 KB	46	24	4	12	1	1	2	LQFP 64-pin package		
Z8F2422VS020AC	24 KB	2 KB	46	24	4	12	1	1	2	PLCC 68-pin package		

Example: Part number Z8F6421AN020SC is an 8-bit microcontroller product in an LQFP package, using 44 pins, operating with a maximum 20 MHz external clock frequency over a 0 °C to +70 °C temperature range and built using the Plastic-Standard environmental flow.